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Abstract—A subgroup H of a group G is called P-subnormal in G whenever either H = G or
there is a chain of subgroups

H = H0 ⊂ H1 ⊂ . . . ⊂ Hn = G

such that |Hi : Hi−1| is a prime for every i = 1, 2, . . . , n. We study the structure of a finite
group G all of whose Schmidt subgroups are P-subnormal. The obtained results complement
the answer to Problem 18.30 in the Kourovka Notebook.
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INTRODUCTION

We consider only finite groups.

A subgroup H of a group G is called P-subnormal if it either coincides with the group G or is

connected withG by a chain of subgroups all of whose indices are primes. The notion of P-subnormal

subgroup was proposed in [1] in connection with the development of the famous Huppert theorem

that a group G is supersoluble if and only if any of its proper subgroups can be connected with G

by a chain of subgroups with prime indices.

Groups with a system Σ of given P-subnormal subgroups were studied in many papers. In

particular, groups in which every Sylow subgroup is P-subnormal were described in [2]. The

supersolubility of a group in the cases where Σ is the set of normalizers of all Sylow subgroups of G

and Σ is the set of all Hall subgroups of G was proved in [3]. Classes of groups with P-subnormal

primary subgroups and P-subnormal primary cyclic subgroups were considered in [4]. The structure

of groups representable as a product of P-subnormal subgroups was studied in [5].

A special place in the study of groups with a given system of P-subnormal subgroups is occupied

by the case when Σ = Sch(G) is the set of all Schmidt subgroups of G. Recall that a Schmidt group

is a nonnilpotent group all of whose proper subgroups are nilpotent. A simple check shows that

every nonnilpotent group contains at least one Schmidt subgroup (i.e., a subgroup that is a Schmidt

group). The study of groups with a given system of P-subnormal subgroups was motivated by

Problem 18.30 from the Kourovka Notebook [6]:

Is a finite group soluble if all its Schmidt subgroups are P-subnormal?
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Tyutyanov used the classification of finite simple groups to obtain a positive answer to this

question in [7]. In connection with this result, it is natural to formulate a more general problem:

Investigate the normal structure of a group all of whose Schmidt subgroups are P-subnormal.

Particular aspects of this problem were addressed in [8], where the metanilpotency of a group

with P-subnormal generalized Schmidt subgroups was established. A generalized Schmidt group

was understood as any B-group, i.e., a group whose quotient group by the Frattini subgroup is

a Schmidt group (the notion of B-group was proposed by Berkovich in [9]). It is clear that any

Schmidt group is a B-group. At the same time, a dihedral group of order 18 is a B-group and

not a Schmidt group. As follows from the structure of Schmidt groups, G is a B-group if and

only if G/Φ(G) is a biprimary Miller–Moreno group, i.e., a nonnilpotent group all of whose proper

subgroups are abelian.

According to the results of [10], groups with P-subnormal Schmidt subgroups are much more

complex than groups with P-subnormal B-subgroups.

For a group G, let π(G) = {p1, p2, . . . , pr} with p1 > p2 > . . . > pr, and let Pi be a Sylow

pi-subgroup of G for i = 1, 2, . . . , r. We will say that a group G has a Sylow tower of supersoluble

type (or G is Ore dispersive) if the subgroups P1, P1P2, . . ., P1P2 . . . Pr−1 are normal in G. In what

follows, we will denote by D the class of all groups G having a Sylow tower of supersoluble type.

Further, for a given prime p, we denote by Dπ(p−1) the class of all Ore dispersive groups G such

that π(G) ⊆ π(p − 1), where π(p− 1) is the set of all prime divisors of p− 1.

Our main goal is to prove the following theorem.

Theorem 1. Let F = {H |Sch(H) ⊆ U}, where U is the class of all supersoluble groups. Then

the following statements hold :

(1) F is a local formation with canonical local definition F such that F (p) = NpDπ(p−1) for each

prime p;

(2) if each Schmidt subgroup of G is P-subnormal, then G/F (G) ∈ F;

(3) if each Schmidt subgroup of G is P-subnormal and H is its nonsupersoluble Schmidt subgroup

with normal Sylow p-subgroup P, then P ⊆ GF ∩ F (G).

