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Abstract—A semianalytic and approximate analytical solution is given to the problem of slug test in a partially
penetrating well in a confined or unconfined anisotropic aquifer. An asymptotic solution is given to the prob-
lem of slug test in a partially penetrating well in an unconfined aquifer. The latter solution, unlike the semiem-
piric Bouwer–Rice method, takes into account hydraulic conductivity anisotropy and skin effect. Leven-
berg–Marquardt algorithm was used to develop a method for determining hydraulic conductivity anisotropy
and skin effect based on data of slug tests in partially penetrating wells in confined or unconfined aquifer.
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INTRODUCTION
Slug tests are the most rapid and economically effi-

cient methods for determining the hydraulic charac-
teristics of aquifers. They are based on an abrupt
change of water level in a well (with the use of an
instantaneous addition or pumping out, compression,
short-time pumping, etc.) followed by recording the
curve of level (pressure) recovery. An important fea-
ture of the slug tests is their short duration in time and
no need to measure the f low rate. The estimates of
aquifer characteristics obtained by the interpretation
of such tests commonly refer to the zone nearest to the
well.

The hydraulic conductivity is often determined by
the data of slug tests processed by graphical analytic
methods proposed by Hvorslev, Bouwer and Rice,
Dagan, etc. [14]. Such methods are based on the
model of incompressible f luid f low and differ by the
method used to calculate the form factor, which
depends only on hydraulic conductivity anisotropy
and thegeometrical parameters of well screen and
drainage domain [29]. The drawbacks of graphical
analytic methods include the relatively low accuracy of
hydraulic conductivity estimates, especially, in the
case of screen clogging [7, 19, 20].

The first analytical solution to the problem of water
level recovery in a vertical well after instantaneous
charge of water was obtained by S.G. Kamenetskii [2,
4]. This solution was used to construct type curves and
propose a method for the analysis of slug-test data [1,
5]. Later, H. Cooper, J.D. Bredehoeft, and I.S. Papa-

dopulos obtained an analogous solution of the prob-
lem and constructed a set of type curves of water level
recovery in a vertical well [16]. In the more general for-
mulation, the problem of instantaneous pumping out
from a vertical well was discussed by N.I. Gamayunov
and B.S. Sherzhukov [3, 12], who took into account
the f low through a low-permeability interlayer from an
aquifer with a constant head. An analytical solution of
the problem of instantaneous pumping out from a ver-
tical well with skin-effect taken into account and sets
of appropriate type curves are given in [2, 11, 24, 26].
Later, many other analytical solutions were obtained
for the problem of slug tests, in particular, for the case
of vertical wells in heterogeneous formations and in
double-porosity formations [14], for partially pene-
trating vertical wells [17, 20, 27], horizontal wells [8,
25], etc.

Along with obvious advantages, the slug tests have
some drawbacks. The slug tests are known to give
ambiguous estimates of aquifer characteristics in some
cases when wells with low-permeability skin effect are
involved [7, 14]. The problem of joint estimation of
hydraulic conductivity, compressibility, and skin
effect based on the data of a single slug test can hardly
be solved unless any a priori data on these characteris-
tics are available [2, 11, 14]. The uncertainty of the
characteristics to be sought for can be reduced by head
measurements in observation wells or piezometer
located near the perturbation well [14]. Slug tests can
be combined with studies of interference in the vertical
direction [21]. In that case, the head is measured by
430
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high-accuracy pressure transducers in the tested and
observed intervals in the well, isolated from one
another by inflatable packers. Successive interval slug
tests in a single well at different depths can be used to
estimate the heterogeneity of the hydraulic conductiv-
ity anisotropy and compressibility in a formation over
its thickness [21].

