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Abstract—We consider a zero-sum differential game on a finite interval, in which the players
not only control the system’s trajectory but also influence the terminal time of the game.
It is assumed that the early terminal time is an absolutely continuous random variable, and
its density is given by bounded measurable functions of time assigned by both players (the
intensities of the influence of each player on the termination of the game). The payoff function
may depend both on the terminal time of the game together with the position of the system
at this time and on the player who initiates the termination. The strategies are formalized by
using nonanticipating càdlàg processes. The existence of the game value is shown under the
Isaacs condition. For this, the original game is approximated by an auxiliary game based on
a continuous-time Markov chain, which depends on the controls and intensities of the players.
Based on the strategies optimal in this Markov game, a control procedure with a stochastic
guide is proposed for the original game. It is shown that, under an unlimited increase in the
number of points in the Markov game, this procedure leads to a near-optimal strategy in the
original game.

Keywords: two-person zero-sum game, Dynkin game, differential game, stochastic guide,
extremal shift, continuous-time Markov chain.
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INTRODUCTION

This work is devoted to the development of methods for solving differential games with random

terminal time. We consider a zero-sum differential game on a finite interval [0;T ], in which the

players can influence in a nonanticipating way the density of the moment of early (before the time T )

termination of the game, setting at each time, each on their own part, the intensity (conditional

density) of the termination. The cost function depends both on the terminal time and the position

of the system at that moment and on the player who initiates the early termination; thus, this

function becomes a random variable. For this reason, the actions of the players are considered to

be aimed at optimizing the expected value of the cost function. Each player still has the opportunity

to rely on their knowledge of the position of the system, assigning their own control and intensity

during the game, but it should also be noted that the game between the players can occur repeatedly

and the actions of the players can change during such a series of games; in particular, their actions

may be nondeterministic, resulting from certain random processes. That is why we assume that, on
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the one hand, the players can choose the distributions of their controls rather than controls per se.

On the other hand, by collecting statistics on a sufficiently long series of games, players have the

opportunity to recover the distribution used by the opponent with any predetermined accuracy;

in particular, knowing nothing during the game about the intensity of early termination already

assigned by the opponent, each of them can recover the probabilistic law governing it.

In connection with the above, we assume in this paper that the strategies are random processes,

which depend in a nonanticipating way on the realized trajectory of the system and, in the case

of a counterstrategy, on the actions of the opponent. A detailed definition of strategies and

counterstrategies is given in Section 2; we only note here that they are in principle not new. For

a continuous-time Markov chain, such general definitions can be found, for example, in [26], where

more constructive special cases of the definitions are described in detail. For example, in our setting,

each player can use the classical deterministic strategies: piecewise continuous program strategies

or piecewise constant positional strategies. We also note that the requirement imposed in this paper

that the strategies can employ only càdlàg processes is rather of a technical nature; to some extent

it can be justified by the facts that in control theory piecewise continuous controls are everywhere

dense, whereas in the theory of differential games, within the classical setting [20,21,30], piecewise

constant positional controls of the players implement the value function with any predetermined

accuracy.

Let us discuss similar settings studied in the literature. The general statement of a game in

which a player controls the moment of exiting the process goes back to Dynkin’s classic paper [10].

In such games (Dynkin games, stopping games), it is usually assumed that there is some conflict-

control process and at least one of the players must choose by their actions a convenient time

for stopping the entire game. Such game settings have numerous applications, in particular, in

financial mathematics (see, for example, [1, 7, 15]); for them, the questions of the existence and

description of the value of the game, the construction of optimal strategies, and the structure of

such strategies are investigated. Starting with the classical works [5, 6], the dynamics of the game

is usually described by a stochastic differential equation, but Lévy–Feller processes [4], as well as

discrete-time (see, for example, [24, 29]) or continuous-time [11, 22] Markov chains, are also used.

Finally, a differential game in which the distribution of the terminal time (and hence the intensity)

is known to the players in advance was considered, for example, in [13,23].

In this paper, for the game under consideration, we prove the existence of both the value

and approximately optimal strategies that implement the value with any predetermined accuracy.

The construction of the strategies is based on the technique of a stochastic guide; the idea of the

technique is as follows. For any motion y of the original conflict-control system, a player uniquely

reconstructs step-by-step a certain distribution P
Z of auxiliary motions z calculated by this player.

At each time tk of some partition, the player assigns for the following time interval a control ū

using the realized position z(tk), which is in fact a random variable, by the rule

ū(t) ≡ uto z(tk)(tk, y(tk)) ∀t ∈ [tk; tk+1), (0.1)

where uto z is a control that maximally shifts the position of the original system to the point z.

This technique solves the original problem and goes back conceptually to the classical methods

for differential games [20] proposed by Krasovskii and Subbotin. For example, the rule ūto z is

fundamental to the extremal shift method, and the rule (0.1) with substitution y ≡ z is used in

the positional formalization of a differential game introduced by Krasovskii and Subbotin in [20].

The method of control with a guide proposed by the same authors originally presumed a one-

to-one dependence of z on y, but later a nondeterministic rule was proposed for constructing z
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in Krasovskii’s paper [17]. In [18, 19] a stochastic guide was constructed with the use of the Itô

differential equation. In [2, 3] the trajectory of a continuous-time Markov game is considered as z.

In the present paper, z is also generated by an approximately optimal strategy in a continuous-time

Markov game. In particular, the question of existence of the value in the original game is reduced

to a similar fact for a Markov game, which was obtained in [14].

The paper is organized as follows. In Section 1 we formulate the original differential game and

state (up to the definition of the strategies) Theorem 1, which guarantees the existence of the value

in this game and is the main result of the paper. In Section 2 we give some basic definitions from

the theory of random processes and introduce formalizations of the strategies used in the paper. In

the next section, we extend the dynamics of the original game and represent the original objective

functional as a discounted payoff. Section 4 is devoted to an auxiliary Markov game. In Section 5

the technique of a stochastic guide for the first player is considered: a random process (double

game) is introduced, in which the first component corresponds to the state of the original game

and the second component corresponds to the state of the stochastic guide; then, with the use of an

extremal shift, the control of the first player is written in each component and a fictitious control

is written for the second player in the Markov game. The last section is devoted to the proof of

the theorem, which reduces to estimating the difference between the components of the random

process, i.e., the trajectories of the original game and of the stochastic guide.

1. PROBLEM STATEMENT

1.1. Dynamics of the original game. Consider a conflict-control system in R
d

dy(t)

dt
= f(t, y(t), u(t), v(t)), y(0) = x∗ ∈ R

d, t ∈ [0;T ], u(t) ∈ U, v(t) ∈ V. (1.1)

Assume that U and V are metric compact sets in some finite-dimensional Euclidean spaces and the

function f : R+ × R
d × U× V → R

d is Lipschitz in all variables. We also require the saddle point

condition in the small game (the Isaacs condition) [20,21]: for all x,w ∈ R
d,

min
u∈U

max
v∈V

〈w, f(t, x, u, v)〉 = max
v∈V

min
u∈U

〈w, f(t, x, u, v)〉. (1.2)

In addition to controlling the motion in R
d, each player can influence the terminal time of

the game. Let us fix closed intervals [ϕ−;ϕ+], [ψ−;ψ+] ⊂ R+, which are sets of parameters that

control the intensity of game termination on the part of each player. Assume that the first and

second players have chosen piecewise continuous functions [0;T ] 	 t 
→ ϕ(t) ∈ [ϕ−;ϕ+] and [0;T ] 	
t 
→ ψ(t) ∈ [ψ−;ψ+], respectively. Then, for almost all t ∈ [0;T ), the conditional probability of

termination of the game on the interval [t; t + Δt) if the game was still continuing at the time t

is (ϕ(t) + ψ(t))Δt + o(Δt). Solving the corresponding differential equation for the total intensity

ϕ+ ψ, we find that, for any time τ ∈ [0;T ), the probability of termination of the game before the

time τ is

τ∫

0

(ϕ(t) + ψ(t))e
−

t∫

0

(ϕ(s)+ψ(s)) ds
dt; (1.3)

in particular, for ϕ(t) + ψ(t) ≡ C, the terminal time of the game has the same distribution as

min(θ, T ), where θ is distributed exponentially with parameter C. Using (1.3) and the correspond-

ing differential equations for the probabilities of termination of the game before the moment τ < T
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on the initiative of the first and second player, respectively, we have for them the values

τ∫

0

ϕ(t)e
−

t∫

0

(ϕ(s)+ψ(s)) ds
dt,

τ∫

0

ψ(t)e
−

t∫

0

(ϕ(s)+ψ(s)) ds
dt. (1.4)

As a corollary, we find that, in the case of termination of the game at a time t < T , the player

responsible for this is the first with probability ϕ(t)/(ϕ(t) + ψ(t)) and the second with probability

ψ(t)/(ϕ(t) + ψ(t)). It remains to formalize formulas (1.3) and (1.4).

