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Abstract—The effect of the horizontal dimensions of inland water bodies (lakes and reservoirs) on the vertical
mixing processes is studied. We consider a three-dimensional hydrostatic model and a one-dimensional
LAKE model based on the averaging of three-dimensional equations over a horizontal section of the water
body. The processes of vertical mixing in both models were simulated with the use of k–ε-closure. LAKE
model takes into account the seiches through the parameterization of the pressure gradient and horizontal
viscosity. The models were verified against the Kato-Phillips experiment data, and a series of numerical
experiments was carried out to demonstrate the effect of the horizontal size of the water body on mixed-layer
depth. It is shown that the horizontal dimensions of a water body has to be taken into account in the simula-
tion of the vertical temperature distribution in lakes and reservoirs with the size much less than the internal
Rossby deformation radius.
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INTRODUCTION
Inland water bodies (lakes and reservoirs) occupy

1.3–1.8% of the total area of continents [16, 21] and
play an important role in the socioeconomic develop-
ment of the regions in which they are located; they are
the focus of studies in many problems in hydrology,
ecology, meteorology, and climatology. The thermo-
dynamic characteristics of lakes and reservoirs have a
considerable effect on several processes of regional
atmospheric circulation. In addition, changes of tem-
perature in lakes and reservoirs can intensify the pro-
cesses of eutrophication [3, 6, 7], i.e., an increase in
the biological production of water bodies, in particu-
lar, as the result of biomass growth of diatoms and del-
eterious blue-green algae, which can cause mass fish
kill and water quality deterioration.

We also have to mention the role of inland water
bodies in climate changes and the response of water
bodies to such changes [1, 13, 28]. In regions with
large numbers of lakes and reservoirs, a pronounced
climate warming can be seen [12], resulting in the early
ice breaking and a shorter under-ice period. To take
into account the interaction between inland water
bodies and the atmosphere, the climate models have
to include the calculation of thermohydrodynamic
and biological characteristics of continental waters.

The thermohydrodynamics of lakes has to be correctly
reproduced in the mesoscale atmospheric models,
where the spatial resolution reaches several kilome-
ters, which is less than the characteristic horizontal
dimensions of large inland water bodies.

An important aspect in the simulation of the ther-
mohydrodynamics of inland water bodies is the cor-
rect description of mixing processes, including those
related with gravity (seiche) oscillations. The seiches
are caused by the horizontal redistribution of mass and
the effect of the hydrostatic pressure gradient; they are
not incorporated in the majority of the existing one-
dimensional (vertical) models. However, in the mod-
els of lakes and reservoirs with horizontal dimensions
much lesser than the internal Rossby deformation
radius , the Coriolis force becomes negligible com-
pared with the force of the horizontal pressure gradi-
ent [10], and the models not taking seiches into
account fail to give a correct description of the velocity
field in such water bodies; this can lead to a significant
error in the estimate of the mixed layer thickness (this
value can be overestimated, especially, in the period of
summer stratification [27]). In the mid latitudes,
where the value of  is 2–3 km, it should be expected
that seiches will have an appreciable effect on the mix-
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ing processes in relatively small lakes, which account
for the major portion of inland water bodies [5].

The objective of this study is to evaluate the effect
of the horizontal dimensions of a lake or a reservoir on
the processes of mixing in the water body, in particu-
lar, on the thickness of the mixed layer. To simplify the
analysis, we consider water bodies of idealized shape
under prescribed atmospheric conditions not chang-
ing over time.