The solution of the problems of f luid f low to par-
tially penetrating wells faces difficulties associated
with specifying mixed boundary conditions on the
cylindrical surface of the well: a constant-head condi-
tion is specified within the penetration zone, and a no-
flow condition, in the cased borehole section. Prob-
lems of this type with mixed boundary conditions,
sometimes referred to as Gilbert problems, are among
complex problems of mathematical physics. For
example, an accurate solution of the problem of
steady-state f luid f low to a partially penetrating well,
obtained by M.M. Glogovskii, leads to a system of an
infinite number of equations with an infinite number
of variables [6]. Starting from the work of A.L. Khein
[10], the majority of analytical solutions of the prob-
lems of transient f luid f low to a partially penetrating
vertical well were derived from the assumption that the
flux is uniformly distributed across the well screen [2,
18]. The model of a partially penetrating well with f lux
uniformly distributed across the well screen leads to a
nonuniform distribution of head within this interval. A
more physically sound is the model of infinite-con-
ductivity well with constant head within the well
screen. An approximate approach is also used with a
uniform flux across the well screen and weighted-
mean head calculated there [17, 20, 27]. In studies [9,
15, 23], the problem of transient water f low to a par-
tially penetrating well is reduced to a system of integral
equations describing the f lux distribution across the
well screen, which is next solved numerically. The
condition of constant head within the well screen, as
well as some other complicating factors, such as the
heterogeneity of the formation, clogging, the presence
of free free water surface, can be taken into account in
numerical simulation of slug tests in partially penetrat-
ing wells [7].

SEMIANALYTICAL SOLUTION 
OF THE PROBLEM OF SLUG TEST 

IN A PARTIALLY PENETRATING WELL

Consider a transient water f low in an infinite
anisotropic formation after an instantaneous change
in the level in a partially penetrating well by s0 (Fig. 1).
The level in the well s(t) will be rising (dropping),
approaching its initial value, because of water inflow

(outflow) with a discharge rate  (  is the

wellbore storage coefficient, rc is the internal radius of
the pipe). The objective is to determine the function of
head change  within the f low domain ,
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t

∂
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, and the function s(t), describing level
change in the well at . In the dimensionless form,
the change in the head in the formation can be
described by the piezoconductivity equation:

(1)

with the initial

(2)

and boundary conditions

(3)

(4)

(5)

(6)

(7)

where , , , , ,

, , ,

h is the head; kr, kz are the hydraulic conductivities in
the horizontal and vertical directions; b is formation
thickness; Ss is the compressibility; rw is screen radius;
S is skin-factor.

Applying Laplace transform with respect to time
and finite Fourier cosine-transform with respect to
coordinate zd to (1)‒(7) [9, 23], we obtain

(8)

where u is Laplace transform parameter;

; ; K0(x), K1(x) are

modified Bessel functions of the second kind, zero
and first orders, respectively.

The functions describing the variations of water
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Fig. 1. Schematic partially penetrating well.
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For the case of a partially penetrating well in an
unconfined aquifer, we assume that, during the test
period, the free surface remains undisturbed and the
well screen is not drained. Replacing the second
boundary condition in (4) by  and
applying to (1)‒(7) Laplace transform with respect to
time and modified finite Fourier sine-transform with
respect to coordinate zd [23], we obtain the following
system of integral equations:
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For numerical solution of the systems of integral
equations (9), (10) and (11), (12), the screen interval is
divided into segments and it is assumed that water
inflow to each segment is uniform. This yields a system
of linear algebraic equations for determining Laplace
transforms of variations of water head and flux across
the screen interval:

(13)
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 for unconfined

aquifer; , , ,
. The system of linear

algebraic equations is solved by stabilized biconjugate-
gradient method BiCGStab with preconditioning.
The inverse Laplace transform is performed numeri-
cally using Stehfest algorithm [9].
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APPROXIMATE SOLUTION OF THE PROBLEM 
OF SLUG TEST IN A PARTIALLY 

PENETRATING WELL

Suppose that the distribution of water inflow over
the screen interval is uniform. Integrating equations
(9) and (11) with respect to zd and considering (10),
(12), we find the change of the weighted-mean head
within the screen interval of a partially penetrating
well:

(14)