For this, we equip the square [0; 1]2 with the σ-algebra B([0; 1]2) of Borel sets and consider the

Lebesgue measure λ on them. We obtain the probability space

(
[0; 1]2,B([0; 1]2),P[0;1]2

�
= λ

)
,

which assigns a random number ωi to each player. Now, for all Borel mappings ϕ : [0;T ) → [ϕ−;ϕ+]

and ψ : [0;T ) → [ψ−;ψ+], we introduce random variables ω 
→ θ1(ω) and ω 
→ θ2(ω) by the following

rule: for all ω = (ω1, ω2) ∈ [0; 1]2,

θ1(ω)
�
= inf

{
t ∈ [0;T )

∣∣
t∫

0

ϕ(t) dt = − lnω1

}
∪ {T}, (1.5)

θ2(ω)
�
= inf

{
t ∈ [0;T )

∣∣
t∫

0

ψ(t) dt = − lnω2

}
∪ {T}. (1.6)

Note that, for any τ ∈ [0;T ), the probability of the event θ1 < τ coincides with (1.3) in the case

ψ ≡ 0. Similarly, the probability of the event θ2 < τ coincides with (1.3) in the case ϕ ≡ 0.

Thus, the random variable θi coincides with the time of the possible termination of the game on

the initiative of the ith player in the case of zero intensity of the opponent. Moreover, for any

mappings ϕ : [0;T ) → [ϕ−;ϕ+] and ψ : [0;T ) → [ψ−;ψ+], the random variables θi are independent

because the random variables ωi are independent; hence, for the time of the early termination of

the game

θmin
�
= min(θ1, θ2),

which is a random variable, the probability of the event θmin < τ is found by formula (1.3), and

the probabilities of the events θ1 < τ and θ2 < τ are found by formula (1.4), as required. In what

follows, we suppose that (ω1, ω2) is chosen before the start of the game and is independent of the

actions of the players, who have no information about (ω1, ω2) before the terminal time. Thus,

the players know formulas (1.3) and (1.4) and know (or hypothesize) their intensity and/or the

intensity of the opponent but have no other information about the terminal time θmin.

For simplicity of notation, we introduce the sets of control parameters of the first and second

players: Ū
�
= U× [ϕ−;ϕ+] and V̄

�
= V× [ψ−;ψ+].

1.2. Goals of the players and the value of the game. Let us define the goals of the

players. Let functions σ0 : Rd → R, σ1 : [0;T ] × R
d → R, and σ2 : [0;T ] × R

d → R be given.

Assume that these functions are locally Lipschitz in x, t and have norms bounded by the number 1.

Let σ0(y(T )) be the payoff of the first player to the second if there has been no early termination,

i.e., the game has terminated at the time T . Let the number σ1(θ1, y(θ1)) be the payoff of the first
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player to the second if the first player has initiated an early termination of the game (at a time θ1).

Similarly, σ2(θ2, y(θ2)) is the payoff of the first player to the second if the termination of the game

(at the time θ2) has been initiated by the second player. Thus, almost always on [0; 1]2, for a known

trajectory y(·) and known actions (ū, v̄)(·) of the players, the objective function is defined; it is the

random variable

J(y, ū, v̄)
�
=

⎧⎪⎪⎨
⎪⎪⎩

σ0(y(T )), T = θmin,

σ1(θ1, y(θ1)), θ1 = θmin,

σ2(θ2, y(θ2)), θ2 = θmin.

Since the players do not know the outcome ω ∈ [0; 1]2, they can only optimize the expected value

of the objective function J

EJ(y, ū, v̄),

which, similarly to the trajectory y(·) of system (1.1), is uniquely recovered from the players’

controls ū(·) and v̄(·).
Formalizations of the strategies will be given in the following section; we only note that one

of the players will be allowed to feed as their control a càdlàg (right continuous and having limit

on the left) trajectory of some random process, which depends on the trajectory of (1.1) in a

nonanticipating way. The other will be allowed to know not only the trajectory but also the control

used by the opponent; as a consequence, the control of this player depends on these trajectory and

control as a random process in a nonanticipating way. Let us introduce the necessary notation.

Let SI and SII be the sets of admissible strategies of the players considered as distributions of

random processes that depend in a nonanticipating way on the trajectory y(·). Denote the sets of

admissible counterstrategies of the players by QI
x∗ and QII

x∗ , and denote by Rx∗(P
I+II) the set of

all possible distributions Pall
x∗ of random processes in the game where the players adhere to a joint

strategy P
I+II. Naturally, any stepwise strategies (in particular, program strategies) are admissible

strategies, and any admissible strategy is a counterstrategy.

Depending on which of the players is informationally discriminated, i.e., which of them has in

advance informed the opponent about their strategy, we obtain two values of the game:

V + �
= inf

PI∈SI
x∗

sup
QII∈QII

x∗

sup
Pall
x∗∈Rx∗(QII[PI])

E
all
x∗J(y, ū, v̄),

V − �
= sup

PII∈SII
x∗

inf
QI∈QI

x∗

inf
Pall
x∗∈Rx∗(QI[PII])

E
all
x∗J(y, ū, v̄).

Theorem 1. The equality V − = V + is true. Moreover, for each positive ε, the players have

admissible strategies P
I
ε ∈ SI

x∗ and P
II
ε ∈ SII

x∗ that guarantee

−ε+ sup
QII∈QII

x∗

sup
Pall
x∗∈Rx∗(QII[PI

ε])

E
all
x∗J(y, ū, v̄) ≤ V + = V − ≤ ε+ inf

QI∈QI
x∗

inf
Pall
x∗∈Rx∗(QI[PII

ε ])
E
all
x∗J(y, ū, v̄).

This theorem will be proved in the last section. Before that we recall some definitions from the

theory of random processes and give the definitions of strategies promised earlier.
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2. STRATEGIES AS DISTRIBUTIONS OF RANDOM PROCESSES

2.1. General facts from the theory of random processes. Recall that, for any pair of

probability spaces (Ω′,F ′,P′) and (Ω′′,F ′′,P′′), we can consider the σ-algebra F ′ ⊗ F ′′ of subsets

of Ω′ × Ω′′ as the smallest σ-algebra containing all products of the form A × B for A ∈ F ′ and

B ∈ F ′′. On this algebra, we can uniquely reconstruct a probability P
′ ⊗ P

′′ by the rule

(P′ ⊗ P
′′)(A×B) = P

′(A)P′′(B) for all A ∈ F ′ and B ∈ F ′′.

We obtain the product (Ω′ × Ω′′,F ′ ⊗F ′′,P′ ⊗ P
′′) of the original probability spaces. In addition,

if there is a mapping g from a probability space (Ω1,F1,P1) to a measurable space (Ω2,F2) and

this mapping is measurable, i.e., g−1(A) ∈ F1 for all A ∈ F2, then this mapping specifies the

push-forward of the measure, probability P2 for (Ω2,F2), by the rule P2(A)
�
= P1(g

−1(A)) for all

A ∈ F2. In particular, for the probability introduced above for Ω′ ×Ω′′, the marginal probabilities

P
′ and P

′′ for Ω′ and Ω′′ coincide with the push-forwards of the measure P
′ ⊗ P

′′ by the mappings

(ω′, ω′′) 
→ ω′ and (ω′, ω′′) 
→ ω′′, respectively.

Fix a state space X as a closed subset of a finite-dimensional Euclidean space, and equip it with

the σ-algebra of Borel sets B(X), thus obtaining the measurable space (X,B(X)). Fix also a time

interval T .