Obviously, every subnormal subgroup of a soluble group is P-subnormal. The groups in which

every Schmidt subgroup is subnormal were described in [11].

1. DEFINITIONS AND PRELIMINARY RESULTS

In this paper we use the definitions and notation adopted in [12].

Fix the following notation:

– U is the class of all supersoluble groups;

– N is the class of all nilpotent groups;

– if F is a nonempty class and π is a set of primes, then Fπ is the class of all π-groups from F;

– if F is a formation, then GF is the intersection of all normal subgroups N of a group G for

which G/N ∈ F (the subgroup GF is called the F-residual of G);

– P is the set of all primes;

– if n is a positive integer, then π(n) is the set of all primes dividing n (in particular,

π(G) = π(|G|));
– Sch(G) is the set of all Schmidt subgroups of a group G;
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– if A and B are subgroups of a group G, then [A]B is their semidirect product with the

normal subgroup A.

The basic structure of Schmidt groups, which is described in the following lemma, was estab-

lished in [13,14].

Lemma 1. Let S be a Schmidt group. Then the following statements hold :

(1) π(S) = {p, q};
(2) S = [P ]〈a〉, where P is a normal Sylow p-subgroup of S and 〈a〉 is its Sylow q-subgroup such

that 〈aq〉 ⊆ Z(S);

(3) P is the N-residual of S;

(4) P/Φ(P ) is a minimal normal subgroup of S/Φ(P ) and, in addition, Φ(P ) = P
′ ⊆ Z(S);

(5) Φ(S) = Z(S) = P
′ × 〈aq〉;

(6) if Z(S) = 1, then |S| = pmq, where m is the exponent of p modulo q.

Following [15], we call a Schmidt {p, q}-group with a normal Sylow p-subgroup and a nonnormal

cyclic Sylow q-subgroup an S<p,q>-group. In addition, we call a Schmidt group S = [P ]〈a〉 with

a normal Sylow p-subgroup P for which |P/Φ(P )| = pm, where m is the exponent of p modulo q,

and a nonnormal cyclic Sylow q-subgroup 〈a〉 an S<p,q,m>-group. Note that an S<p,q,m>-group S

is supersoluble if and only if m = 1.

A subgroup H of a group G is called P-subnormal in G if either H = G or there exists a chain

of subgroups

H = H0 ⊂ H1 ⊂ . . . ⊂ Hn−1 ⊂ Hn = G

such that |Hi : Hi−1| ∈ P for any i = 1, 2, . . . , n. If H is a P-subnormal subgroup of G, then we

write H P-sn G according to [1].

In the following lemma we give the main properties of P-subnormal subgroups.

Lemma 2. Suppose that H, K, and N are subgroups of G, and N is normal in G. Then:

(1) if H P-sn G, then H ∩N P-sn N and HN/N P-sn G/N ;

(2) if N ⊆ H and H/N P-sn G/N, then H P-sn G;

(3) if H P-sn K and K P-sn G, then H P-sn G;

(4) if GU ⊆ H, then H P-sn G;

(5) if H P-sn G and H ⊆ K, then H P-sn K;

(6) if the group G is soluble and H P-sn G, then the subgroup HU is subnormal in G;

(7) if H is a Schmidt subgroup of a soluble group G and H P-sn G, then either the subgroup H

is supersoluble or HU ⊆ F (G).

Proof. Statements (1)–(4) are proved in Lemma 3.1 from [2], and statement (5) is proved in

Lemma 3.4 from [2].

Let us prove statement (6). If H = G, then it is obvious. Therefore, we can assume that H �= G

and there exists a subgroup chain

H = H0 ⊂ H1 ⊂ . . . ⊂ Hn−1 ⊂ Hn = G

such that |Hi : Hi−1| ∈ P for any i = 1, 2, . . . , n. Since the group G is soluble, we have HU
i ⊆ Hi−1

for all i = 1, 2, . . . , n (see, e.g., Lemma 3.3 from [2]). Since the formation U is hereditary, we have

Hi−1H
U
i /H

U
i ∈ U. Therefore, since

Hi−1H
U
i /H

U
i
∼= Hi−1/Hi−1 ∩HU

i ,

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 325 Suppl. 1 2024



S234 XIAOLAN YI et al.

we have HU
i−1 ⊆ HU

i . Consequently, HU
i−1 ⊆ HU

i ⊆ Hi and HU
i−1 � HU

i . Thus, the subgroup HU is

subnormal in G.