Here ;  ×

 is the

Laplace transform of the weighted-mean head
within the screen interval of a partially penetrating
well operated with constant pumping rate in a con-

fined aquifer [9];  ×

 for uncon-

fined aquifer. If a partially penetrating well penetrates
an isotropic confined aquifer, then (14) coincides with
the solution obtained by D. Dougherty and D. Babu
[17]. For a fully penetrating well in a confined aquifer
( , , ld = 1), expression (14) reduces to the
solution of the problem from studies [11, 24], and at
S = 0, to the solution of S.G. Kamenetskii [4]. Note
that the solution proposed by Z. Hyder et al. [14, 20],
known as KGS (Kansas Geological Survey) model,
uses a model of finite-thickness skin-effect. A similar
model of skin-effect is used in the solution of H. Yeh
et al. [27] and in the solution of T. Perina and T. Lee
[23].

Now we study the behavior of solution (14) for
large values of  in the case of unconfined aquifer.
Applying to [14] the inverse Laplace transform at

, which corresponds to , we obtain the
following asymptotic solution to the problem of slug
test in unconfined formation:
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where  ×

 is pseudo-

skin-factor, . The total skin-factor

 in (15) is a characteristic of the degree of

well penetration. Note that the value of pseudoskin-
factor Sp is inversely proportional to the form factor of
a partially penetrating well in an unconfined forma-
tion [29].

Another way to take into account the skin-effect is
to replace the screen radius rw by the effective radius

 [2, 11, 14]. With this change, the
expression (15) becomes

(16)

where the tilde implies that, in dimensionless param-
eters, screen radius rw is replaced by the effective radius

. Calculations by formulas (15) and (16) have shown
that both methods used to account for skin-effect give
the same results.

Unlike Bouwer–Rice semiempiric approach [13],
the asymptotic solution (15) allows taking into
account the hydraulic conductivity anisotropy and
skin-effect. V. Zlotnik [28] proposed a modification of
Bower–Rice approach for taking into account the
hydraulic conductivity anisotropy with the use of the
replacement of screen radius rw by effective radius

.

Formula (15) can be used to readily show that skin-
effect in Bower–Rice method can be taken into
account through replacing the form factor P by
1/(1/P + S). According to modified Bower–Rice
method and asymptotic solution (15), the plot of
changes in water level in coordinates ln s ‒ t is a
straight line with a slope depending on the hydraulic
conductivity anisotropy and skin-effect. This demon-
strates that the application of graphical–analytical
methods to interpret slug tests in partially penetrating
wells without the use of a priori information about the
hydraulic conductivity anisotropy and skin-effect can
cause errors in estimates of hydraulic conductivity [7,
14, 19, 28].

AN ANALYTICAL SOLUTION 
TO THE PROBLEM OF INTERVAL SLUG TEST 

OF A VERTICAL WELL
Consider a problem of evaluating the head in test

and observation intervals of a well (Fig. 2) after an
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Fig. 2. Schematic slug test of a well for interference in the vertical direction (z1–z2 and z3–z4 are the tested and observation inter-
vals).
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instantaneous change in the head in the test interval by
a value of s0. In such case, the formulation of problem
(1)‒(7) is supplemented by a boundary condition for
the observation interval

(17)

 is the dimensionless coefficient

reflecting the wellbore storage effect of the observa-
tion interval, S2 is the skin-factor of the observation
interval.

Suppose that the distribution of water inflow in the
test and observation intervals is uniform. Now the
Laplace transform of the averaged heads over the
length of the intervals have the form:
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,  (i = 1 is for the test interval, i = 2
is for the observation interval).

The coefficient of the wellbore storage effect in
observation interval is  (V2 is the volume
of the observation interval, Cw is water compressibility,

 is water density, g is gravitational acceleration).
Considering that the value of C2 is small compared
with C1 and assuming in (18) , we obtain:

(19)

In this case, the expression for head variations in the
test interval coincides with (14), i.e., the observation
interval has no effect on variations in the head in the
test interval.