THE METHODS OF DESCRIPTION 
OF THE PROCESSES 

OF THERMOHYDRODYNAMICS 
OF INLAND WATER BODIES

The mathematical models developed by now
enable calculating the distributions of thermohydro-
dynamic characteristics in inland water bodies. The
most detail description can be obtained with the use of
three-dimensional models [4, 13, 18], which are based
on the Reynolds-averaged system of thermohydrody-
namic equations in Boussinesq approximation and
hydrostatic equation [2]. Such system is used in this
study to describe the circulation in a thermally strati-
fied inland water body. The effect of short-wave radi-
ation can be neglected for short time scales in nights in
the warm seasons and in cold seasons, when there is
practically no effect of wind on the hydrodynamics of
the water body. Therefore, the formulation of the
problem in this study is a relatively crude approxima-
tion to the conditions in the nature; however, it allows
one to take into account the effect of the horizontal
dimensions of the water body on the vertical distribu-
tion of temperature, which, obviously, exists in real
objects. Under such conditions, the system of equa-
tions becomes:
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Here  is velocity vector;  is the deviation
of the free surface from the equilibrium state; T is tem-
perature; ρ is density; (λm) and (λh) are the coef-
ficients of vertical (horizontal) turbulent viscosity and
thermal diffusivity, respectively; ν, χ' are the coeffi-
cients of molecular viscosity and thermal diffusivity;
f is Coriolis parameter (assumed constant); g is the
acceleration due to gravity; z is the vertical coordinate
passing from the bed of the water body z = –H(x, y) to
the surface; t is time.

In the system of equations (1)–(6),  is the
advection operator:

while  and  represent horizontal and
vertical diffusion with coefficients  and К, respec-
tively:

Currently, the hydrological and thermodynamic
characteristics of inland water bodies at the seasonal,
annual, and climate scale can be best studied by one-
dimensional models due to their computational sim-
plicity. The one-dimensional system of equations
describing the vertical distribution of momentum and
heat can be obtained by averaging the above three-
dimensional equations (1)–(6) by the horizontal sec-
tion of the water body [11, 26]:

(7)

(8)

(9)

Here А(z) is the area of the horizontal section of the
water body, p is hydrostatic pressure, and the horizon-
tal line means averaging over A(z). Here, in accor-
dance with the above reasoning, the heat f lux on the
bottom boundary is set to zero, and the f lux of
momentum is assumed constant on the boundary of
each horizontal section (the values denoted by a sub-
script bot).

The systems of equations (1)–(6) and (7)–(9) were
written under the assumption that the gradient
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Fig. 1. Multilayer representation of f luid in seiche parameterization in one-dimensional LAKE model. 
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approximation is valid for the description of turbulent
flows. An important condition for the problems con-
sidered in this study is a consistent description of the
vertical mixing in the three-dimensional and one-
dimensional models. Therefore, coefficients  and

 in both models are hereafter calculated with the
use of two-equation k–ε-closure in the standard for-
mulation [8, 20]. It is based on prognostic equations
for turbulent kinetic energy (TKE) and the rate of its
dissipation ε:

(10)

(11)

(12)

(13)

Here, the term P corresponds to production of turbu-
lence energy due to velocity shear; B accounts for the
production or consumption of energy under the effect
of buoyancy forces;  are turbulent Schmidt num-
bers for TKE and the dissipation rate, respectively;

, ,  are empirical constants;  and  are
stability functions for the momentum and scalar vari-
ables, assumed constant.

The system of equations of the one-dimensional
model (7)–(13) is not closed; the parameterization is
required for the first, third, and fourth terms in the
right hand sides of (8)–(9). The three-dimensional
and one-dimensional systems of equations are supple-
mented by the necessary boundary conditions.
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THE PARAMETRIZATION OF THE GRADIENT 
OF PRESSURE AND HORIZONTAL VISCOSITY 

FOR ONE-DIMENSIONAL MODEL

We will derive the parametrization of the horizon-
tal pressure gradient and the horizontal diffusion of a
two-dimensional water body with Coriolis force not
taken into account. The case of three-dimensional
water body with Earth rotation taken into account and
with no horizontal viscosity is considered in [10]. The
seiches are incorporated by a method based on the
explicit reproduction of the first horizontal mode.
Suppose that the f luid consists of N layers (Fig. 1) with
constant densities  ( . The thickness of each
layer  is written in the form:  (  is the
thickness of the i-th f luid layer at rest;  is the devia-
tion of the thickness, with  H is water body
depth). The problem is considered for the rectangular
domain . The solution of this
problem is equivalent to the solution of a three-dimen-
sional problem in the domain

, in which the
momentum flux on the surface is directed along the
x axis, and the velocity component along the y axis is
zero.

