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Abstract—The relationship between turbulent diffusion with Eulerian and Lagrangian scales of turbulence in
natural f lows is considered. An estimate of the depth-averaged Lagrangian time scale as a function of Eulerian
scale is suggested. The vertical turbulent diffusion in open natural f lows is studied. The mean velocity profile
is described by a power law. On the assumption of f lat f low under incomplete self-similarity of the global
Reynolds number, a universal expression for the vertical transfer coefficient is obtained. This expression
enables one to estimate the time and length of complete mixing using minimum experimental data. The coef-
ficients of longitudinal and vertical diffusion in different rivers are compared with each other and the univer-
sal ratio of these coefficients is suggested.
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INTRODUCTION

The intensity of turbulence plays a great role in
impurity transfer in natural streams. The system of
Reynolds equations, describing stream motion,
includes Reynolds stress tensor, which is usually
unknown. To close the system, the tensor of turbulent
transfer coefficients ε is used which are related with
the scales of eddies determined by the velocity and
morphological characteristics of the f low.

Despite the small value of turbulent transfer in
comparison with that along the stream direction, it
counts for much significance in rivers and reservoirs.
Turbulent diffusion is one of the mechanisms of oxy-
gen transfer to the bottom regions of a f low. The esti-
mate of the time of dilution of wastewaters till non-
dangerous concentrations requires the knowledge of
the magnitude of ε and its distribution over the depth.
Turbulent diffusion is also very important during
spring ice melting in natural water bodies. In practice,
the vertical turbulent transfer is often estimated by
depth-averaged coefficient, as it is many times smaller
than that in the horizontal transverse direction, but
sometimes it is necessary to know the vertical distribu-
tion of the coefficient of turbulent diffusion in the
vicinity of the source of impurity. For example, in case
the distance between the impurity source and the
water off take is not large enough.

In this work we study relationship between turbu-
lent transfer coefficients and the mean characteristics
of natural f low.

BACKGROUND
The description of water motion in a river is a com-

plex problem of determining the structure of a three-
dimensional f low above a movable boundary. Mixing
processes and impurity propagation in the f low
depend on the relationships between flow velocities in
different points of the stream. The mathematical
apparatus for the description of river f low is based on
differential equations of the conservation of mass and
momentum. In river f lows, the terms responsible for
molecular interaction (diffusion, viscosity, and heat
conduction) can be neglected since the contribution
of these processes to the mean transfer in developed
turbulent f low is very small.

To close the set of equations describing the move-
ment of a three-dimensional stream, one commonly
uses the gradient form of turbulent diffusion. The ten-
sor coefficient of eddy transfer ε, arising in this proce-
dure, is to be determined as well. Different hypotheses
were used to determine the coefficient ε, the most
physical one is Prandtl’s mixing-length hypothesis
developed, for example, by Czernuszenko & Rylov
(2000) [4]. In paper [3], the coefficient ε was esti-
mated with the help of a depth distribution of the mix-
ing length measured in a laboratory f lume, but it is dif-
ficult to develop the same procedure for open flows in
nature. It seems reasonable to define this coefficient as
a function of Lagrangian time scale of turbulence Ti
[13, 15, 22]:

(1)2,i i iTε = σ
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where

(1a)

rLi(t) is the normalized Lagrangian correlation func-

tion of velocity,  is the variance of velocity f luctua-
tions, i = 1, 2, 3 are the longitudinal, vertical and hor-
izontal transverse axes.

The Lagrangian scale of turbulence is a measure of
time during which the individual character of the
motion of a chosen fluid particle is conserved. Infor-
mation about the Lagrangian correlation functions is
of great interest in studies of transfer processes in riv-
ers. The Lagrangian characteristics of the velocity
field of a stream can be investigated with the help of
visualization methods, whose realization in a river is a
difficult problem yet.