Consider now the Skorokhod space D
(
T ,X

)
[8,16] of all possible càdlàg functions from T to X

(functions from T to X that are right continuous and have limit on the left). This space is Polish;

equipping it with the corresponding Borel σ-algebra B
(
D(T ,X)

)
, we obtain a measurable space.

On each Skorokhod space, we fix the default canonical filtration

(
AX

t
�
= B

(
D((−∞; t] ∩ T ,X)

)
⊗ {∅,D

(
(t; +∞) ∩ T ,X

)
}
)
t∈T

,

obtaining the stochastic basis
(
D
(
T ,X

)
,B

(
D(T ,X)

)
, (AX

t )t∈T
)
.

Following [25, Ch. IV, Sect. 1, Definition O2], we define a random process with time interval T
and state space (X,B(X)) as a system consisting of some probability space (Ω,F ,P) and some

family (Xt)t∈T of measurable mappings from Ω to X. Each Xt is called the state of the process

at the time t, and the mapping t 
→ Xt(ω) is called the trajectory of the process corresponding to

the outcome ω ∈ Ω. A random process is called a càdlàg process if P-almost all its trajectories are

such. For each process, we can consider the corresponding first canonical process [25], replacing

each ω by the corresponding trajectory t 
→ Xt(ω); in particular, all càdlàg processes with state

space X and time interval T are uniquely recovered by some probability measure (distribution of

the process [9, Sect. 17.1]) given on the measurable space (D(T ,X),B(D(T ,X))). In what follows,

we will specify most càdlàg processes in the form of first canonical processes, fixing only their

distributions in an appropriate Skorokhod space.

We will say that (Xt)t∈T is adapted to (Ft)t∈T if, for each t ∈ T , the random variable ω 
→ Xt(ω)

is Ft-measurable. A random variable τ with values in T is called a stopping time (with respect to

a filtration (Ft)t∈T ) if, for all t ∈ T , the event {τ ≤ t} = {ω | τ(ω) ≤ t} lies in Ft. Note that if

the canonical filtration (AX
t )t∈T is taken as a filtration (Ft)t∈T for Ω

�
= D(T ,X), then any process

given on this basis is AX
t -measurable, and all possible stopping times τ are exactly the mapping

τ : D(T ,X) 
→ T such that, for any x, x′ ∈ D(T ,X), the equality x(t) = x′(t) for all τ(x) ≥ t

implies τ(x) = τ(x′).
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2.2. Strategy sets. Let T be an interval closed on the left, and let t0 be its lower bound.

In addition to the Skorokhod space D
(
T ,X

)
, we consider some compact sets Υ1 and Υ2 in some

finite-dimensional Euclidean spaces; these sets are the sets of control parameters of the players. Let

Υ
�
= Υ1 ×Υ2. Program strategies of the first and second players and their joint program strategies

are all possible piecewise right continuous and having limit on the left mappings that are elements

of D(T ,Υ1), D(T ,Υ2), and D(T ,Υ), respectively. As earlier, equip them with σ-algebras of Borel

sets with the canonical filtration.

For the state space X and the set of control parameters Υ, we call a mapping

P(X) ×D
(
T ,Υ) 	 (
, υ(·)) 
→ P

G
υ(·)[
] ∈ P

(
D
(
T ,X

))

an admissible dynamics P
G with initial distribution 
 ∈ P(X) if it satisfies the initial condition

P
G
υ(·)[
](X(t0) ∈ A) ≡ 
(A) for all A ∈ B(X) and υ(·) ∈ D

(
T ,Υ

)
and is nonanticipating; i.e., for

any υ′(·), υ′′(·) ∈ D
(
T ,Υ

)
and time t ∈ T , the equality υ′|[t0;t) = υ′′|[t0;t) implies P

G
υ′(·)[
](A) =

P
G
υ′′(·)[
](A) for all A ∈ AX

t . Note that any probability P
G
υ(·)[
] is regular, since D

(
T ,X

)
is a complete

separable metric space.

A strategy P
i of the ith player is a mapping taking each element from x ∈ D

(
T ,X

)
to a

distribution P
i
x(·) on D(T ,Υi) (and, hence, to a first canonical process (υix(·)(t))t∈T with values

in Υi) such that the nonanticipation condition holds for all t ∈ T : if x′(s) = x′′(s) for all s ∈ T
not greater than t, then P

i
x′(·)(A) = P

i
x′′(·)(A) for all A ∈ AΥi

t . The notion of joint strategy P
I+II

of the players, which maps trajectories from D
(
T ,X

)
to distributions on D(T ,Υ), is introduced

similarly.

Note that any program strategy υi(·) ∈ D(T ,Υi), being a mapping x(·) 
→ υi(·) from D
(
T ,X

)
to D(T ,Υi) independent of the trajectory x(·), is a strategy of the ith player.

For any initial condition 
 ∈ P(X), we call a random process (Xt)t∈T with values in X a

realization of a joint strategy P
I+II for an admissible dynamics P

G if there is a process (υt,Xt)t∈T
given by some distribution P

all
� on D(T ,Υ)×D

(
T ,X

)
for which the mappings υ(·) 
→ P

G
υ(·)[
] and

x(·) 
→ P
I+II
x(·) are the Radon–Nikodym derivatives of the marginal distributions P

χ
� and P

Υ
� (on

D
(
T ,X

)
and D(T ,Υ), respectively) with respect to P

all
� ; i.e.,

P
Υ
� (A)

�
= P

all
� (υ· ∈ A) =

∫

D(T ,X)

P
I+II
x(·) (A)P

χ(dx) ∀A ∈ B(D(T ,Υ)),

P
χ
� (C)

�
= P

all
� (X· ∈ C) =

∫

D(T ,Υ)

P
G
υ(·)[
](C)PΥ(dυ) ∀C ∈ B(D(T ,X)).

We will denote the set of all possible realizations for a strategy P
I+II by R�(P

I+II).

We call a strategy P
i of the ith player admissible for an initial condition 
 ∈ P(X) if the pair of

strategies (Pi, δυ3−i) has the corresponding realization for any program strategy υ3−i ∈ D(T ,Υ3−i)

of the opponent. In particular, the program strategies themselves are admissible; indeed, for any

choice of program strategies (υ1, υ2) of the players, we can take δ(υ1,υ2)⊗ P
G
(υ1,υ2)(·)[
] as realizations

of their joint strategy.

A counterstrategy Q
i[PIII−i] of the ith player is a mapping taking each admissible strategy of

the opponent P
III−i to some joint strategy x(·) 
→ Q

i[PIII−i]x(·) on D(T ,Υ1 × Υ2) (and, hence,
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to a random process (υx(·)(t))t∈T with values in Υ1 × Υ2) such that the corresponding marginal

distribution on Υ3−i coincides with P
III−i
x(·) . A counterstrategy is called admissible if the strategy

x(·) 
→ Q
i[PIII−i]x(·) is admissible for any admissible strategy of the opponent PIII−i. It is clear that

any admissible strategy P
i is also an admissible counterstrategy because it assigns to a strategy of

the opponent PIII−i some joint strategy x(·) 
→ P
I
x(·) ⊗ P

II
x(·).

Denote by SI
x∗ and SII

x∗ the sets of admissible (for an initial condition 
 = δx∗) strategies

of the first and second players. Similarly, denote by QI
x∗ and QII

x∗ the sets of admissible (for

the same condition) counterstrategies of the players. The above implies the chain of embeddings

D(T ,Υi) ↪→ Si
x∗ ↪→ Qi

x∗ .

