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Linear Controlled Objects with State Constraints.

Approximate Calculation of Reachable Sets
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Abstract—Linear controlled objects are intensively studied in modern control theory. An
important dynamic characteristic of such objects is their reachable sets. For example, these sets
are used in optimal control theory to formulate problems that are interesting for applications.
Knowing reachable sets at different times, one can roughly estimate the dynamic capabilities of
the controlled object under study. Note that, in the absence of state constraints, the technique of
support functions is effective for calculating these sets. Under state constraints, the calculation
becomes more complicated. We develop a method for the approximate calculation of reachable
sets for linear controlled objects under constraints. The convergence of these approximations
to the desired reachable set in the sense of the Hausdorff metric is proved. It is assumed that
the state constraint and the set constraining the control are convex and compact. To construct
approximations, we use the Cauchy formula and a uniform partition of the interval [0, T ] on
which the motion occurs. An estimate for the rate of convergence of approximations to the
required set is obtained under some additional assumptions.

Keywords: linear controlled objects, phase constraints, reachable sets, Cauchy formula.

DOI: 10.1134/S0081543821060171

1. INTRODUCTION

Controlled processes under state constraints are important objects of study in the mathematical

theory of optimal control (see, e.g., [1–4] et al.). The presence of state constraints essentially

complicates the investigation of the corresponding optimization problems. Note that an important

characteristic of a control process is its reachable sets (see, e.g., [3,4]). For linear controlled objects

in the absence of state constraints, a theory was developed which gives an efficient calculation of

reachable sets based on techniques of support functions (see, e.g., [4]). For linear controlled objects

under state constraints, the constructive calculation of reachable sets is rather difficult.

This paper is devoted to the approximate calculation of reachable sets for linear controlled

objects in the presence of a convex state constraint and a compact set P bounding the vector

control u.

2. THE MAIN PART

Consider a linear controlled object of the form (see [1–4])

ẋ = Ax+Bu, (1)
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where x ∈ R
n (n ≥ 1); u ∈ R

p (p ≥ 1); A and B are n × n and n × p matrices, respectively;

and the control u ∈ P is a convex compact set in R
p. For k ≥ 1, we denote by R

k the Euclidean

arithmetic space whose elements are ordered tuples of k numbers written as columns. The scalar

product 〈x, y〉 of vectors x, y from R
k and the length |x| of a vector x ∈ R

k are introduced in the

standard way.

For the controlled object (1), we fix a state constraint G ⊂ R
n, where G is a nonempty convex

compact set; an initial condition x(0) = x0 ∈ G; and a time T > 0. We consider all possible

Lebesgue measurable functions u(t) ∈ P , t ∈ Δ = [0, T ], called admissible controls. Denote by U

the set of such functions. For each admissible control u(·) and initial condition x(0) = x0, there

is an absolutely continuous solution x(t, u(·), x0), t ∈ Δ, of equation (1). We are interested in the

controls u(·) ∈ U for which x(t, u(·), x0) ∈ G for all t ∈ Δ; denote the set of such controls by W .

In the general case, the set W can be empty. In what follows, we assume that W �= ∅. For the

controlled object under consideration, we define the reachable set D(T, x0) by the formula

D(T, x0) =
⋃

u(·)∈W
x(T, u(·), x0). (2)

Recall that, for u(·) ∈ U and the corresponding solution x(t) = x(t, u(·), x0), t ∈ Δ, we have the

Cauchy formula

x(t) = etAx0 +

t∫

0

e(t−s)ABu(s) ds, (3)

where etA is the exponential of the matrix tA, and the integral is understood in the Lebesgue

sense. Using this formula and the convexity of the sets P and G, one can easily prove the convexity

ofD(T, x0) (see (2)). Using the weak compactness of the set U in the Hilbert space Lp
2[0, T ] (see [2]),

the closedness of the set G, and formula (3), we can prove that the reachable set D(T, x0) is convex

and compact. We will study the problem of approximate (in the sense of the Hausdorff metric)

calculation of the set D(T, x0).