In general, each type of transfer (molecular, heat,
momentum) in water stream is characterized by its
own coefficient of transfer [2]. Many natural streams
can be considered as 2D flows, in which case we intro-
duce only longitudinal and vertical diffusivity. Let us
consider turbulent f low with the mean width B and
depth h in the coordinate system x, y, z, where the
axis x corresponds to the stream direction and the lon-
gitudinal velocity component u, the axis y corresponds
to the vertical direction and the vertical velocity com-
ponent v, and the axis z corresponds to the transverse
direction and the transverse velocity component w.
For steady-state conditions, the longitudinal diffusion
is small compared to the longitudinal advection, and
the advective-diffusion equation in a f lat stream
(h/B ! 1) looks like:

(2)

where c is the concentration of impurity, Ky, Kz are the
vertical and horizontal transverse components of turbu-
lent mass transfer tensor coefficients, ω is fall velocity.

Thus the vertical transport of mass M in a wide
stream can be described with the help of Ky, by the fol-
lowing expression:

(3)

Following Boussinesq hypothesis and introducing
a coefficient of turbulent viscosity ε, one can present
the right part of Reynolds equation for momentum
transfer in a f lat stationary f low as

(4)

where ρ, ν are the density and kinematic viscosity of
water,  are f luctuations of the longitudinal and
vertical transverse components of stream velocity,
respectively.
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Then the vertical momentum transfer in an open
flow can be described by the expression

(5)

where  is shear stress tensor component.

In natural f lows, the magnitude of εy is many times
larger than the molecular viscosity ν, excluding the
layer near the bottom. As opposed to ν, the turbulent
transfer coefficient is a function of coordinates. If we
know the depth distributions of u(y) and τxy in a planar
flow, the vertical transfer coefficient can be found
using Eq. (5), which allows one to close the system of
Reynolds equations.

It is known that, for impurity of neutral buoyancy,
turbulent Schmidt number Sc = 1 and Ky = εy [18, 19,
26], which allows one to compare the magnitudes of
transfer coefficients described by Eqs. (3) and (5)
obtained in experiments with dye and calculated from
the data of velocity measurements. Equation (5) is the
starting point for estimation of the vertical diffusivity
in channel f low.

Under the assumptions of logarithmic mean veloc-
ity profile and linear depth distribution of the shear
stress τxy, Elder (1959) [12] obtained the coefficient of
vertical momentum transfer εy, in Eq. (5) as

(6)

where  is the shear velocity, τ0 is the wall
shear stress, κ is the von Karman’s constant.

From Eq. (6), the depth-averaged value of εy for a
wide river f low equals to

(7)

THE COEFFICIENT OF LONGITUDINAL 
DIFFUSION AND THE SCALE

OF TURBULENCE

If we explore the time–space structure of a turbu-
lent f low in Eulerian coordinates, the quantitative
characteristic of velocity connection at two points of
the f low is the correlation tensor of second rank [20]:

(8)

where  are f luid velocities at points 1 and 2. The
results of experimental studies of turbulent-stream
structure are realizations of f luctuations of velocity
components. The most accessible in experiments is
the realization of the longitudinal component of
velocity. Thus, we have the first diagonal term in

,y xy
du
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Eq. (8)—Eulerian autocorrelation function and cor-
relation coefficient

(9)

Thus, the experimental data enable us to estimate
Eulerian time scale:

(10)

The upper limit in this integral is commonly taken
to be the time , at which the autocorrelation function
crosses the abscissa for the first time. Eulerian integral
time scale of the turbulence presents “a memory of the
flow about itself.” The space integral scale L can be
calculated with the help of space correlation function
R (xi, xi + l) as

(11)

To obtain space correlation function in a river, it is
necessary to measure velocity f luctuations by identical
probes simultaneously. Because of this fact, Taylor’s
hypothesis is usually used to estimate the Eulerian
space scale of turbulence:

(12)

The value of θ can be easily obtained from experi-
ments in laboratory f lumes as well as in rivers. The
estimation of Lx by Eq. (12) is also possible, because
there are many current meters for accurate measure-
ments of the mean velocity profile in nature. Thus,
every time we obtain an autocorrelation function of
velocity, and then the integral Eulerian scale of turbu-
lence, we estimate the characteristic time during
which the f low “remembers” its structure. Different
measurement methods and results of experiments
reviewed by Grinvald & Nikora (1988) [17] show that
the largest longitudinal dimension of vortices in a tur-
bulent stream is about 10h, the maximum magnitude
being measured in laboratory by visualization. It is
practically impossible to measure the largest dimen-
sion of turbulent vortices in a river as it has been
obtained by visualization in a laboratory f lume. Thus,
the estimate of Lx in nature can give different values up
to 10h.