For each layer, the following linearized equations
of motion, continuity, and hydrostatic can be written:
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(16)

In the inland water bodies, the energy of modes
with the first horizontal wave number commonly
dominates in the spectrum of internal oscillations [19,
25]; therefore, we represent the solution of the system
of equations (14)–(16) in the form of a Fourier series
up to the first harmonic and average the results over a
horizontal section, which, in this case, is

. We obtain:

(17)

(18)

where  denotes the difference between values ,

averaged over the right ( ) and left ( )

halves of the section [17]. This system relates the hor-
izontally averaged velocity components with the aver-
age pressure gradient. In the system of equations (17)–
(18), the vertical distribution of the variables is piece-
wise constant, unlike the system of equations (7)–(9),
which is formulated for functions differentiable with
respect to z. We use equations (17)–(19) to close the
system of equations (7)–(9); to do this, we divide the

vertical profile of water density  into N
layers with thicknesses  such that the
density in each layer varies over depth insignificantly.
In any such layer, the horizontal gradient of pressure

can be calculated by (17)–(18) with the use of  as the
vertically averaged horizontal velocity from the one-

dimensional model ; this gradient will be con-

stant within each semi-interval  The system of

equations of the one-dimensional model supple-
mented in such a manner can be written as:

The obtained model can be classified as 1.5-
dimensional, because it partially takes into account
the effects of horizontal heterogeneity of a specified
form; mathematically, this formulation includes the
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elements of partial differential equations, ordinary dif-
ferential equations, and integral equations. Hereafter,
the presented closure of a one-dimensional system will
be also referred to as seiche parameterization, as it
allows us to explicitly reproduce seiches with a hori-
zontal wave number 1.

THE IMPLEMENTATION 
OF NUMERICAL EXPERIMENTS

The numerical experiments were carried out with
the use of one-dimensional LAKE model (a detailed
description is given in [9]), supplemented by the
parameterization of seiche. The model is being devel-
oped in the Moscow State University, and it is incor-
porated in the most recent version of the land surface
model being developed in the Marchuk Institute of
Numerical Mathematics, Russian Academy of Sci-
ences [2] and Moscow State University. The one-
dimensional model was verified with the use of a
three-dimensional hydrostatic model being developed
in the Research Computer Center, Moscow State Uni-
versity, and in the Institute of Numerical Mathemat-
ics, Russian Academy of Sciences, based on a univer-
sal hydrodynamic code, combining the DNS (Direct
Numerical Simulation), LES (Large-Eddy Simula-
tion), and RANS (Reynolds-Averaged Navier-Stokes)
approaches for calculation of geophysical turbulent
flows [22, 23]. The numerical method used to solve
the system of equations (1)–(6) is based on conserva-
tive finite-difference methods with discretization on
rectangular grids and the use of a semi-implicit
method for approximation over time, in which the
advective transport and horizontal diffusion are
described by explicit schemes.

The values of empirical constants in k–ε-closure of
the one-dimensional and three-dimensional models
are prescribed according to those given in [27]; and
their choice is substantiated, for example, in [14, 15].
Note that the turbulent Prandtl number was assumed

constant , and the constant ,

which determines the changes in the dissipation
rate under the effect of buoyancy forces, was set equal

to 1.14 for unstable conditions B > 0 and  when
B < 0.

The one-dimensional and three-dimensional
models were used to carry out the following experi-
ments: the verification by numerical implementation
of the classical laboratory experiment of Kato–Phil-
lips [17], the results of which are used as the main data
for calibration of turbulent closures for shear f lows in
a stratified f luid, and calculations with idealized water
bodies with rectangular vertical cross-sections at dif-
ferent horizontal size (10 and 1000 m).