Let us prove statement (7). Let H be a P-subnormal Schmidt subgroup of a soluble group G.

Then, by statement (6), the supersoluble residual HU of the subgroup H is subnormal in G. By

Lemma 1, π(H) = {p, q} and H = [P ]〈a〉, where P is a normal Sylow p-subgroup of H and 〈a〉
is its Sylow q-subgroup. In addition, P is the N-residual of H and P/Φ(P ) is a minimal normal

subgroup of H/Φ(P ). Then either HU = P or HU ⊆ Φ(P ). If HU = P , then it follows from

statement (6) that the subgroup P is subnormal in G. Then, obviously, P = HN ⊆ F (G). Let

HU ⊆ Φ(P ). Since the subgroup P is normal in H, we have HU ⊆ Φ(H). Now it follows from the

facts that the formation U of all supersoluble groups is saturated (see Example IV.3.4.(f) in [12])

and H/Φ(H) ∈ U that H is a supersoluble subgroup.

The lemma is proved.

Remark 1. The requirement of solubility of the group G in statements (6) and (7) of Lemma 2

is essential and cannot be discarded in the general case. For example, in the group PSL2(7), the

subgroup H ∼= S4 is P-subnormal, but its U-residual, obviously, is not a subnormal subgroup. In

the alternating group A5, the subgroup A4 is a P-subnormal Schmidt subgroup, but its supersoluble

residual is not contained in the Fitting subgroup of A5.

Recall that a formation is a class of groups closed under taking homomorphic images and finite

subdirect products. A formation F is called

– saturated if, for any group G, the membership G/Φ(G) ∈ F always implies G ∈ F;

– hereditary if it is closed under taking subgroups.

A class F is called a Fitting class if it satisfies the following requirements:

(1) F is a normal hereditary class;

(2) if G = AB, where A � G, B � G, A ∈ F, and B ∈ F, then G ∈ F.

A Fitting formation is a formation that is a Fitting class.

A minimal supplement to a normal subgroup N of a group G is a subgroup L of G such that

LN = G, but L1N �= G for any proper subgroup L1 of L.

Lemma 3. If K and D are subgroups of a group G, the subgroup D is normal in G, and K/D

is an S<p,q>-subgroup, then a minimal supplement L to the subgroup D in K has the following

properties:

(1) L is a p-closed {p, q}-subgroup;
(2) all proper normal subgroups of L are nilpotent ;

(3) the subgroup L contains an S<p,q>-subgroup [P ]Q such that Q is not contained in D and

L = ([P ]Q)L = QL;

(4) if an S<p,q>-subgroup [P ]Q is P-subnormal in G, then one of the following holds:

(i) K/D = ([P ]Q)D/D; in particular, the subgroup K/D is P-subnormal in G/D;

(ii) the subgroup K/D is supersoluble, has a Sylow p-subgroup of order p, q divides p − 1,

and a Sylow q-subgroup of K/D is P-subnormal in G/D;

(5) K/D is an S<p,q,m>-group if and only if [P ]Q is an S<p,q,m>-group.

Proof. Statements (1)–(3) are proved in Lemma 2 from [17].

Let us prove statement (4). Assume that an S<p,q>-subgroup [P ]Q is P-subnormal in G. By

Lemma 11.1 from [16], LD = K and L∩D ⊆ Φ(L). The Frattini subgroup consists of nongenerating
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elements; therefore, if ([P ]Q)(L∩D) = L, then [P ]Q = L. In this case, by statement (1) of Lemma 2,

([P ]Q)D/D = LD/D = K/D

is a P-subnormal subgroup of G/D.