No theoretical relationship between Lagrangian
and Eulerian scales (Eqs. (1a) and (10)) is known.
Since the measurements of Lagrangian characteristics
in rivers are quite rare, of great interest is the relation-
ship between Eulerian and Lagrangian scales obtained
in laboratory f lume [13] which reads:

(13)
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A relationship between T and θ may be found from
the semi-empirical relationships for longitudinal
velocity component derived in [5]

(14)

where p = 2.5 for water.
For depth distribution of the turbulence intensity

we use the following expression

(15)

where coefficients a1 = 2.1, b1 = –1.2, a2 = 1.3, b2 = –0.6,
a3 = 1.6, b3 = –1.0 were obtained by Dolgopolova
(1995) [9], i = 1, 2, 3 correspond to the axes x, y, z,
respectively.

Averaging Eq. (15) through the depth and using for
shear velocity the expression  = κnu obtained in
[11], where n is the power exponent in the power
velocity profile Eq. (20), we derive

(16)

Then one obtains for βx

(17)
Equations (14), (16), and (17) give us the relation-

ship between depth-averaged values of Tx and θx in a
planar f low:

(18)
To estimate the longitudinal Lagrangian scale for

rivers, we use n in the range 0.1–0.3 as obtained in dif-
ferent rivers [10], which gives Tx = (2.6–7.1)θx. The
constant 4 for the longitudinal component in Eq. (13)
obtained by visualization of the f low in a f lume is
within this range. Results of calculations of Tx by
Eq. (18) in different natural f lows are presented in [7].

VERTICAL TRANSFER COEFFICIENT
IN OPEN CHANNEL FLOW

To obtain εy as a function of mean characteristics of
an open channel f low by Eq. (5), it is necessary to find
parametric expressions for du/dy and τxy. The depth
distribution of the mean velocity of a boundary layer
can be adequately described by the universal logarith-
mic law and that an in open channel, by a power law
with the exponent 1/7 [23]. Detailed analysis of exper-
imental data shows a systematic dependence of Kar-
man’s constant κ in logarithmic law on the Reynolds
number Re [18]. In a general case, the mean velocity
profile can be described with the help of the theory of
dimensions [1]

(19)
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Fig. 1. Magnitudes of us obtained from the mean velocity
profiles measured in the Kirzhach River versus the magni-
tudes calculated through the depth-averaged velocity and
power exponent.
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where  is the global Reynolds number, n
is the power exponent depending on .

The universal logarithmic velocity profile is found
by integrating Eq. (19) under the assumption of com-
plete self-similarity of the f low. If this assumption is
not satisfied, that is n ≠ 0, f ≠ const, one gets a power
velocity profile with n = f( ). The application of
power law with variable exponent to the description of
profile of mean velocity of different open streams [11,
16, 27] allows one to consider it as accurate and theo-
retically-founded as the logarithmic one. The hypoth-
esis of incomplete self-similarity of shearing layer with
respect to Re was also confirmed in paper [28], where
the author found that the power law with exponent
depending on Re must be used for description of depth
velocity distribution in an open flow.

The depth distribution of mean velocity can be
described as:

(20)

Integration of Eq. (20) over the depth gives the
parameter as , where u is the depth-
averaged velocity. Then Eq. (20) can be rewritten as:

(21)

The validity of expression for  is confirmed by
data of measurements of velocity profiles at the River
Kirzhach (Table 1) presented in Fig. 1. The power
exponent in Eq. (21) is a function of Re and, for plain
rivers, varies in the range 0.1 < n < 0.3 [8]. Later the

Re* *u h= ν
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range of variation of n for rivers was extended to 0.08 <
n < 0.32 by Dolgopolova (2007) [6].

To calculate εy by Eq. (5), we find the derivative of
the mean velocity from Eq. (21)

(22)

Assuming the depth distribution of shear stress τxy
linear, we have

(23)

where , τ0 is the shear stress at the bottom.