Divide the interval Δ into N equal parts (N ≥ 1) by the points

ti = ih,

where i = 0, . . . , N and h = T/N . Define

E(h,K) =
⋃

u(·)∈Uh,y∈K
x(h, u(·), y), (4)

where h > 0, K is an arbitrary nonempty compact set from R
n, Uh is the set of measurable functions

u(t) ∈ P for t ∈ [0, h], and x(t, u(·), y) is the solution of equation (1) corresponding to the control

u(·) ∈ Uh and the initial condition x(0) = y. For the set E(h,K) (see (4)), using formula (3), we

can prove the formula

E(h,K) = ehAK +

h∫

0

erABP dr, (5)

where “+” means the algebraic addition of sets, and the integral of the set-valued mapping erABP

over [0, h] is understood in the sense of the theory of set-valued mappings (see [4]). Note that if
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the compact set K is convex, then E(h,K) (see (5)) is also a convex compact set. In what follows,

we will need the following chain of sets Fi:

F0 = {x0}, Fi+1 = E(h, Fi) ∩G, (6)

where h = T/N and i = 0, . . . , N − 1. Using the Cauchy formula (3), we can show that, under

the above assumptions, all the sets Fi, i = 0, . . . , N , are nonempty, convex, and compact. We are

interested in the set FN as a certain approximation of the set D(T, x0) as N → +∞.

Consider an arbitrary control ũ(·) ∈ W . Then the solution x̃(t) = x(t, ũ(·), x0) for t ∈ Δ

satisfies the inclusion

x̃(t) ∈ G.

Using the Cauchy formula (3), we can show that

x̃(ti) ∈ Fi

for i = 0, . . . , N ; in particular, x̃(T ) ∈ FN . The definition of the set D(T, x0) (see (2)) and the

inclusion x̃(T ) ∈ FN imply that

D(T, x0) ⊂ FN . (7)

In what follows, we will use the following definitions.

Definition 1. Let X and Y be nonempty compact sets from R
n. The Hausdorff distance

h(X,Y ) is defined as the smallest nonnegative number ε for which

X ⊂ Y + Sε, Y ⊂ X + Sε, (8)

where Sε = {x ∈ R
n : |x| ≤ ε}.

Definition 2. The support function c(X,ψ) of a nonempty compact set X ⊂ R
n is defined for

ψ ∈ R
n by the formula

c(X,ψ) = max
x∈X

〈x, ψ〉.

Note that the properties of support functions were discussed in detail in [4].

The aim of this study is to prove the convergence of the convex compact sets FN to the convex

compact set D(T, x0) as N → +∞ in the Hausdorff metric and to derive some upper estimate for

this convergence under an additional assumption concerning the controlled object (1), vector x0,

and the set G.

Denote by UN the set of û(·) ∈ U such that

x(ti, û(·), x0) ∈ Fi,

where i = 0, . . . , N . Note that formulas (6) for i = 0, . . . , N and the inclusion û(·) ∈ UN imply the

relations

x(ti, û(·), x0) ∈ G (9)

for i = 0, . . . , N . Using formulas (3)–(6), we can prove that

FN =
⋃

û(·)∈UN

x(T, û(·), x0)). (10)
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Using the compactness of the set G and formulas (3) and (9), we can prove that, for t ∈ Δ and

arbitrary û(·) ∈ UN , the following inequality holds:

ρ(x(t, û(·), x0), G) ≤ ch, (11)

where h = T/N , the constant c is nonnegative and independent of N , and the value ρ(y,G) for

y ∈ R
n is defined by the formula

ρ(y,G) = min
z∈G

|y − z|.

From relation (11), for t ∈ Δ, we get the inclusion

x(t, û(·), x0) ∈ G+ Sch,

where “+” means the algebraic addition of sets,

Sch = {x ∈ R
n : |x| ≤ ch}, c ≥ 0, h = T/N.

Note that

W ⊂ UN .

Theorem 1. The sequence of convex compact sets FN (see(6), (10)) converges to the convex

compact set D(T, x0) as N → +∞ in the sense of the Hausdorff metric.

Proof. Fix some positive ε. In view of relations (7), (8), it is sufficient to prove that

FN ⊂ D(T, x0) + Sε

for large N . Assume that this is not so. Then there exists a subsequence Nk → +∞ such that

FNk
�⊂ D(T, x0) + Sε.