We construct a stepwise strategy, for example, for the first player, showing at the same time that

any such strategy is also admissible. Consider some partition Δ = (tk)k∈N of the time interval T ,

and let some admissible (for example, program) strategy P
I:k of the first player be given for each

k ∈ N on the interval [tk−1; tk). In particular, for any program strategy υk ∈ D([tk−1; tk),Υ2) of the

second player, there is a realization P
all:k of their joint strategy δυk ⊗ P

I:k on this interval. Now,

each initial (at the time tk−1) distribution 
k−1 corresponds to the probability P
all:k
�k−1

(X(·) ∈ B) for

all Borel subsets B of the set D([tk−1; t),X) and, hence, to the marginal probability 
k[
](B)
�
=

P
χ:k
�k−1(X(tk) ∈ B) depending on 
. Thus, we have constructed a sequence of transition probabilities


k : P(X) → P(X) depending on 
0; after that, we can introduce a distribution P
all
�0 as the

probability ⊗k∈NP
all:k
�k−1

on Borel subsets of
∏

k∈ND([tk−1; tk),Υ × X). Thus, the realization of

the joint strategy P
all
�0 has been constructed, and any strategy constructed in this way (any stepwise

strategy) is admissible.

2.3. Admissibility of the original dynamics. Let us show that the original game defines

an admissible dynamics with X
�
= R

d+1, T �
= [0;T ], and Υ

�
= Ū × V̄. Indeed, if we fix program

strategies, i.e., some càdlàg controls ū = (u, ϕ) and v̄ = (v, ψ), then the corresponding deterministic

process t 
→ y(t) uniquely defines the Dirac measure P(u,v)[
] = δy over the set of its trajectories

from D(T ,Rd) under a Dirac initial condition 
. Due to their linearity, these distributions P(u,v)[
]

are defined for all possible initial conditions 
. Further, each pair (ϕ,ψ) defines stopping times θi
and, together with them, θmin by means of formulas (1.5), (1.6). Let a random variable s be zero

if the game is not completed upon the expiry of the time of the game (T = θmin), be 1 + θmin if

θ1 = θmin ∈ [0;T ), and be −1− θmin if θ2 = θmin ∈ [0;T ). To each pair

(x(·), s) ∈ D([0;T ],Rd)× ([−T − 1;−1] ∪ {0} ∪ [1;T + 1])

we assign a trajectory y(x(·),s)(·) ∈ D([0;T ],X) by the equalities

t 
→
(
t, x(min(t, |s| − 1)), s1[0;t](|s| − 1)

)
for |s| �= 0 and t 
→ (t, x(t), 0) otherwise. (2.1)

Then the push-forward of the measure P(u,v)[
] ⊗ P(ϕ,ψ) by this mapping specifies a distribution

P
G
(ū,v̄)[
] on D(T ,X). In particular, the last coordinate now switches from the zero value to the value

of the random variable s at the time of the early termination of the game. Now the distribution

P
all
� on D(T , Ū × V̄) × D(T ,X) is uniquely recovered by the following rule: for all Borel subsets

B ⊂ D(T , Ū × V̄) and D ⊂ D(T ,X),

P
all
� (B ×D)

�
= P

G
(ū,v̄)[
](D)1B(ū, v̄). (2.2)
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Since a realization is constructed in the original game for an arbitrary joint program strategy, i.e.,

a pair of càdlàg controls ū = (u, ϕ) and v̄ = (v, ψ), it follows that the dynamics of the original

game is admissible. Consequently, stepwise strategies in the original game are also admissible.

3. EXTENSION OF THE ORIGINAL GAME

Although the game process corresponding to the original game is completely defined, it will be

convenient for us to extend its definition so that the process will be given on an unbounded time

interval and in an extended state space. For this, we put X �
= R+ × R

d+1 and define unit vectors

of this space:

π0
�
= (1, 0, . . . , 0), π1

�
= (0, 1, . . . , 0), . . . , πd

�
= (0, 0, . . . , 1, 0), πd+1

�
= (0, 0, . . . , 1).

Now, for any vector z ∈ X , its ith coordinate can be written in the form πiz
�
= 〈πi, z〉. Finally,

denote by || · ||d the norm of a vector without the last coordinate: ||z||d
�
= ||z − (πd+1z)πd+1||.

3.1. Required constants. Since the dynamics of the system is bounded, there exists a

compact set K< ⊂ R
d such that any solution y of system (1.1) with the initial condition from the

unit ball centered at x∗ stays within this set on the interval [0;T ]. Increasing if necessary this set

toK>, we can assume that the distance of any solution of system (1.1) (with the initial condition x∗)

from the boundary of K> is greater than 1 at any time from [0;T ]. Now we can find a sufficiently

large number L ≥ 2 such that the functions f |[0;T ]×K>×U×V, σ0|K> , σ1|[0;T ]×K>
, and σ2|[0;T ]×K>

are Lipschitz with the constant L. We can also assume that the norm of f |[0;T ]×K>×U×V and the

numbers ϕ+ and ψ+ are not greater than L− 1. Recall that, by our assumptions, the functions σ0,

σ1, and σ2 do not exceed 1 in absolute value; for definiteness, we continue the mappings σ1|[0;T ]×Rd

and σ2|[0;T ]×Rd to [T ;∞) × R
d preserving both their Lipschitz constant and their norm in the

uniform metric; this is possible by [28, Theorem 9.58].

Fix a smooth monotonically nonincreasing 2-Lipschitz scalar function a : R → [0; 1] such that

a(0) = 1, a(1) = 0, and the function r 
→ a(r − 1/2) − 1/2 is odd. We also define aK(x)
�
=

1− a(dist(x;Rd \K>)) for all x ∈ R
d.

Fix some positive number h < min(1, e−2/T, 56L2Te−12LT /d) such that e−T/8h ≤ hT and

1/h ∈ N. Define

γ
�
=

√
−2hT ln(hT ), Γ

�
= T + γ = T +

√
−2hT ln(hT ).

We have the inequalities

− ln(hT ) ≥ 2, 2
√
hT ≤ γ, γ < T/2, h2d/2 ≤ 7L2e−12LTγ2. (3.1)

3.2. Extended dynamics of the original system. Recall that, according to the formal-

ization proposed in the preceding section, the termination of the game on the initiative of the first

or the second player at a time θ consists in shifting the position of the system along the additional

(d + 1)th coordinate by the vector (1 + θ)πd+1 or −(1 + θ)πd+1, respectively. Now the extended

space of the original dynamic system (1.1) coincides with the product R
d+1 × {s = 0}, and the

set R
d+1 × {s ≥ 1} contains all possible terminal positions of the system if the game has been

terminated on the initiative of the first player; similarly, the set R
d+1 × {s ≤ −1} contains all

terminal positions of the system if the game has been terminated on the initiative of the second

player. Consequently, we extend the dynamics of (1.1) to X = R+ × R
d+1.
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For this, to each w = (t, x, s) ∈ X , (u, ϕ) ∈ Ū, and (v, ψ) ∈ V̄, we assign a vector

f̂(w, ū, v̄)
�
= (1, 1[0;T )(t)aK(x)f(t, x, u, v), 0). (3.2)

It is easy to verify that the function f̂ is bounded in the norm by the number L and is 3L-Lipschitz

in each of the domains [0;T ) × R
d+1 and [T ;∞) × R

d+1. In addition, f̂(w, ū, v̄) coincides with

(1, f(t, x, u, v), 0) if w = (t, x, s) ∈ [0;T )×K< ×{0}, (u, ϕ) ∈ Ū, and (v, ψ) ∈ V̄. Moreover, outside

the set X<
�
= R+ ×K> × [−2 − T ; 2 + T ], the function f̂ is zero in all the coordinates except for

the zero coordinate.