Now, let [P ]Q be a proper subgroup of L. Then it follows from L∩D ⊆ Φ(L) that ([P ]Q)(L∩D)

is a proper subgroup of L. If the subgroup ([P ]Q)(L∩D) is contained in some subnormal subgroup

of L, then by statement (2) it is nilpotent, which is impossible, since ([P ]Q)(L ∩ D) contains a

Schmidt subgroup [P ]Q. Consequently, ([P ]Q)(L ∩ D) is not contained in any normal maximal

subgroup of L. From

K/D = LD/D ∼= L/L ∩D

we conclude that L/L ∩ D is a Schmidt group. Now, according to statement (2) of Lemma 1,

Q(L ∩D)/(L ∩D) is a Sylow q-subgroup of L/L ∩D. Further, ([P ]Q)(L ∩D)/L ∩D is a proper

subgroup of L/L ∩D; hence, by statement (5) of Lemma 1,

([P ]Q)(L ∩D)/L ∩D ⊆ Φ(L/L ∩D)(Q(L ∩D)/L ∩D).

By statement (4) of Lemma 1, Φ(L/L ∩D)(Q(L ∩D)/L ∩D) is a maximal subgroup of L/L ∩D.

Since the subgroup [P ]Q is P-subnormal in G by the hypothesis, it follows in view of Lemma 2 that

the subgroup Φ(L/L ∩D)(Q(L ∩D)/L ∩D) is P-subnormal in L/L ∩D. Hence, the index of the

maximal subgroup

Φ(L/L ∩D)(Q(L ∩D)/L ∩D)

in the group L/L∩D is a prime p, and therefore the group (L/L∩D)/Φ(L/L∩D) is supersoluble.

However, since the formation U is saturated, it follows that the group L/L ∩ D is supersoluble.

This and the isomorphism K/D ∼= L/L ∩ D imply that K/D is a supersoluble group. Now, by

Lemma 1 from [18], the group K/D has a Sylow p-subgroup of order p and q divides p− 1. Since

|K/D| = pqn, ([P ]Q)(L∩D)/L∩D is a Sylow q-subgroup of L/L∩D. Using Lemma 2, we conclude

that a Sylow q-subgroup of K/D is P-subnormal in G/D.

Let us prove statement (5). Assume that K/D is an S<p,q,m>-group. Then, by statement (6)

of Lemma 1,

|(K/D)/Z(K/D)| = pmq,

where m is the exponent of p modulo q. By statement (4) of Lemma 3, the subgroup [P ]Q is an

S<p,q,k>-group for some natural k ≥ 1 that is the exponent of p modulo q. This and the definition

of the exponent imply that m = k. Arguing in the reverse order, we can show that if [P ]Q is an

S〈p,q,m〉-group, then K/D is also an S<p,q,m>-group.

The lemma is proved.

Recall the definition of a local formation. A function

f : P → {formations of finite groups}

is called a formation function.

For a formation function f , a chief factor A/B of a group G is called f -central (f -excentral) if

G/CG(A/B) ∼= AutG(A/B) ∈ f(p)

for all primes p ∈ π(A/B) (G/CG(A/B) does not belong to f(p) for at least one prime p ∈ π(A/B),

respectively). A class of groups F = LF (f) is called a local formation if it consists of all the groupsG
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such that either G = 1 or G �= 1 and any chief factor A/B of the group G is f -central. In this case,

the local formation F is said to be defined by means of the formation function f , and f is said to

be a local definition of the formation F.

Assume that f is a formation function and F = LF (f). Then f is called

(a) internal if f(p) ⊆ F for all p ∈ P;

(b) complete if f(p) = Npf(p) for all p ∈ P;

(c) canonical if it is complete and internal.

As shown in Theorem IV.3.7 from [12], for any local formation F there exists a unique canonical

formation function F such that F = LF (F ). This function is called the canonical local definition

of the formation F.

Note that, according to the Gaschütz–Lubeseder–Schmid theorem ([12], Theorem IV.4.6), a

formation F is saturated if and only if it is local. Hence, in particular, for any saturated formation F

there exists a canonical local definition F such that F = LF (F ).

Lemma 4. Let F = {G |Sch(G) ⊆ U}. Then the following statements hold :

(1) G ∈ F if and only if the group G is soluble and, for any primes p, q ∈ π(G) and a Hall

{p, q}-subgroup, either this subgroup is nilpotent or it is p-closed and q divides p− 1;

(2) if G ∈ F, then the group G has a Sylow tower of supersoluble type;

(3) the class F is a hereditary saturated Fitting formation;

(4) U ⊆ F;

(5) F is a local formation with a canonical local definition F such that F (p) = NpDπ(p−1).