Substituting Eqs. (22) and (23) into Eq. (5) and
using  = κnu we obtain εy

(24)

The dimensionless coefficient of transfer  can be
derived from Eq. (24) by dividing it by uh,

(25)

Division of Eq. (25) by κ n results in the expression

(26)

The distributions of  over the depth for n = 0.08,
0.143, 0.32 presented in Fig. 2, show the dependence
of  on the power exponent. The power exponent n =
0.143 = 1/7 is considered by Schlichting (2000) [22] as
universal for river f lows.

For n in the range 0.08–0.32, the coefficient
 Eq. (26) remains practically constant (Fig. 3),

which allows one to regard Eq. (26) as the universal
expression for open river f lows. The comparison of 
in Eq. (26) with the dimensionless coefficient 
in Eq. (6), obtained under the assumption of logarith-
mic velocity profile [12], shows that these distributions
are close to each other (Fig. 4). The distribution

 calculated by Eq. (26) agrees with the results
of measurements in river presented in [25], which con-
firms the adequacy of such description of turbulent
transfer coefficient in open flow. Integration of

Eq. (26) over the depth gives , and the

depth-averaged coefficient of turbulent transfer can be
written as:

(27)
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Fig. 2. Vertical distribution of the vertical transfer coefficient
for different n: (1) n = 0.143, (2) n = 0.08, (3) n = 0.32.
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DISCUSSION AND APPLICATIONS

The Eq. (27) obtained above shows the dependence
of the depth-averaged coefficient of transfer on the
power exponent n which is a function of Re and
hydraulic resistance of a f low. Parameters n and u
can be more readily measured in natural stream than
shear velocity. Moreover, the depth-averaged velocity
can be estimated by measuring the velocity of the flow at
one point located at the distance 0.4 h from a bottom with
the help of the well-known expression u = u0.4.

Comparison of Eqs. (27) and (7) obtained in [12]
shows that numerical coefficients in both formulas are
very close to each other. Equation (27) contains
parameters easily measured in a natural f low. Two
numerical coefficients in Eq. (27) were obtained

 and  for the
boundary values of power exponent in mean velocity
profile n = 0.08 and n = 0.32 respectively.

Eulerian time scales, diffusion coefficients, and
characteristics of the rivers of Volga, Kirzhach,
Polomet, Missouri, Mississippi, as well as Atrisco and
Rio Grande channels [21], are presented in Table 1. In
all the streams, there were sand dunes on the bottom.
In the Polomet River, the ratio of dune height to the
depth is about 0.25, resulting in the maximum power
exponent n. The Eulerian longitudinal scale of turbu-
lence Lx calculated by Eq. (12) for the rivers of Volga
and Missouri and the Atrisco channel shows a signifi-
cant dependence of Lx on the distance from the bank,
varying from ~2h in the middle of the f low to 0.7–1 h
near the bank [7]. The same tendency was revealed by
Sukhodolov et al. (1998) [25] at the measurements in
the Spree River. This can be explained by the destruc-

0.0021y u hε = 0.0084y u hε =
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tion of the f low structure as the distance from the bank
decreases and the role of bottom roughness increases.

U is the average river velocity U = Q/A where Q is
water discharge and A is the cross-section area, h is the
mean depth of a river reach. The data of measurements
at the rivers Missouri and Mississippi and Atrisco and
Rio Grande channels were taken from the report [21].

The longitudinal scale of turbulence Lx was esti-
mated from simultaneous measurements of velocity by
two identical current meters at the River Kirzhach.
Two current meters were located at the same horizon
z = 0.2h, one being fixed and the other moving
streamwise in the middle of the river, which allowed us
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Table 1. Mean characteristics of natural streams