In the experiment of Kato–Phillips, a horizontally
homogeneous stratified f luid is considered in the
absence of vertical boundaries. The initial temperature
profile is linear, and the only source of turbulence is

Pr 1.25t m hK K= = 3C ε

0.4−
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the wind shear, which provides a constant momentum
flux on the surface. In the classical formulation
described in [17], a ring-shaped reservoir was consid-
ered, on the surface of which a frictional stress was cre-
ated in the circumferential direction. The internal and
external diameters were 152.4 and 106.7 cm, respec-
tively; therefore, the channel was 22.8 cm in width.
The depth of the reservoir was 28 cm.

The results of this experiment can be well described
by the theoretical formula for variations of the thick-
ness of the mixed layer over time [24]:

(19)

where  is the thickness of the mixed layer,  is the

friction velocity on the surface ( ).

For the numerical implementation of the Kato–
Phillips experiment, the equations of the one-dimen-
sional and three-dimensional models were supple-
mented by the following boundary conditions on the
bed:

and on the surface:

Periodic boundary conditions in the horizontal direc-
tions were used in the three-dimensional model.

In the series of experiments with the presence of
vertical walls, the three-dimensional model was sup-
plemented by lateral boundary conditions:

Note, that the lateral boundary conditions are not
specified in the one-dimensional model; however, the
first horizontal mode of the velocity and pressure
fields, for which the parameterization of seiches has
been obtained, satisfy the above conditions.
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In all experiments, the following parameters were
specified:

water body depth of 10 m;

the calculation time of 7 or 30 days;

the initial temperature gradient ° C/m,

which corresponds to the Brunt–Väisälä frequency

(buoyancy frequency)  s–1;

the momentum flux on the surface  N/m2,

the Coriolis force is not taken into account.

Under the above boundary conditions, experimen-
tal parameters, and the choice of initial conditions
homogeneous over y direction, the three-dimensional
problem becomes two-dimensional, which corre-
sponds to the assumptions used above for the case of a
one-dimensional model.

THE DYNAMICS 
OF MIXED-LAYER THICKNESS

In the numerical implementation of the classical
Kato–Phillips experiment, both models show a good
agreement with the analytical solution. As to the
experiments with water bodies of finite size, it was
demonstrated that an increase in the longitudinal size
of the water body is accompanied by an increase in the
thickness of the mixed layer (Fig. 2).

It is worth mentioning that, to the authors’ knowl-
edge, no laboratory experiments have been made for
such conditions, and no empirical estimates similar to
(19) are available; therefore, the authors think it possi-
ble in this case to take the result obtained using the
three-dimensional hydrostatic model as a reference
sample. The one-dimensional model shows a good
agreement with the three-dimensional model: the
parameterization of the horizontal gradient of pressure
and viscosity makes it possible to adequately repro-
duce the thickness of the mixed layer. The depth of the

mixed layer  significantly depends on the horizon-
tal dimensions of the water body, and the greater the
water body, the closer this depth to the result of the
classical Kato–Philips experiment, where there are no

vertical walls. The restriction on  in the presence of
vertical walls is due to the action of the hydrostatic
pressure gradient, which forms in the water body in
such case and acts oppositely to the f lux of momentum
from the atmosphere. This leads to the formation of a
quasi-steady-state circulation in the mixed layer. In
the case of water layer unrestricted in the horizontal
directions (Kato–Phillips experiment), the horizontal
pressure gradient will not form and the f lux of
momentum from the atmosphere will lead to a monot-
onous and unlimited increase in the maximal velocity
in the mixed layer, which, in turn, contributes to a

rapid increase of .
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Fig. 2. Variations of mixed-layer thickness over time in calculations for finite water bodies and in the classic experiment of Kato–
Phillips. 
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THE VERTICAL STRUCTURE OF FLOW

Numerical experiments were carried out for rect-

angular water bodies with different horizontal dimen-

sions to analyze the vertical distributions of tempera-

ture, f low velocity, and the coefficient of turbulent vis-

cosity. The duration of the numerical experiments was

30 days; other calculation parameters are given above.

The comparison of the one- and three-dimensional

models were carried out for the 7th and 30th days of

calculation.
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The profiles of the vertical temperature distribution
were compared (Fig. 3).

