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Abstract—Let G be a finite group. Its spectrum ω(G) is the set of all element orders of G.
The prime spectrum π(G) is the set of all prime divisors of the order of G. The Gruenberg–
Kegel graph (or the prime graph) Γ(G) is the simple graph with vertex set π(G) in which any
two vertices p and q are adjacent if and only if pq ∈ ω(G). The structural Gruenberg–Kegel
theorem implies that the class of finite groups with disconnected Gruenberg–Kegel graphs widely
generalizes the class of finite Frobenius groups, whose role in finite group theory is absolutely
exceptional. The question of coincidence of Gruenberg–Kegel graphs of a finite Frobenius group
and of an almost simple group naturally arises. The answer to the question is known in the
cases when the Frobenius group is solvable and when the almost simple group coincides with
its socle. In this short note we answer the question in the case when the Frobenius group is
nonsolvable and the socle of the almost simple group is isomorphic to PSL2(q) for some q.
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INTRODUCTION

We consider only finite groups, and henceforth the term “group” means “finite group.” Our

notation and terminology are mostly standard and can be found in [9, 10,12,13,15,16].

Denote by Soc(G) the socle of a group G (i.e., the subgroup of G generated by its nontrivial

minimal normal subgroups). Recall that G is called almost simple if Soc(G) is a nonabelian simple

group. It is well known that a group G is almost simple if and only if there exists a nonabelian

simple group S such that Inn(S) � G ≤ Aut(S); moreover, since here Inn(S) ∼= S, we will identify S

with Inn(S) and write S � G ≤ Aut(S).

A group G is called a Frobenius group if there exists a nontrivial subgroup C < G such that

C ∩ Cg = {1} whenever g ∈ G \ C. In this case, the subgroup C is called a Frobenius complement

in G. Let

K = {1} ∪ (G \ ∪g∈GC
g).
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As is known, K is a normal subgroup of G; it is called its Frobenius kernel. The class of Frobenius

groups plays an absolutely exceptional role in finite group theory. A group G is called 2-Frobenius if

G = ABC, where A and AB are normal subgroups of G and AB and BC are Frobenius groups with

kernels A and B and complements B and C, respectively. It is well known that any 2-Frobenius

group is solvable.

Let G be a group. The set of its element orders is called its spectrum and is denoted by ω(G).

The prime spectrum π(G) of G is the set of all prime divisors of its order (equivalently, the set of

all prime elements from ω(G)). The Gruenberg–Kegel graph (or the prime graph) Γ(G) is the graph

with vertex set π(G) in which any two vertices p and q are adjacent if and only if pq ∈ ω(G). Denote

the number of connected components of Γ(G) by s(G) and the set of its connected components by

{πi(G) | 1 ≤ i ≤ s(G)}; for a group G of even order, we assume that 2 ∈ π1(G).

The notion of Gruenberg–Kegel graph has appeared in connection with the study of some coho-

mological questions of the theory of integral group rings: it was established that the augmentation

ideal of an integral group ring is decomposable as a module if and only if the Gruenberg–Kegel

graph of the group is disconnected (see [14]). K.W.Gruenberg and O.Kegel described the structure

of an arbitrary finite group with disconnected Gruenberg–Kegel graph; the corresponding structural

theorem was proved in their unpublished manuscript and was published later by Gruenberg’s

student Williams [18].

Gruenberg–Kegel Theorem (see [18, Theorem A]). If G is a group with disconnected

graph Γ(G), then one of the following holds:

(1) G is a Frobenius group;

(2) G is a 2-Frobenius group;

(3) G is an extension of a nilpotent group N by a group A such that S � A ≤ Aut(S), where

S is a nonabelian simple group, s(G) ≤ s(S), and π(N) ∪ π(A/S) ⊆ π1(G).

As seen from the Gruenberg–Kegel theorem, the class of groups with disconnected Gruenberg–

Kegel graphs widely generalizes the class of finite Frobenius groups. There naturally arises the

question on the coincidence of Gruenberg–Kegel graphs for the groups from different assertions of

the Gruenberg–Kegel theorem, in particular, the question on the coincidence of the graphs Γ(G)

and Γ(H) in the cases where G is an almost simple group and H is a Frobenius or 2-Frobenius

group. The case where G is a nonabelian simple group was completely studied by Zinov’eva and

Mazurov [4], and the corresponding results in the case where the group H is solvable can be

extracted from the main results of [2, 3]. Thus, it remains to study the case where the group G

is almost simple but not simple and H is a nonsolvable Frobenius group. This case was studied

in special situations, for example, in Mahmoudifar’s paper [17], which provided an example of a

nonsolvable Frobenius group having the same Gruenberg–Kegel graph as the group PGL2(49). In

this paper, we describe all almost simple groups with socle isomorphic to PSL2(q) and Gruenberg–

Kegel graphs coinciding with the Gruenberg–Kegel graphs of some nonsolvable Frobenius groups.