CALCULATION RESULTS
Figure 3а gives drawdown plots  for a partially pen-

etrating well, simulated with the semianalytic solution
(13) (full lines), approximate analytical solution (14)
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Fig. 3. (a) Drawdown plots and (b) transformed drawdown plots for a partially penetrating well ((1, 3) confined and (2, 4) uncon-
fined aquifers). 
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As can be seen from Fig. 3b, the transformed draw-
down plots are similar to the type drawdown and
drawdown derivative plots for a well operating at con-
stant rate. The unit slope of the transformed draw-
down plots at small times can be used to diagnose the
wellbore storage effect. At large times, the zero slope
of curve 3 characterizes the radial regime of f low
toward a partially penetrating well in a confined aqui-
fer, while the negative slope of curve 4 shows the effect
of the upper boundary of an unconfined aquifer.
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by the minimization of objective function:
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an unconfined aquifer. The calculations were carried
out with the use of the following input data [14]: s0 =
0.671 m, C = 1.28 × 10–2 m2, Ss = 2 × 10–4 m–1, rw =
0.125 m, b = 47.87 m, z1 = 29.58 m, z2 = 31.1 m. The
solution of the inverse problem yielded the following
parameter estimates: kr = 3.97 × 10–5 m/s, kz = 3.34 ×
10–5 m/s, S = ‒0.49. Note that the estimates of skin-
factor and hydraulic conductivity anisotropy are sen-
sitive to the compressibility of formation. For exam-
ple, an increase in the compressibility of formation by
a factor of two leads to the following parameter esti-
mates: kr = 3.42 × 10–5 m/s, kz = 9.07 × 10–5 m/s, S =
‒0.28. Estimating the hydraulic conductivity by
Bower–Rice method and KGS model yielded 4 × 10–

5 and 4.87 × 10–5 m/s, respectively [14], which is in
good agreement with the results of calculations by the
proposed method.

Figure 5 gives an example of processing an interval
slug test in a vertical well in an unconfined aquifer.
The calculations were made with the following input
data [21]: s0 = 2.79 m, C1 = 5 × 10–4 m2, rw = 0.0254 m,
b = 12 m, z1 = 7.4 m, z2 = 8 m, z3 = 6.5 m, z4 = 6.8 m.
In the solution of inverse problem, the objective func-
tion for minimization was taken to be the sum of root-
mean-square difference between the observed and
calculated head values in the observation and test
intervals. Solving the inverse problem yielded the fol-
lowing parameter estimates: kr = 1.45 × 10–5 m/s, kz =
4.16 × 10–8 m/s, Ss = 3.6 × 10–5 m–1, S1 = ‒0.25. The
obtained estimates are in agreement with the results of
interpretation of interval slug-test given in [21]: kr =
2.1 × 10–5 m/s, kz = 1.3 × 10–8 m/s, Ss = 1.1 × 10–5 m–1.
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Fig. 4. (a) (symbols) Observed and (full lines) calculated drawdowns and (b) transformed drawdowns in a partially penetrating
well. 
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Fig. 5. (a) (symbols) Observed and (full lines) calculated drawdowns and (b) transformed drawdowns in test and observation
intervals. 
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CONCLUSIONS

A semianalytical solution was obtained for the
problem of slug-test in a partially penetrating well in a
confined or unconfined anisotropic aquifer, taking
into account the skin-effect and the conditions of uni-
form head distribution in the screen interval. With the
water inflow distribution within the screen interval
assumed uniform, an approximate analytical solution
of the problem was obtained. An asymptotic solution
was given to the problem of slug-test in a partially pen-
etrating well in an unconfined aquifer, and it was
shown that the reliable estimate of the hydraulic con-
ductivity by graphical analytical method requires a pri-
ori data on the anisotropy of conductivity and skin-
effect. An approximate analytical solution was
obtained for the problem of interval slug-test in a ver-
tical well in a confined or unconfined anisotropic
aquifer. Levenberg–Marquardt algorithm was used to
develop a method for determining hydraulic conduc-
tivity anisotropy and skin-effect based on data of slug
test in partially penetrating wells and interval slug-tests
in vertical wells.
WATER RESOURCES  Vol. 47  No. 3  2020