Proof. Statement (1) follows from Lemma 5 and Theorem 1 in [18], and statements (2)–(5)

follow from Lemma 2.3 in [10].

The lemma is proved.

Remark 2. It follows from Proposition 2.6 of paper [10] that if a group G belongs to the

class F = {H |Sch(H) ∈ U}, then G can have any nilpotent length greater than 1. In particular,

there exist groups G ∈ F that are not supersoluble. Let, for example, M be a nonabelian group

of order 21. Then there exists a faithful irreducible M -module N over a field of 43 elements (see,

e.g., Corollary B.11.8 in [12]). Obviously, the group G = [N ]M is not supersoluble, but it belongs

to the class {H |Sch(H) ∈ U} by Lemma 4.

2. PROOF OF THEOREM 1

(1) By statement (5) of Lemma 4, the local formation F = {G |Sch(G) ⊆ U} has a canonical

local definition F such that F (p) = NpDπ(p−1).

(2) Let each Schmidt subgroup of G be P-subnormal. Then the group G is soluble by the main

result of [7].

Let D be a minimal supplement to F (G) in the group G. In this case, in particular, DF (G) = G

and D ∩ F (G) ⊆ Φ(D). Let K/D ∩ F (G) be an arbitrary Schmidt subgroup of D/D ∩ F (G).

Without loss of generality, we can assume that K/D ∩ F (G) is an S<p,q>-subgroup for some

primes p and q. By statement (4) of Lemma 3, a minimal supplement L to the subgroup D ∩F (G)

in K contains an S<p,q>-subgroup [P ]Q such that Q is not contained in D ∩ F (G).

The subgroup [P ]Q is P-subnormal in G by the hypothesis. Then, by statement (3) of Lemma 3,

we have one of the following statements:
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(i) K/D ∩ F (G) = ([P ]Q)(D ∩ F (G))/D ∩ F (G); in particular, the subgroup K/D ∩ F (G) is

P-subnormal in D/D ∩ F (G);

(ii) the subgroup K/D ∩ F (G) is supersoluble, has a Sylow p-subgroup of order p, q divides

p− 1, and a Sylow q-subgroup of K/D ∩ F (G) is P-subnormal in D/D ∩ F (G).

Consider case (i). Assume that the group K/D ∩ F (G) is not supersoluble. Then it follows

from

K/D ∩ F (G) = ([P ]Q)(D ∩ F (G))/D ∩ F (G)

and Lemma 1 that the subgroup [P ]Q is not supersoluble, and hence P = ([P ]Q)N = ([P ]Q)U by

statement (3) of Lemma 1. By statement (7) of Lemma 2, we have P ⊆ D∩F (G). Then, however,

K/D ∩ F (G) is a q-group, which is impossible.

Thus, all Schmidt subgroups of D/D∩F (G) are supersoluble; i.e., D/D∩F (G) ∈ F. Therefore,

by the isomorphism

G/F (G) = DF (G)/F (G) ∼= D/D ∩ F (G),

we have G/F (G) ∈ F.

(3) Let H be a nonsupersoluble {p, q}-Schmidt subgroup of a group G with a normal Sylow

p-subgroup P . Then H is an S<p,q,m>-group for some natural m > 1. Assume that P is not

contained in F (G). By statement (3) of Lemma 1, P is theN-residual of the subgroupH. Therefore,

a Sylow q-subgroup Q of H is not contained in F (G). Now, applying statement (5) of Lemma 1,

we find that HF (G)/F (G) is an S<p,q>-subgroup of G/F (G). Since G/F (G) ∈ F, it follows that

HF (G)/F (G) is an S<p,q,1>-group, which is impossible according to statement (5) of Lemma 3.

Hence, P is contained in F (G). It also follows from G/GF ∈ F that H ⊆ GF.

The theorem is proved.

Corollary 1. Let F = {H |Sch(H) ∈ U}. If Φ(G) = 1 and each Schmidt subgroup of G is

P-subnormal in G, then the group G can be presented in the form G = [F (G)]M, where M ∈ F.
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