We prove the following theorem.

Theorem 1. Let q be a prime power, and let G be an almost simple group such that Soc(G) ∼=
PSL2(q). Then there exists a nonsolvable Frobenius group H such that Γ(G) = Γ(H) if and

only if G is a group from the following list : PSL2(11).2 ∼= PGL2(11), PSL2(19).2 ∼= PGL2(19),

PSL2(25).22, PGL2(49).21 ∼= PGL2(49), PSL2(81).21, PSL2(81).41, and PSL2(81).42.
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1. PRELIMINARY RESULTS

The largest integer nonnegative power of a prime p that divides a positive integer n is called

the p-part of n and is denoted by np. The set of all prime divisors of a positive integer n is denoted

by π(n).

The following easily proved results are well known (the corresponding references are given for

the completeness of the proof).

Lemma 1.1 (see, for example, [7, Lemma 9]). Let q and n be odd positive integers. Then

(qn + 1)2 = (q + 1)2 and (qn − 1)2 = (q − 1)2.

Lemma 1.2 (see, for example, [19, Lemma 6]). Let q, k, and m be positive integers with

q > 1. Then

(1) (qk − 1, qm − 1) = q(k,m) − 1;

(2) (qk + 1, qm + 1) = q(k,m) + 1 if k2 = m2, and (qk + 1, qm + 1) = (2, q + 1) otherwise;

(3) (qk − 1, qm + 1) = q(k,m) + 1 if k2 > m2, and (qk − 1, qm + 1) = (2, q + 1) otherwise.

Lemma 1.3 (see, for example, [8, Lemma 2]). If K is a normal subgroup of a group L and

r, s ∈ π(K) \ π(|L : K|), then the numbers r and s are not adjacent in the graph Γ(K) if and only

if they are not adjacent in Γ(L).

The following statements will also be used in the proof of Theorem 1.

Lemma 1.4 (see [6, Lemma 1.3]). Suppose that q = pm, p is a prime, m is a positive integer,

and |π(q2 − 1)| = 3. Then one of the following holds:

(i) 17 �= q = p ≥ 11 and p2 − 1 = 2a3bsc, where s > 3 is a prime, a and b are positive integers,

and c is either 1 or 2 for p ∈ {97, 577};
(ii) q ∈ {16, 25, 27, 49, 81};

(iii) p ∈ {2, 3}, q − 1

(2, q − 1)
and m are odd primes, and

∣
∣
∣π

(q + 1

p+ 1

)∣
∣
∣ = 1.

Lemma 1.5 (see [11]). Let p and q be primes such that pa− qb = 1 for some natural a and b.

Then (pa, qb) ∈ {(32, 23), (p, 2b), (2a, q)}, where a is a prime and b is a power of 2.

If r is an odd prime and q > 1 is a positive integer coprime to r, then define

e(q, r) = min{k ∈ N | qk ≡ 1 (mod r}.

Lemma 1.6 (Zsigmondy’s theorem; see, for example, [20]). Let q and m be positive integers

greater than 1. Then there exists an odd prime r such that e(q, r) = m, except for the following

cases:

(1) q = 2 and m = 6;

(2) q = 2l − 1 for some l > 1 and m = 2.

Lemma 1.7. Suppose that q = pk, where p is a prime and k is a positive integer. If π(q2−1) =

{2, 3, 5}, then q ∈ {11, 19, 49}.
Proof. Let us apply Lemma 1.4. As follows from Lemma 1.6, q cannot be a number from

assertion (iii) of Lemma 1.4; if q is a number from assertion (ii) of this lemma, then q = 49.

Now, let q = p is a number from assertion (i) of Lemma 1.4, and let p2−1 = 2a3bsc. Obviously,

if s = 5, then p �∈ {97, 577}; hence, c = 1.
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Assume that q ≡ 1 (mod 4). Then either p + 1 = 2 × 3u and p − 1 = 2w × 5 or p + 1 = 2 × 5

and p− 1 = 2w × 3v for some positive integers u, v, and w. The second case is impossible, since in

this case p = 9 is not a prime. Let p+ 1 = 2× 3u and p− 1 = 2w × 5. Then

p = 2× 3u − 1 = 2w × 5 + 1; hence, 3u − 1 = 2w−1 × 5.