Hence, for some sequence of controls ûNk
∈ UNk

, we have

x(T, ûNk
(·), x0) /∈ D(T, x0) + Sε. (12)

Let us now use the weak compactness of the set U in the Hilbert space Lp
2[0, T ] (see [2]). Passing,

if necessary, to a subsequence with the corresponding reindexing, we can assume that the sequence

ûNk
(·) weakly converges as Nk → +∞ in the sense of the Hilbert space Lp

2[0, T ] to some control

u0(·), which belongs to the set U and, at the same time, the sequence of functions x(t, ûNk
(·), x0)

converges uniformly on the interval [0, T ] to the function x(t, u0(·), x0). Using (11), we can show

that x(T, u0(·), x0) ∈ D(T, x0). However, this inclusion, according to the above, contradicts (12).

We have come to a contradiction with our assumption.

The theorem is proved.

For applications, it is useful to have an estimate for the convergence rate of the sequence FN ,

N = 1, 2, . . ., to D(T, x0) in the Hausdorff metric. Such an estimate can be derived under the

following assumption.

Assumption. There exist a control u(·) ∈ W and a constant α > 0 such that

x(t, u(·), x0) + Sα ⊂ G, t ∈ Δ.
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Theorem 2. Under the above assumption, the Hausdorff distance between the convex compact

sets FN and D(T, x0) can be estimated from above by the value c1/N as N → +∞, where c1 is

some positive constant.

Proof. In view of (7) and (8), it is sufficient to prove that

FN ⊂ D(T, x0) + (c2/N)S1

for N ≥ 1, where c2 is some nonnegative constant independent of N . Then we can take the

constant c2 as c1. Fix N ≥ 1 and consider some control û(·) from the set UN . This control

corresponds to a solution x̂(t) = x(t, û(·), x0), and the control u(·) corresponds to a solution x(t) =

x(t, u(·), x0). Let us also consider the control

uβ(t) = βu(t) + (1− β)û(t) (13)

on Δ, where β ∈ [0, 1]. It follows from the convexity of the set P that uβ(·) ∈ U . The control uβ(t)

corresponds to a solution xβ(t) = xβ(t, x0) and, by the Cauchy formula (see (3)), we have

xβ(t) = βx(t) + (1− β)x̂(t) (14)

for t ∈ Δ. Since the control û(·) belongs to the set UN , we have inequality (11) for t ∈ Δ. Let us

add algebraically the ball βSα to both sides of (14). In view of the assumption and relation (11),

we obtain for t ∈ Δ the inclusion

xβ(t) + βSα ⊂ βG+ (1− β)(G+ Sch). (15)

Since βG+ (1− β)G = G, it follows from (15) that

xβ(t) + βSα ⊂ G+ (1− β)Sch (16)

for t ∈ Δ and h = T/N . Using the techniques of support functions (see [4]), from inclusion (16)

we obtain the inequality

〈xβ(t), ψ〉 + βα|ψ| ≤ c(G,ψ) + (1− β)ch|ψ|

for t ∈ Δ, where ψ is an arbitrary vector from R
n.

The number β ∈ [0, 1] has been arbitrary so far. Let us consider the following equation with

respect to β:

βα = (1 − β)ch. (17)

Its solution is

βh = ch/(α + ch). (18)

Note that βh ∈ [0, 1]. From relations (14)–(18),we get

〈xβh
(t), ψ〉 ≤ c(G,ψ)

for t ∈ Δ and ψ ∈ R
n. Hence, using the convexity of the compact set G and the properties of

support functions (see [4]), we find that

xβh
(t) ∈ G, t ∈ Δ. (19)
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From formula (14), we derive the following relation:

xβh
(T )− x̂(T ) = βh(x(T )− x̂(T )). (20)

Using the Cauchy formula (3), it is easy to prove the inequality

|x(T, u(·), x0)| ≤ c3 (21)

for arbitrary u(·) ∈ U , where c3 is some positive constant, which can be computed constructively.

Using inequality (21), we derive from (20) the important inequality

|xβh
(T )− x̂(T )| ≤ 2c3βh. (22)

Note that, since the choice of the control û(·) ∈ UN was arbitrary, the vectors x̂(T ) in (22) fill the

entire set FN . Hence, in view of relations (11), (18), and (19) and the equality h = T/N , we obtain

FN ⊂ D(T, x0) + 2c3βhS1 ⊂ D(T, x0) + (2cc3T/Nα)S1.

Now, setting c2 = 2cc3T/α, we obtain the required inclusion for N ≥ 1.

The theorem is proved.

Remark. Note that a control of the form (13) was used earlier in [2, pp. 927–930] in the proof

of Theorem 1, which is devoted to a numerical method of approximate solution of linear control

problems with a terminal functional in the presence of a state constraint.
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