Consider a conflict-control system

dy(t)

dt
= f̂(y(t), ū(t), v̄(t)), y(0) = (0, x∗, 0) for all t ∈ R+, y ∈ X , ū(t) ∈ Ū, v̄(t) ∈ V̄. (3.3)

If the dynamics in this system is defined by (3.2) and the initial conditions are in the set X<,

then the trajectories of (3.3) stay inside this set; in addition, for the original initial conditions and

any controls of the players, the corresponding coordinates of the trajectories of (3.3) coincide with

the coordinates of the trajectories of (1.1), and the time coincides with the zero coordinate of the

solution of (3.3). Note also that, after the terminal time of the game, i.e., for π0y(t) = t ≥ T or for

|πd+1y(t)| ≥ 1, only the zero coordinate of the solution of system (3.3), which corresponds to time,

changes. Finally, by the boundedness of the right-hand side for any solution y with dynamics (3.2),

we have

||y(t)− y(t′)||d ≤ L(t− t′) ∀t′ > t ≥ 0. (3.4)

In order to describe the jump in the last coordinate, we will require that the conditional

probability of termination of the game on the initiative of the first (second) player during a small

interval [t; t + Δt) is a(|πd+1y|)1[0;T )(π0y)ϕ(t)Δt + o(Δt) (a(|πd+1y|)1[0;T )(π0y)ψ(t)Δt + o(Δt),

respectively). Then the times of positive and negative jumps in the last coordinate, which are

the stopping times θ1 and θ2, are described by the rules

θ1
�
= inf{t |πd+1y(t) > πd+1y(0)} ∪ {T}, θ2

�
= inf{t |πd+1y(t) < πd+1y(0)} ∪ {T},

which in the case of the original initial conditions correspond to the rules (1.5) and (1.6) with

the zero intensity of the opponent. In the general case, in view of the equality t = π0y(t), the

nondeterministic transition of the system corresponding to an early termination of the game and,

hence, the value θmin = min(θ1, θ2) < T , can be described by the Lévy measure

η̂(y, ū, v̄;A)
�
= a(|πd+1y|)1[0;T )(π0y)(ϕδ(1+π0y)πd+1

+ ψδ−(1+π0y)πd+1
)(A) ∀A ∈ B(X ),

depending on z, ū = (u, ϕ), and v̄ = (v, ψ).

Let us show that the dynamics extended in this way is admissible. Once again, for T �
= R+,

we assign to each pair of controls ū = (u, ϕ), v̄ = (v, ψ) the Dirac measures P̂(ū,v̄)[
] supported

by solutions y with dynamics (3.2) generated by these controls on the entire semiaxis. For the

intensities (ϕ,ψ), we find the stopping times θ1 and θ2 and, hence, θmin. As in the preceding

section, we define for θ1, θ2 a random variable s and assign to each pair (x(·), s) ∈ D(R+,X) ×
([−1 − T ;−1] ∪ {0} ∪ [1; 1 + T ]) a path y(x(·),s)(·) ∈ D(R+,X ) by the rule (2.1). Once again, the

push-forward of the measure P̂(ū,v̄) ⊗ P(ϕ,ψ) by this mapping specifies a distribution P̂
G
(ū,v̄)[
] on
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D(T ,X ); then, the distribution P̂
all
� on D(T , Ū× V̄)×D(T ,X ) is uniquely recovered by an analog

of (2.2), i.e., by the rule

P̂
all
� (B ×D)

�
= P̂

G
(ū,v̄)[
](D)1B(ū, v̄) ∀B ∈ B(D(T , Ū× V̄)), D ∈ B(D(T ,X )).

Thus, in the extended game, for an arbitrary pair of càdlàg controls ū = (u, ϕ), v̄ = (v, ψ), we have

constructed their realization; hence, the extended dynamics is admissible. Therefore, as earlier, we

have the admissibility of the program and stepwise strategies.

3.3. Payoff function in an integral form. We define a function W : X → R by the

following rule: for any z = (t, x, s) ∈ X ,

W (z)
�
= aK(x)

(
a(|s|)σ0(x) + a(1− s)σ1(s− 1, x) + a(s− 1)σ2(1− s, x)

)
.

Note that the function W does not exceed 1 in absolute value, is independent of the zero coordinate,

and is 3L-Lipschitz because L ≥ 2.

To any path y ∈ D
(
R+,X

)
, we assign a payoff

σ̄(y)
�
=

∞∫

0

heh(T+2γ−t)1[T+2γ;∞)(π0y(t))W (y(t)) dt. (3.5)

Let us establish the following representation of the expected value of the payoff function: for

any random process with distribution P̂
G
ū,v̄[δ(0,x0,0)] ∈ P(D(R+,X )) of trajectories t 
→ y(t) =

(t, x(t), s(t)) with initial conditions x(0) ∈ K<, s(0) = 0,

EJ(x, ū, v̄)
�
= Ê

G
ū,v̄σ̄(y) = Ê

G
ū,v̄

∞∫

0

heh(T+2γ−t)1[T+2γ;∞)(π0y(t))W (y(t)) dt. (3.6)

Indeed, consider an arbitrary trajectory t 
→ y(t) = (t, x(t), s(t)) of the process. This trajectory is

defined on the entire semiaxis, but, starting from some stopping time τT , all its coordinate except

for the zero coordinate do not change anymore. This happens either upon the expiry of the time

of the game, and then τT = T and W (y(t)) = σ0(x(T )) for all t ≥ τT ; or on the initiative of

the first player, and then τT = θ1 is the first time with s(t) > 0, and z(τT ) = (τT , x(τT ), τT + 1)

and W (y(t)) = σ1(τT , x(τT )) for all t ≥ τT ; or on the initiative of the second player, and then

τT = θ2 is the first time with s(t) < 0, and W (y(t)) = σ2(τT , x(τT )) for all t ≥ τT . Since

eh(T+2γ−t)1[T+2γ;∞)(π0y(t))W (y(t)) ≡ 0 until the time T + 2γ along the same trajectory y(·), it
follows that σ̄(y) is exactly σ0(x(T )), σ1(θ1, x(θ1)), and σ2(θ2, x(θ2)) in each of these cases. Thus,

equality (3.6) is established.

Since the expected values of the payoff functions coincide in view of (3.6), the constructed game

with the extended dynamics and the initial condition (0, x∗, 0) coincides with the original game.

4. AUXILIARY MARKOV GAME

We now start to construct an approximating Markov game depending on the step h. Consider

an integer lattice Z �
= hZd+2 ∩ X with step h that has dimension d + 2 and nonnegative zero

coordinate. For the set of states, we take Z<
�
= Z ∩X<. The space of paths is the Skorokhod space

D
(
R+,Z<

)
equipped with the σ-algebra of Borel sets and the canonical filtration.
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4.1. Randomized strategies in the Markov game. We take randomized strategies as

strategies of the players.

A randomized strategy μ̄ of the first player is a pair (μ,ϕμ) of mappings taking each w ∈ Z<

to a time-dependent probability measure μ[w] on Borel subsets of U and a Borel measurable

function ϕμ[w] with values in [ϕ−;ϕ+]. A randomized strategy ν̄ of the second player is a pair

(ν, ψν) of mappings taking each w ∈ Z< to a time-dependent probability measure ν[w] on Borel

subsets of V and a Borel measurable function ϕν [w] with values in [ψ−;ψ+]. Denote the sets of all

randomized strategies of the first and second players by Ǔ� and V̌�, respectively. If an element

from Ǔ� (or V̌�) is independent of time, we will call it a stationary strategy. Denote the sets of all

stationary strategies of the first and second players by Ǔς and V̌ς , respectively, and denote by Uς

and Vς their projections, i.e., the mappings w 
→ μ[w] and w 
→ ν[w], respectively.

Define a mapping f̌ : Z< × Ǔς × V̌ς → Z< as follows: for any pair of strategies (μ̄, ν̄) ∈ Ǔς × V̌ς

and a point w ∈ Z<,

f̌(w, μ̄, ν̄)
�
=

∫

U

∫

V

f̂(w, u, ϕμ, v, ψν)μ[w](du)ν[w](dv).

We also define for any i ∈ [0 : d+ 1] the projections π+
i f̌ and π−

i f̌ of the mapping f̌ by the rules

π+
i f̌(w, μ̄, ν̄)

�
=

∫

U

∫

V

max(0, πif̂(w, u, ϕμ[w], v, ψν [w]))μ[w](du)ν[w](dv),

π−
i f̌(w, μ̄, ν̄)

�
=

∫

U

∫

V

max(0,−πif̂(w, u, ϕμ[w], v, ψν [w]))μ[w](du)ν[w](dv).

Note that we will substitute into f̌ (and into other objects) values of time-dependent randomized

strategies μ̄ and ν̄ in place of stationary randomized strategies, but in this case the argument

responsible for time will be omitted for simplicity of notation.