ASSESSING THE HYDRAULIC CONDUCTIVITY ANISOTROPY 437
REFERENCES
1. Vasilevskii, V.N., Umrikhin, I.D., Kamenetskii, S.G.,

Saitov, A.U., and Kuz’min, V.M., Vremennoe rukovod-
stvo po issledovaniyu skvazhin “ekspress-metodami”
(Provisional Guide on Studying Wells by Slug Tests),
Moscow: VNII, 1964.

2. Verigin, N.N., Vasil’ev, S.V., Sarkisyan, V.S., and Sher-
zhukov, B.S., Gidrodinamicheskie i fiziko-khimicheskie
svoistva gornykh porod (Hydrodynamic and Physico-
chemical Properties of Rocks), Moscow: Nedra, 1977.

3. Gamayunov, N.I. and Sherzhukov, B.S., Field deter-
mination of granite permeability, Inzh.-Fiz. Zh., 1961,
vol. 4, no. 10, pp. 71–78.

4. Kamenetskii, S.G., Two problems of the theory of f low
of an elastic f luid in an elastic porous medium, in Tr.
VNII. Razrabotka neftyanykh mestorozhdenii i podzem-
naya gidrodinamika (Trans. VNII. Development of Oil
Deposits and Subsurface Hydrodynamics), Moscow:
Gostoptekhizdat, 1959, no. 19, pp. 134–145.

5. Kamenetskii, S.G. and Saitov, A.U., Slug test for
studying piezometric nonflowing wells, Neftepromysl.
Delo, 1963, no. 8, pp. 8–11.

6. Krylov, A.P., Glogovskii, M.M., Mirchink, M.F., Ni-
kolaevskii, N.M., and Charnyi, I.A., Nauchnye osnovy
razrabotki neftyanykh mestorozhdenii (Scientific Princi-
ples of Oil Deposit Development), Moscow: Gost-
optekhizdat, 1948.

7. Lekhov, S.M. and Lekhov, M.V., Methods for calculat-
ing and reasons of erroneous results of slug tests in well,
Inzh. Izysk., 2017, no. 2, pp. 38–50.

8. Morozov, P.E., Determination of the reservoir param-
eters by slug test in a horizontal well, Neftepromysl. De-
lo, 2018, no. 11, pp. 36–42.

9. Morozov, P.E., Semianalytical solution for unsteady
fluid f low to a partially penetrating well, Uch. Zap. Ka-
zan. Gos. Univ. Ser. Fiz.-Mat. Nauki, 2017, vol. 159,
Book 3, pp. 340–353.

10. Khein, A.L., Transient f luid f low toward a well with an
open bottom, partially penetrating the bed, Dokl. Akad.
Nauk SSSR, 1953, vol. 91, no. 3, pp. 467–470.

11. Sherzhukov, B.S., Determining the resistance of par-
tially penetrating wells (skin-effect) based on data of in-
stantaneous filling or pumping and pumping with con-
stant rate, in Tr. lab. inzhenernoi gidrogeol. VNII VOD-
GEO (Trans. Lab. Eng. Hydrogeol.), Moscow:
Stroiizdat, 1972, issue 6, pp. 193–209.

12. Sherzhukov, B.S. and Gamayunov, N.I., Method for
estimating the hydrogeological parameters of aquifers
when tested by a pilot well, Izv. Vyssh. Uchebn. Razved.,
Geol. Razved., 1964, no. 5, pp. 105–111.

13. Bouwer, H. and Rice, R.C., A slug test for determining
hydraulic conductivity of unconfined aquifers with
completely or partially penetrating wells, Water Resour.
Res., 1976, vol. 12, no. 3, pp. 423–428.