The models on the time scales of several days show
a good agreement. The difference between the results
obtained with the use of models considered in this
study for long time intervals (≥30 days) for a water
body 1000 m in length may be due to the specific fea-
tures of the models: note that the one-dimensional
model is based on the averaging of three-dimensional
equations, and the parameterization of pressure gradi-
ent takes into account only the first horizontal mode
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Fig. 4. The vertical distribution of horizontal velocity on the (a) 7th and (b) 30th days of calculations. 
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of the secihes. It should be stressed that in the case of
a water body 10 m in length for the 30th day, both
models give almost identical temperature profiles.

This suggests the assumption that, in the three-
dimensional model, the share of the kinetic energy of
harmonics with wave numbers >1 in the total kinetic
energy is greater in a water body 1000 m in length than
in the water body of 10 m in length.

Therefore, the first horizontal mode parameterized
in the one-dimensional model gives a poorer descrip-
tion of the velocity field for a water body 1000 m in
length than for one 10 m in length, resulting in a
poorer reproduction of the vertical turbulent exchange
and the deepening rate of the mixed layer.

Note that the results of the discussed numerical
experiments for the time scale beyond 7–10 days are of
purely theoretical interest. The thing is that, in the
problem formulation, the f lux of momentum from the
atmosphere, which is determined by wind, has the
same magnitude and direction throughout the calcu-
lation period. Such situation is impossible in the
nature. First, the daily behavior of wind is statistically
significant: wind is commonly stronger during day and
weakens during night. Second, variations of wind at
the synoptic time scale are associated with the passage
of cyclones and anticyclones, the lifetime of which is
commonly 7–10 days; therefore, at short time scales
(not greater than several days), the wind conditions
can be similar to those specified in the experiment.

Along with water temperature, the vertical distribu-
tion of f low velocity was also analyzed (Fig. 4).

In the profiles of f low velocity in the lower part of
the mixed layer, oppositely directed pressure gradients
and wind velocity can be seen, and the structure itself
remains quasi-stationary. The thermocline features
gravitational oscillations, the amplitude of which is
suppressed by horizontal viscosity.
The profiles of the coefficient of turbulent viscosity
(Figs. 5) show that its values in the mixed layer in one-
dimensional model are much greater than they are in
the three-dimensional model. This can be explained
by the following mechanism: in both models, the fric-
tion between the oppositely directed upper and lower
flows exists because of the vertical turbulent viscosity;
however, the three-dimensional model also repro-
duces the vertical branches of the circulation cell, the
role of which consists in the transfer of momentum
between the upper and lower boundaries of the mixed
layer. This contributes to a decrease in the velocity dif-
ference between the f lows in the three-dimensional
model, resulting in that the velocity shear in the one-
dimensional model is greater. In accordance with (10),
the production of turbulent kinetic energy in one-
dimensional model is also greater; this is the cause of
the overestimation of the eddy viscosity coefficient
value. Because of this, in the description, for example,
of the vertical turbulent transport of phytoplankton
and greenhouse gases in the mixed layer, the results of
the one-dimensional model can carry appreciable
errors, and this aspect requires further studies.

CONCLUSIONS

The results of this study suggest that the horizontal
dimensions of water bodies have a considerable effect
on the depth of the top mixed layer and an increase in
the size of the water body increases the thermocline
deepening rate. It is confirmed that the seiche oscilla-
tions are to be taken into account for correct descrip-
tion of mixing processes in water bodies with horizon-
tal dimensions much less than the Rossby deformation
radius. The parameterization of the pressure gradient
and the horizontal viscosity for the one-dimensional
model LAKE, allows to reproduce the thickness of
mixed layer with acceptable accuracy. It should be
mentioned, however, that the one-dimensional model
WATER RESOURCES  Vol. 48  No. 2  2021
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Fig. 5. The vertical distribution of the turbulent viscosity coefficient on (a) the 7th and (b) the 30th days of calculation. 
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overestimates the current velocity and, hence, the val-
ues of the turbulent viscosity coefficient. The authors
plan to study the importance of this effects on the cor-
rectness of modeling, in particular, the processes of
vertical transport of phytoplankton and greenhouse
gases in real water bodies.
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