4.2. Dynamics of the Markov game. For all points w ∈ Z< and randomized strategies μ̄

and ν̄ of the players, we define the Itô measure η̌(w, μ̄, ν̄; ·): for all Borel subsets A ⊂ Z<,

η̌(w, μ̄, ν̄;A)
�
=

1

h

d∑
i=0

[
π+
i f̌(w, μ̄, ν̄)δhπi

(A) + π−
i f̌(w, μ̄, ν̄)δ−hπi

(A)
]

+ 1[0;Γ)(π0w)a(|πd+1w|)
[
ϕ̄[w]δ(π0w+1)πd+1

(A) + ψ̄[w]δ−(π0w+1)πd+1
(A)

]
.

For this measure, one can easily verify the following equalities, which will be needed below in the

construction of the Lévy–Khinchin generator: for all w ∈ Z<,

∫

X

[y − (πd+1y)πd+1] η̌(w, μ̄, ν̄; dy) =

∫

X

d∑
i=0

πiy η̌(w, μ̄, ν̄; dy) = f̌(w, μ̄, ν̄), (4.1)

∫

X

||y||2d η̌(w, μ̄, ν̄; dy) = h

d∑
i=0

(
π+
i f̌(w, μ̄, ν̄) + π−

i f̌(w, μ̄, ν̄)
)
. (4.2)
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The introduced measure η̌ corresponds to a continuous-time Markov chain given by the Kolmogorov

matrix (Q̄wy(μ̄, ν̄))w,y∈Z< : for all time-dependent randomized strategies μ̄, ν̄,

Q̄wy(μ̄, ν̄)
�
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/h, y = w + hπ0,

π+
i f̌(w, μ̄, ν̄)/h, y = w + hπi, i ∈ [1 : d],

π−
i f̌(w, μ̄, ν̄)/h, y = w − hπi, i ∈ [1 : d],

1[0;Γ)(π0w)a(|πd+1w|)ϕμ[w], y = w + (1 + π0w)πd+1,

1[0;Γ)(π0w)a(|πd+1w|)ψν [w], y = w − (1 + π0w)πd+1,

−
∑d

i=0(π
+
i f̌(w, μ̄, ν̄) + π−

i f̌(w, μ̄, ν̄))/h

− 1[0;Γ)(π0w)a(|πd+1w|)(ϕμ[w] + ψν [w]), y = w,

0, otherwise.

Note that, for each w ∈ Z<, both the measure η̌(w, μ̄, ν̄; ·) on the power set of Z< and the operator

corresponding to Q̄wy linearly depend on μ̄ and ν̄. Now, for any mapping q : Z< → R, from the

minimax theorem we have the equality

min
μ̄∈Ǔς

max
ν̄∈V̌ς

∑
y∈Z<

Q̄wy(μ̄, ν̄)q(y) = max
ν̌∈V̌ς

min
μ̄∈Ǔς

∑
y∈Z<

Q̄wy(μ̄, ν̄)q(y). (4.3)

For any mapping q : Z< → R, we introduce (and fix) stationary strategies μ̄↓q and ν̄↑q implementing

this minimax at each point.

4.3. Objective function and the value of the Markov game. Since all matrices Q̄wy,

similarly to the lengths of the jumps, are uniformly bounded, all assumptions of [14, Remark 4.2(b);

26, Theorem 5.1; 27, Assumptions 2.1, 2.2] are satisfied. Now, in view of [14, Proposition 3.1(a);

27, Sect. 2.3], for each pair of time-dependent randomized strategies (μ̄, ν̄) ∈ Ǔ� × V̌� and initial

conditions 
 (a probability over Z<), there are a process (Y̌ (t))t≥0 generated by them and, hence,

its distribution P̌
G
μ̄,ν̄ [
] ∈ P(D(R+,Z<)). Then each randomized strategy is admissible, and we can

assign to it a process (Y̌ (t))t≥0 with distribution

P̌
all
�

�
= δμ̄,ν̄ ⊗ P̌

G
μ̄,ν̄ [
] ∈ P(D(R+, Ǔ� × V̌�)×D(R+,Z<)).

Once again, to each element of the path space z ∈ D
(
R+,Z<

)
⊂ D

(
R+,X<

)
, we assign the

payoff σ̄(z) by the rule (3.5). For each initial position z0 ∈ Z<, the players at time 0 can provide

by the choice of the randomized strategy one of the following values depending on who of them is

informationally discriminated:

V̌+(z0) = inf
μ̄∈Ǔ�

sup
ν̄∈V̌�

Ě
all
z0

∞∫

0

heh(T+2γ−t)1[T+2γ;∞)(π0z(t))W (z(t)) dt,

V̌−(z0) = sup
ν̄∈V̌�

inf
μ̄∈Ǔ�

Ě
all
z0

∞∫

0

heh(T+2γ−t)1[T+2γ;∞)(π0z(t))W (z(t)) dt.

Moreover, as follows from [14, Theorem 5.1; 26, Theorem 2], the system of equations (see [14, (5.4);

26, (11)])

inf
μ̄[w]

sup
ν̄[w]

∑
y∈Z<

Q̄wy(μ̄, ν̄)V̌(y) = h(V̌(w) − eh(T+2γ)1[T+2γ;∞)(π0w)W (w))
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= sup
ν̄[w]

inf
μ̄[w]

∑
y∈Z<

Q̄wy(μ̄, ν̄)V̌(y), w ∈ Z<,

has a unique solution in view of equality (4.3), and this solution coincides with V̌ �
= V̌− = V̌+.

Note that, by the construction of the matrix Q̄, there are at most 2d + 4 nonzero terms in each

equation of the system. Moreover, in the case π0y ≥ Γ, the value V̌(y) is calculated explicitly and

equals eh(T+2γ−π0w)W (w). Thus, this system reduces to a system of a finite number of equations.

4.4. Optimal stationary strategies. It follows from [26, (6); 14, (5.5)–(5.7)] that any

stationary strategies μ̄opt and ν̄opt that solve for all w ∈ Z< the system

h(V̌(w) − eh(T+2γ)1[T+2γ;∞)(π0w)W (w)) = max
ν̄∈V̌ς

∑
y∈Z<

Q̄wy(μ̄
opt, ν̄)V̌(y),

h(V̌(w) − eh(T+2γ)1[T+2γ;∞)(π0w)W (w)) = min
μ̄∈Ǔς

∑
y∈Z<

Q̄wy(μ̄, ν̄
opt)V̌(y)

are optimal in this problem. Thus, now we can take μ̄opt ≡ μ̄↓V̌ and ν̄opt ≡ ν̄↑V̌ as optimal

strategies; moreover, we can choose them so that they take values among Dirac measures over Û

and V̂, respectively. In this case, the second component in μ̄opt = (uopt, ϕopt) is uniquely recovered

by the rule

ϕopt[w] =

⎧⎨
⎩

ϕ−, V̌(w + πd+1(1 + π0w)) > V̌(w),

ϕ+, V̌(w + πd+1(1 + π0w)) < V̌(w)

if |πd+1w| < 1, π0w ∈ [0; Γ), and V̌(w+πd+1(1+π0w)) �= V̌(w) and can be arbitrary if at least one

of these conditions does not hold. A similar property holds for ν̄opt = (vopt, ψopt).

4.5. Estimates for the zero coordinate, which is independent of the players’ actions.

Fix some z0 ∈ Z< with π0z0 = 0 and the Dirac measure 
 supported at this point. Then, for

arbitrary, possibly, time-dependent randomized strategies of the players μ̄ and ν̄, there exists a

distribution P̌
all
δz0

of the process (Y̌ (t))t≥0 that linearly depends on this Dirac measure. For simplicity

of notation, we assume until the end of this section that P̌
�
= P̌

all
δz0

.

Note that, regardless of the players’ actions, the process π0Y̌ (t) has independent increments,

and the random variables π0(Y̌ (t0 + t)− Y̌ (t))/h have Poisson distribution with parameter t/h; in

particular, their expected value and dispersion are t/h. Then Ě|π0Y̌ (t) − t|2 = ht; in particular,

for t = T + 2γ,

Ě|π0Y̌ (T + 2γ)− (T + 2γ)|2 ≤ (T + 2γ)h
(3.1)

≤ 2hT.