14. Butler, J.J., Jr., The Design, Performance, and Analysis
of Slug Tests, Boca Raton, FL: Lewis Publishers, 1998.

15. Chang, C.C. and Chen, C.S., An integral transform ap-
proach for a mixed boundary problem involving a f low-
ing partially penetrating well with infinitesimal well
skin, Water Resour. Res., 2002, vol. 38, no. 6, pp. 1071–
1077.

16. Cooper, H., Bredehoeft, J.D. and Papadopulos, I.S.,
Response of a finite-diameter well to an instantaneous
charge of water, Water Resour. Res., 1967, vol. 3, no. 1,
pp. 263–269.

17. Dougherty, D. and Babu, D., Flow to a partially pene-
trating well in a double-porosity reservoir, Water Re-
sour. Res., 1984, vol. 20, no. 8, p. 1116–1122.

18. Hantush, M.S., Hydraulics of wells, in Advances in Hy-
droscience, Chow, V.T., Ed., N.Y.: Acad. Press, 1964,
vol. 1, pp. 281–432.

19. Hyder, Z. and Butler, J.J., Jr., Slug tests in unconfined
formations: an assessment of the Bouwer and Rice
technique, Ground Water, 1995, vol. 33, no. 1, pp. 16–
22.

20. Hyder, Z., Butler, J.J., Jr., McElwee, C.D., and
Liu, W., Slug tests in partially penetrating wells, Water
Resour. Res., 1994, vol. 30, no. 11, pp. 2945–2957.

21. Paradis, D. and Lefebvre, R., Single-well interference
slug tests to assess the vertical hydraulic conductivity of
unconsolidated aquifers, J. Hydrol., 2013, vol. 478,
pp. 102–118.

22. Peres, A.M., Omur, M., and Reynolds, A.C., A new
analysis procedure for determining aquifer properties
from slug test data, Water Resour. Res., 1989, vol. 25,
no. 7, pp. 1591–1602.

23. Perina, T. and Lee, T.C., General well function for
pumping from a confined, leaky, or unconfined aqui-
fer, J. Hydrol., 2006, vol. 317, nos. 3–4, pp. 239–260.

24. Ramey, H.J., Jr. and Agarwal, R.G., Annulus unload-
ing rates as influenced by wellbore storage and skin ef-
fect, SPE J., 1972, vol. 12, no. 5, pp. 253–462.

25. Rushing, J.A., A semianalytical model for horizontal
well slug testing in confined aquifers, PhD Dissertation,
Texas: Texas A&M Univ., 1997, 133 p.

26. Sageev, A., Slug test analysis, Water Resour. Res., 1986,
vol. 22, no. 8, pp. 11323–1333.

27. Yeh, H.D., Chen, Y.J., and Yan, S.Y., Semi-analytical
solution for a slug test in partially penetrating wells in-
cluding the effect of finite-thickness skin, Hydrol. Pro-
cesses, 2008, vol. 22, no. 18, pp. 3741–3748.

28. Zlotnik, V.A., Interpretation of slug and packer tests in
anisotropic aquifers, Ground Water, 1994, vol. 32,
no. 5, pp. 761–766.

29. Zlotnik, V.A., Goss, D., and Duffield, G.M., General
steady-state shape factor for a partially penetrating well,
Ground Water, 2010, vol. 48, no. 1, pp. 111–116.

Translated by G. Krichevets
WATER RESOURCES  Vol. 47  No. 3  2020


	INTRODUCTION
	SEMIANALYTICAL SOLUTION OF THE PROBLEM OF SLUG TEST IN A PARTIALLY PENETRATING WELL
	APPROXIMATE SOLUTION OF THE PROBLEM OF SLUG TEST IN A PARTIALLY PENETRATING WELL
	AN ANALYTICAL SOLUTION TO THE PROBLEM OF INTERVAL SLUG TEST OF A VERTICAL WELL
	CALCULATION RESULTS
	CONCLUSIONS
	REFERENCES

		2020-05-18T23:42:19+0300
	Preflight Ticket Signature