Assume that u is even. Then 3u−1 = (3u/2−1)(3u/2+1) and (3u/2−1, 3u/2+1) = 2. Hence, either

3u/2−1 or 3u/2+1 is a power of 2. By Lemma 1.5, either 3u−1 = 8 or 3u−1 = 80. In the first case

p = 2×(3u−1)+1 = 17 and π(p2−1) = {2, 3}; in the second case p = 2×(3u−1)+1 = 161 = 7×23

is not a prime. For odd u, the number 3u − 1 has remainder 1 or 2 when divided by 5; hence, the

equality is not true.

Assume that q ≡ 3 (mod 4). Then either p − 1 = 2 × 3u and p + 1 = 2w × 5 or p − 1 = 2 × 5

and p + 1 = 2w × 3v for some positive integers u, v, and w. In the second case, p = 11 and

π(p2 − 1) = {2, 3, 5}. Let p− 1 = 2× 3u and p+ 1 = 2w × 5. Then

p = 2× 3u + 1 = 2w × 5− 1; hence, 3u + 1 = 2w−1 × 5.

Let u be odd. Then 3u + 1 gives remainder 4 or 3 when divided by 5; hence, the equality is

not true. Thus, u is even and u = 2u0. Obviously, ((3u0)2 + 1)2 = 2, whence 2w−1=2 and

(3u0)2 + 1 = 2× 5 = 10. Therefore, 3u = 9, whence p = 19 is a prime with π(p2 − 1) = {2, 3, 5}. �
Lemma 1.8 (see [4, Lemma 3, Proposition 1]).

(1) If G is a nonsolvable Frobenius group, then Γ(G) has two connected components; one of

them is a complete graph, and the other contains the vertices 2, 3, and 5 and is a complete graph

without the edge {3, 5}.
(2) Finite disjoint sets π1 and π2 consisting of primes are connected components of the graph

Γ(G) for some nonsolvable Frobenius group G if and only if one of these sets contains 2, 3, and 5.

Lemma 1.9 (see [13, Theorem 4.5.1, Propositions 2.5.12, 4.9.1, 4.9.2]). Suppose that S =

PSL2(q), q = pm, p is a prime, q > 3, x is an element of prime order r in Aut(S) \ Inndiag(S),
and Sx = Op′(CS(x)). Then the following statements hold :

(1) Aut(S) = Inndiag(S)�Φ, where Outdiag(S) ∼= Z(2,q−1) ∈ {1, Z2}, Φ = 〈f〉 ∼= Aut(Fq) ∼= Zm

is the standard group of field automorphisms of S, and Out(S) = Outdiag(S)× Φ;

(2) the number r divides m, Sx
∼= PSL2(q

1/r), and CInndiag(S)(x) ∼= Inndiag(Sx).

2. PROOF OF THEOREM 1

Let G be an almost simple group such that S = Soc(G) ∼= PSL2(q), where q = pm and p is a

prime.

The spectrum of S is known (see [1, Corollary 3]). If q is even, then Γ(S) consists of three

cliques: π1(S) = {2} and, without loss of generality, π2(S) = π(q− 1) and π3(S) = π(q+1). If q is

odd and q ≡ ε1 (mod 4), where ε ∈ {+,−}, then Γ(S) consists of three cliques: π1(S) = π(q − ε1)

and, without loss of generality, π2(S) = π
(q + ε1

2

)

and π3(S) = {p}.
Assume that there exists a nonsolvable Frobenius group H such that Γ(G) = Γ(H). We apply

Lemma 1.8. Obviously, G �= S. Note that the numbers 2 and 3 divide the order of S for any q. Let

us show that 5 divides |S|. If this is not so, then 5 divides the index |G : S|; hence, by Lemma 1.9,

there exists x ∈ G \S of order 5, and in this case the order of the subgroup CS(x) is a multiple

of 3, whence 3 and 5 are adjacent in Γ(G), a contradiction.
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Let p = 2. If {3, 5} ⊆ π2(S) or {3, 5} ⊆ π3(S), then the numbers 3 and 5 are adjacent in Γ(S);

consequently, they are adjacent in Γ(G), a contradiction. If 3 ∈ π2(S) and 5 ∈ π3(S) or 3 ∈ π3(S)

and 5 ∈ π2(S), then, since {2, 3, 5} ⊆ π1(G), it follows that the graph Γ(G) is connected, which is

also a contradiction. Therefore, p is odd.