Finally, since π0Y̌ (t)− t is also a martingale, it follows by Doob’s inequality that

Ě max
t∈[0;T+2γ]

|π0Y̌ (t)− t|2 ≤ 4Ě|π0Y̌ (T + 2γ)− (T + 2γ)|2 ≤ 8hT
(3.1)

≤ 2γ2. (4.4)

Now, let us consider the random variable ξ = π0Y̌ (Γ)/h, which has Poisson distribution with

parameter Γ/h. According to the Chernoff bound (a variant of Markov’s inequality), for any

negative δ, we have

P̌(ξ ≤ T
h ) ≤

Ěeδξ

eδ
T
h

= e
Γ
h (e

δ − 1)e−δ T
h .
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The equality sign here is due to the substitution of the value of the probability generating function

(at the point δ) for the Poisson distribution with parameter Γ/h. Now, using the inequalities

eδ − 1 ≤ δ + δ2/2 and δ < 0 and substituting δ = −γ/Γ, T = Γ − γ, and γ =
√

−2hT ln(hT ), we

finally obtain

P̌(π0Y̌ (Γ) ≤ T ) ≤ e
Γ
h (

γ2

2Γ2 − γ
Γ) +

γT
hΓ = e

γ
h(

γ
2Γ − 1 + Γ−γ

Γ ) = e−
γ2

2hΓ = e
T ln(hT )

Γ = e
ln(hT )
1+γ/T .

Similarly, for P̌(π0Y̌ (Γ + γ) ≤ Γ) and δ = −γ/(Γ + γ), we have

P̌(π0Y̌ (Γ + γ) ≤ Γ) ≤ e
Γ+γ
h ( γ2

2(Γ+γ)2
− γ

Γ+γ ) +
γΓ

h(Γ+γ) = e
γ
h(

γ
2(Γ+γ) − 1 + Γ

Γ+γ ) = e
ln(hT )
1+2γ/T .

Once again, using γ =
√

−2hT ln(hT ) < T/2 and 2
√
hT ≤ γ (see (3.1)), we obtain

P̌(π0Y̌ (Γ) ≤ T ) + P̌(π0Y̌ (Γ + γ) ≤ Γ) ≤ e
ln(hT )
1+γ/T + e

ln(hT )
1+2γ/T < 2

√
hT ≤ γ. (4.5)

4.6. Estimates for the trajectories in the Markov game. In this section we derive an

analog of the estimate [2, Lemma 12] on required classes of strategies.

Fix some pair of randomized strategies μ̄ = (μ,ϕμ), ν̄ = (ν, ψν) and, hence, the distribution

P̌
�
= P̌

all
� and the Itô measure η(z; ·) �

= η̌(z, μ̄, ν̄; ·). This Itô measure corresponds to a Lévy–

Khinchin generator (see [16, (5.1); 27, (2.14)]), which takes each function g ∈ C2
c (Z<) to a mapping

x 
→ Λ̌g(x) by the rule

Λ̌g(x) =

∫

X

[g(x+ y)− g(x)]η(x; dy) ∀x ∈ Z<. (4.6)

Note that all the numbers η(x;X) are bounded uniformly in x, the supports of the measures

η(x; ·) are uniformly bounded, and η(x;G) ≡ 0 for some neighborhood G of zero. Thus, the

conditions [27, Assumptions 1, 2] are satisfied, and we have Dynkin’s formula [27, Proposition 2.3]:

Ě

(
g(Ŷ (t))−

t∫

r

Λ̌g(Y̌ (s)) ds
∣∣∣ Y̌ (r)

)
= Ěg(Y̌ (r)) (4.7)

for all g ∈ C2
c (Z<) and all nonnegative t and r (t ≥ r); i.e., the process

g(Y̌ (t))−
t∫

r

Λ̌g(Y̌ (s)) ds (4.8)

is a martingale. By the uniform boundedness of the supports of the Itô measure, Dynkin’s

formula (4.7) also holds for all g ∈ C2(X ), since these functions can always be assumed to be

zero outside a compact neighborhood of the union of all supports.

Now, let strategies μ̄ = (μ,ϕμ) and ν̄ = (ν, ψν) be stepwise with some partition (tk)k∈N.

Since such a strategy is admissible, we once again we have a distribution P̌
all
� . Fix some time

t′
�
= tk−1 from the partition and an element w′ ∈ X , which can depend on Y̌ (t′). Now, on the

interval [t′; t′′)
�
= [tk−1; tk), the strategy μ̄ = (μ,ϕμ), ν̄ = (ν, ψν), as a program strategy with a
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possible dependence on Y̌ (·)|[0;t′), also has its Lévy–Khinchin generator (4.6), for which Dynkin’s

formula (4.7) holds.

Denote by E
all
y′ the conditional expected value with respect to y′ = Y̌ (t′). Applying the

constructed generator (4.6) to the function g(w)
�
= ||w − w′||2d on the interval [t′; t′′), we conclude

that, according to (4.8),

g(Y̌ (t)) +

t∫

tk

[ d∑
i=0

2πif̌(Y̌ (s), μ̄, ν̄)πi(Y̌ (s)− w′)−
∫

Z<

||y||2d η(Y̌ (t); dy)

]
ds (4.9)

is a martingale; therefore, for all t ∈ [t′; t′′),

Ě
all
y′ g(Y̌ (t)) − g(y′) = Ě

all
y′

t∫

t′

[ ∫

Z<

||y||2d η(Y̌ (s); dy) −
d∑

i=0

2πif̌(Y̌ (s), μ̄, ν̄)πi(Y̌ (s) − w′)

]
ds.

Thus,

Ě
all
y′ g(Y̌ (t))− g(y′) ≤ Ě

all
y′

t∫

t′

[
2||f̌(Y̌ (s), μ̄, ν̄)||d

√
g(Y̌ (s)) +

∫

Z<

||y||2d η(Y̌ (s); dy)

]
ds. (4.10)

Define M
�
=

√
hL

√
d+ 1 + L2. Estimate the doubled product in (4.10) by the sum of squares.

By the boundedness of (4.1) and (4.2) in the norm by the numbers L and hL
√
d+ 1, we have

Ě
all
y′
(
g(Y̌ (t))− g(y′)

)
≤ M2(t− t′) +

t∫

t′

Ě
all
y′ g(Y̌ (s)) ds.

Hence, by Gronwall’s inequality, we have

Ě
all
y′ g(Y̌ (t)) ≤ (M2 + g(y′))et−t′ −M2 (4.11)

for all t ∈ [t′; t′′); i.e.,

e−t
Ě
all
y′ (g(Y̌ (t)) +M2) ≤ e−t′(g(y′) +M2) = e−t′(g(Y̌ (t′)) +M2).

Thus, on any interval [t′; t′′)
�
= [tk−1; tk) of the partition, the process

e−t(||Y̌ (t)− w′||2 +M2) (4.12)

becomes a supermartingale. Since a stepwise strategy is switched only at times specified in

advance, adding over all intervals of the partition, we obtain the supermartingale (4.12), as well as

inequality (4.11), for all t ≥ t′. Moreover, for w′ = y′ = Y̌ (t′), (4.11) implies

Ě
all
y′ ||Y̌ (t)− y′||d ≤ M

√
et−t′ − 1. (4.13)

By ||f̌ ||d ≤ L and the upper bound hL
√
d+ 1 for the norm of (4.2), we find from (4.10) that

Ě
all
y′ g(Y̌ (t))− g(y′)

(4.10)

≤ Ě
all
y′

t∫

t′

[
2L

√
g(Y̌ (s)) + hL

√
d+ 1

]
ds
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for all t from the partition interval [t′; t′′). Substituting estimate (4.13) here for w′ = y′ = Y̌ (t′),

we obtain

Ě
all
y′ ||Y̌ (t)− y′||2d

(4.10)

≤ Ě
all
y′

t∫

t′

[
2L

√
g(Y̌ (s)) + hL

√
d+ 1

]
ds

(4.13)

≤ hL
√
d+ 1|t− t′|+ 2L

t∫

t′

M
√

es−t′ − 1 ds

= hL
√
d+ 1|t− t′|+ 4LM(

√
et−t′ − 1− arctan

√
et−t′ − 1)

≤ hL
√
d+ 1|t− t′|+ 4LM(et−t′ − 1)3/2/3, (4.14)

where we have used arctan x ≥ x− x3/3 in the last inequality. Thus, by (4.14), we have

Ě
all
Y̌ (t′)||Y̌ (t)− Y̌ (t′)||2d ≤ hL

√
d+ 1|t− t′|+ 4L

√
hL

√
d+ 1 + L2(et−t′ − 1)3/2/3 (4.15)

for any t ∈ [t′; t′′), where [t′; t′′) is an arbitrary interval from the partition chosen for the stepwise

strategy.