Natural stream B, m h, m Re U, m/s θx, s n , m2/s

Polomet 25 0.4 1.7 × 105 0.42 1.52 0.27 1.04 × 10–3

Kirzhach 17 0.5 2 × 105 0.41 – 0.2 1.08 × 10–3

Volga 700 12 l × 107 0.81 12.0 0.15 2.87 × 10–2

Missouri 213 4.4 5.3 × 106 1.22 3.4 0.14 1.95 × 10–2

Atrisco Canal 17.1 0.52 3.3 × 105 0.64 0.75 0.17 1.64 × 10–3

Rio Grande 20.1 0.85 7.0 × 105 0.82 0.64 0.18 3.31 × 10–3

Mississippi 723 16.5 1.7 × 107 1.0 6.66 0.16 6.97 × 10–2

yε
to calculate Lx without using Taylor’s hypothesis. As a
result, the space correlation function was measured
and the longitudinal scale of turbulence was found to
be Lx = 1.0 m which is 2h for the Kirzhach River at the
elevation of 0.2h from the bottom. The same result
with the help of Taylor’s hypothesis was derived from
the experiment in the middle of the Missouri River by
McQuivey (1973) [21].

The vertical space scale of turbulence Ly was
obtained from the measurements of f luctuations of the
longitudinal velocity component by two current
meters located at the same vertical, one being fixed
and the other moving along the vertical axis y from the
bottom to the surface (the Kirzhach River [7]). These
results of measurements confirm the existence of vor-
tices occupying the whole depth of the f low and the
validity of assumption Ly = h.

For different rivers, the depth-averaged longitudi-
nal diffusivity coefficients  can be estimated by
Eq. (1) with the help of model relationships (16),
(18) through the depth-averaged characteristics θx,

xε
Fig. 5. Dependence of longitudinal space scal
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u, and n. Then, using Eq. (27), one can derive the
ratio of :

(28)

In the approximation Lx = h, the ratio  =
7.88 is constant. If the magnitudes of θx are available
from measurements, one can check the validity of the
assumption Lx = h. The results of this verification are
presented in Fig. 5.

The comparison of the magnitudes of Lx/h
obtained experimentally in the Rivers Polomet and
Missouri shows that they are close to each other. There
is no information on the height of sand dunes in the
Missouri River, but, presumably, the closeness of Lx/h
for these two rivers could be explained by the large
height of the sand dunes compared to their depths. For
the Missouri River, the mean value of θx u/h is 1.5.
As the depth becomes larger, as is the case in the rivers
of Volga and Mississippi, the ratio Lx/h becomes
smaller than 1, and for the Mississippi River, the mean

x yε ε
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value of Lx/h is 0.47, and that for the River Volga is
0.81. As the ratio Lx/h varies in the range 0.5–1.5, one
can obtain from Eq. (28) the range for  =
3.9–11.8, the lower boundary corresponding to deeper
flows. It follows that a discharge of impurity from a
point source propagates in a shallow stream farther
than in a deep stream.

The comparison of the magnitudes of Lx and Ly
obtained experimentally with those used in [4] for
numerical modelling of 3D open channel f lows shows
that a simplifying assumption of the equality of the
longitudinal and vertical scales of turbulence every-
where in the channel Lx = Ly = h can be taken as a first
approximation.

To show the application of the results of this study,
let us estimate the ratio of the time required for an
effluent from a point source to mix transversely across
the river tz to that required to mix vertically ty, follow-
ing [22]:

(29)

In our experiment in the Kirzhach River with f loats
of neutral buoyancy used as an impurity we obtained
the coefficient of transverse diffusion in the surface
layer of water εz = 0.21  which agrees with the value
εz = 0.23  obtained in [12]. Reviewing the data of
different authors, Roberts & Webster (2002) [22] show
that in an ideal (straight, wide, fully roughed channel)
flow for B/h ≥ 8 and friction factor f > 0.055, the trans-
verse diffusion coefficient is independent of the chan-
nel width and f and can be estimated as:

(30)

In natural rivers, their depth and width vary irregu-
larly and there are many reaches with bends of differ-
ent radius of curvature Rb. The bends increase the
transverse diffusion, and εz/  changes in the range
0.4–0.8 for weakly meandering rivers and even more
for sharp bends [14]. This increase is due to helical cell
motion in a cross section of a river. However, εz
changes along the bend, being low at the upstream of
the bend and increasing to the downstream reach [24].
So, the effect of the secondary f lows in the bend on
impurity propagation is minimizing. The transverse
motion in river bends considerably impacts the disper-
sion only in sufficiently long and steep bends (Rb/B ~
5). The main cases when transverse diffusion is the
single mechanism of high concentration of impurity
dilution and must be taken into account are sudden
spills and shoreline discharge into a wide river.
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For rivers with bends which increase the transverse
mixing the review paper [22] proposes the expression:

(31)

The experiment at the Kirzhach River gives
εz/ = 0.55 which agrees with Eq. (31) and the range
presented in [14]. Thus, for the Kirzhach River with its
trapezoidal cross-section and quasistable f low, the
coefficient in the formula for εz lies between that for an
ideal channel and a natural river. The shear velocity

= 0.039 m/s was obtained from the long-term
series of data on stream surface slope. The depth-
averaged coefficient of vertical diffusion was calcu-
lated by Eq. (27). The estimate of the ratio tz/ty in
Eq. (29) gives , i.e. tz @ ty, which is typical
of lowland rivers.

For the bottom discharge, the distance Ls required
for the eff luent to be mixed over the depth can be
approximately estimated as [22]:

(32)

We calculated the value of U for the Kirzhach River
averaging measured velocity profiles over a cross sec-
tions, and then the average velocity U was obtained
from 10 cross-sections spaced 10 meters apart. The
calculated estimate Ls = 31 m is in a good agreement
with the data of measurements with salt solute carried
out for economic purposes, which give the range Ls =
27–32 m.

CONCLUSIONS
The application of a power law for the description

of mean velocity profile in natural streams is consid-
ered. Under the condition of incomplete self-similar-
ity of shear f low with respect to the global Reynolds
number, the depth distribution of the coefficient of
vertical turbulent diffusion  Eq. (24) is obtained.

The dependence of dimensionless  on the power
exponent n in the power law for velocity profile does
not contradict the universal law  = f(y/h) Eq. (26) in
the range n = 0.08–0.32, which is typical of lowland
rivers. Expressions (26) and (27) enable one to esti-
mate the depth distribution and depth-averaged mag-
nitude of vertical transfer coefficient with the mini-
mum of necessary experimental data.

On the basis of semi-empirical expressions, a rela-
tionship between Eulerian and Lagrangian time scales
of turbulence is found. The model expression for the
ratio of the coefficients of longitudinal and vertical
turbulent diffusion  is obtained. It is found
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that this ratio  decreases as the depth of a f low
increases.

Most results discussed in the paper have been
obtained for nearly straight reaches without taking
into account the processes in river meanders. For the
diffusion at meandering reaches, it must be noted, that
secondary f lows in river bend play a great role in the
dilution of impurity discharged along shoreline into a
wide river.

LIST OF SYMBOLS
A cross-sectional area of a f low
B width of a f low
Bik correlation tensor of velocity at two

points of the f low
ai, bi empirical coefficients in the model

expression for intensity of turbulence
Ky Kz vertical and horizontal transverse

components of turbulent mass trans-
fer tensor

Lx, Ly Eulerian space integral scales
Ls the distance, required for complete

mixing of the discharge of impurity at
the bottom

n power exponent in the mean velocity
profile

R(xi, xi + l) space correlation function R(xi, xi + l)
rLi(t) normalized Lagrangian correlation

function of velocity
rx Eulerian correlation coefficient
Re Reynolds number

 = /ν global Reynolds number
Rb radius of curvature of a bend
Sc turbulent Schmidt number
Ti Lagrangian time scale of turbulence
u, v, w components of mean velocity corre-

sponding to x, y, and z directions
u', v', w' f luctuations of velocity components

shear velocity
βx empirical coefficient relating Eule-

rian and Lagrangian time scales of
turbulence

εi coefficient of turbulent viscosity with
indices corresponding to the axes

θ Eulerian time scale
ν kinematic viscosity of water
ρ density of water
σi standard deviation of velocity f luctu-

ations, i = 1, 2, 3 corresponds to lon-
gitudinal, vertical and transverse
direction

τij shear stress tensor

x yε ε

Re* *u h

*u
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