Let p �∈ {3, 5}. Once again, if {3, 5} ⊆ π1(S) or {3, 5} ⊆ π2(S), then 3 and 5 are adjacent

in Γ(S); consequently, they are adjacent in Γ(G), a contradiction. Hence, either 3 ∈ π1(S) and

5 ∈ π2(S) or 3 ∈ π2(S) and 5 ∈ π1(S). Assume that the index |G : S| is not a power of 2, and let r

be an odd prime divisor of |G : S|. Then, by Lemma 1.9, there exists an element x ∈ G\S of order r,

and the order of the subgroup CS(x) is a multiple of both 2 and p; hence, p ∈ π1(G). At the same

time, 3 ∈ π1(G) and 5 ∈ π1(G); therefore, the graph Γ(G) is connected, a contradiction. Thus, the

index |G : S| is a power of 2. Assume that there exists a number u ∈ π(q2 − 1) \ {2, 3, 5}. Then

u ∈ π1(G); hence, u is adjacent to 3 and 5 in Γ(G); hence, by Lemma 1.3, u is adjacent to 3 and 5

in Γ(S), which implies that 3 and 5 lie in the same connected component of Γ(S), a contradiction.

Therefore, π(q2 − 1) = {2, 3, 5}; consequently, by Lemma 1.7, we have q ∈ {11, 19, 49}.
Let p = 5. Since 5 ≡ 1 (mod 4), we have q ≡ 1 (mod 4) and π1(S) = π(q − 1). If 3 ∈ π2(S),

then, since {2, 3, 5} ⊆ π1(G), the graph Γ(G) is connected, a contradiction. Hence, 3 ∈ π1(S); i.e.,

the number 3 divides 5m − 1, which implies that m is even. Assume that the index |G : S| is not a
power of 2, and let r be an odd prime divisor of |G : S|. Then, by Lemma 1.9, there exists an element

x ∈ G \S of order r, and in this case CS(x) ≥ PSL2(q
1/r) and |PSL2(q

1/r)| = q1/r

2
(q2/r − 1).

Hence, by Lemma 1.2, the graph Γ(G) is connected, a contradiction. Thus, the index |G : S| is a
power of 2. Assume that there exists a number u ∈ π(q − 1) \ {2, 3}. Then u ∈ π1(S) ⊆ π1(G),

and, since 5 ∈ π3(S), by Lemma 1.3, u is nonadjacent to 5 in Γ(G), a contradiction. Therefore,

π(q − 1) = {2, 3}, which implies that either qm/2 − 1 or qm/2 + 1 is a power of 2; consequently, by

Lemma 1.5, m/2 = 1, whence q = 25.

Let p = 3. If 5 ∈ π2(S), then, since {2, 3, 5} ⊆ π1(G), the graph Γ(G) is connected, a

contradiction. Therefore, 5 ∈ π1(S). If m is odd, we have q ≡ −1 (mod 4), π1(S) = π(q + 1), and

5 �∈ π1(S), a contradiction. Therefore, m is even, q ≡ 1 (mod 4), and π1(S) = π(q − 1). Assume

that the index |G : S| is not a power of 2, and let r be an odd prime divisor of |G : S|. Then, by

Lemma 1.9, there exists an element x ∈ G \S of order r, and in this case CS(x) ≥ PSL2(q
1/r) and

|PSL2(q
1/r)| = q1/r

2
(q2/r − 1); hence, by Lemma 1.2, the graph Γ(G) is connected, a contradiction.

Thus, the index |G : S| is a power of 2. Assume that there exists a number u ∈ π(q − 1)\{2, 5}.
Then u ∈ π1(S) ⊆ π1(G) and, since 3 ∈ π3(S), by Lemma 1.3, u is nonadjacent to 3 in Γ(G), a

contradiction. Therefore, π(q − 1) = {2, 5}, which implies that either qm/2 − 1 or qm/2 + 1 is a

power of 2; consequently, by Lemma 1.5, we have m/2 ∈ {1, 2}, whence q ∈ {9, 81}. However,

π(PSL2(9)) = {2, 3, 5}; but, if S ∼= PSL2(9), then the graph Γ(G) is connected, a contradiction.

Therefore, q = 81.

Thus, q ∈ {11, 19, 25, 49, 81} and, consequently, |π(S)| = |π(Aut(S))| = 4. The Gruenberg–

Kegel graphs of almost simple 4-primary groups are known [5, 6]. As follows from Lemma 1.8

and [6, Table 1] with the corrections made in [5], there exists a nonsolvable Frobenius group H with

the property Γ(G) = Γ(H) if and only if G is one of the following groups: PSL2(11).2 ∼= PGL2(11),

PSL2(19).2 ∼= PGL2(19), PSL2(25).22, PGL2(49).21 ∼= PGL2(49), PSL2(81).21, PSL2(81).41,

and PSL2(81).42.

The theorem is proved.
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