Finally, since the functions g under consideration are independent of the last coordinate, the

calculations and the resulting inequalities are independent of the choice of ϕμ and ϕν .

5. SCHEME OF THE GUIDE AND A DOUBLE GAME

We take the product X
�
= X<×Z< for the state space of a new game; then, the state of paths is

the Skorokhod space D(R+,X<×Z<). The component X< contains the original game; the game on

the component Z< (except for the last coordinate) is calculated by the first player, and its position

is the guide that helps to construct a strategy in X<. The sets of control parameters of the players

are Υ1
�
= U× Ǔς ×Vς and Υ2

�
= V̄. Then all possible joint instantaneous controls compose the set

Υ
�
= U× Ǔς×Vς× V̄. In order to describe an admissible dynamics of the double game, we construct

for each program strategy υ(·) �
= (u, μ, ϕ, ν, v, ψ)(·) ∈ D(R+,Υ) a distribution P̃

G
υ [
] that depends

linearly on the initial condition 
 ∈ P(X). Assuming a linear dependence on 
, we can restrict

ourselves to the case where 
 is a Dirac measure, supported at some point (x, z) ∈ X< ×Z<.

Let us first construct auxiliary processes (Ŷt)t≥0 and (Y̌t)t≥0. For this we consider on X< the

dynamics P̂
G
(u,0,v,ψ)[δx](·) of a differential game with zero intensity of the first player in the last

coordinate, and for Z< we introduce the dynamics P̌
G
(μ,ϕ,ν,0)[δz ](·) of a Markov game with zero

intensity of the second player in the last coordinate. Both dynamics are admissible, and there

exist the corresponding processes (Ŷt)t≥0 and (Y̌t)t≥0. Since πd+1Ŷ and πd+1Y̌ are governed by

the intensities ψ and ϕ, respectively, we can define θ̂2 and θ̌1 as the stopping times of the game

by virtue of each players and, hence, the stopping time θmin
�
= min(θ̌1, θ̂2). Further, each pair

of trajectories (Ŷt, Y̌t)t≥0 together with the stopping times θ̂2 and θ̌1 corresponds to a trajectory

(ŵ, w̌)(·) ∈ D([0;∞),R2) according to the following rules: (ŵ, w̌) ≡ (0, 0) for θmin ≥ T ;

(ŵ, w̌) ≡ (πd+1Ŷt)
(
1,

1 + π0Y̌θ̂2

1 + θ̂2

)
and (ŵ, w̌) ≡ (πd+1Y̌t)

( 1 + θ̌1

1 + π0Y̌θ̌1

, 1
)
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for θmin = θ̂2 < T and θmin = θ̌1 < T , respectively.

Finally, we define the process (Y ′(t), Y ′′(t))t≥0 with values in X< ×Z< as the push-forward of

the process (Ŷt, Y̌t, (ŵ, w̌)(t))t≥0 by the nonanticipating mapping

(ŷt, y̌t, (ŵ, w̌)(t)) 
→
(
y′(t)

�
= (π0ŷt, . . . , πdŷt, ŵ(t)), y

′′(t)
�
= (π0y̌t, . . . , πdy̌t, w̌(t))

)
.

The resulting process specifies a dynamics for each joint program strategy from D(R+,Υ). Thus,

an admissible dynamics is constructed.

Let us mention some properties of the process. First, the dynamics in each component with

respect to all coordinates except for the last one completely coincides with the dynamics described

earlier for the extended original game and the Markov game. Second, in each component, the

lengths of the jumps and their intensities up to the time min{t |π0Y ′′(t) ≥ Γ} ∪ {T} obey the

same Lévy measures as in the mentioned games. Third, before the time T , the last coordinates

in each component, being zero at the initial moment, become nonzero only simultaneously. Thus,

the nondeterminacy of the component Y ′(t) is completely described by the nondeterminacy of the

last coordinate of the component Y ′′(t); hence, for the computation of the last coordinate of the

component Y ′′(t), we do not need to know the intensity of the second player during the game, since

this coordinate can change only simultaneously with the termination of the game. Finally, this

means that the control of the second player can be given in the format of the control of the original

game, which has been done by the choice of Υ1 = U× Ǔς × Vς , Υ2 = V̄.

5.1. Aiming. Constructing the strategy of the first player and the response of the second

player imagined by the first player, we will need to aim at and deviate from positions on each

component. Let us introduce required functions.

First note that, in view of (1.2), for any vectors x,w ∈ X , there exist controls uto w(x) ∈ U and

vfromw(x) ∈ V such that

min
u∈U

max
v∈V

〈x− w, f̂(x, u, ϕ, v, ψ)〉 = max
v∈V

min
u∈U

〈x− w, f̂(x, u, ϕ, v, ψ)〉

= min
u∈U

〈x− w, f̂(x, u, ϕ, vfromw(x), ψ)〉 = max
v∈V

〈x− w, f̂(x, uto w(x), ϕ, v, ψ)〉

for all (ϕ,ψ) ∈ [ϕ−;ϕ+]× [ψ−;ψ+]. For any vector w ∈ X , we introduce a control of the first player

by the rule

X 	 x 
→ ūto w(x)
�
= (uto w(x), ϕopt[w]) ∈ Ū.

For all x,w ∈ [0;T ) × R
d+1, since f̂ is Lipschitz, we have

〈x− w, f̂(x, uto w(x), ϕ, vfromw(x), ψ) − f̂(w, uto x(w), ϕ, vfrom x(w), ψ)〉

= min
u∈U,v′∈V

max
v∈V,u′∈U

〈x− w, f̂(x, u, ϕ, v, ψ) − f̂(w, u′, ϕ, v′, ψ)〉 ≤ 3L||x−w||2d,

where the inequality holds due to the substitution u = u′, v′ = v.

In order to define the behavior of the second player on the component Z<, we assign for each

x ∈ X a stationary randomized strategy of the second player in the form

Z< 	 w 
→ ν̄fromx[w] = (δvfrom x(w), ψ
opt).
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Then, for any stationary randomized strategy μ̄ of the first player, we have

〈x−w, f̌ (w, μ̄, ν̄fromx)〉 ≥ min
μ̄∈Ǔς

〈x− w, f̌(w, μ̄, ν̄fromx)〉

(1.2)
= min

ū∈Ū
max
v̄∈V̄

〈x− w, f̂(w, ū, v̄)〉 = 〈x− w, f̌ (w, ūto x, v̄from x)〉.

Therefore, for all v̄, μ̄, ϕ, and ψ in the case x,w ∈ [0;T )× R
d+1 we have

〈x− w, f̂(x, uto x(w), ϕ, v̄)− f̌(w, μ̄, ν̄fromw(x))〉

≤ 〈x− w, f̂(x, uto x(w), ϕ, vfrom x(w), ψ) − f̌(w, μ̄to w, ν̄fromw)〉 ≤ 3L||x− w||2d.
Fix some pair of (x′, w′) ∈ X × Z<. Consider a mapping Rx′,w′ : X × X → R+ independent of

the (d+ 1)th coordinates of its arguments and given by the rule

R̂x′,w′(x) =

d∑
i=0

(πix
′ − πiw

′)(πix− πix
′) ∀x ∈ X . (5.1)

To obtain an analog of (4.9), to each stationary strategy μ̄ we assign the generator (4.6) corre-

sponding to the joint stationary strategy (μ̄, ν̄fromx′
(w′)) for the function g(w)

�
= Rw′,x′(w):

Λ̌[μ̄, ν̄fromx′
(w′)]Rw′,x′(w) =

d∑
i=0

(πiw
′ − πix

′)πif̂(w, μ̄, ν̄
fromx′

) = −〈x′ − w′, f̂(w, μ̄, ν̄fromx′
)〉.

Now, for x,w, x′, w′ ∈ [0;T ] × R
d+1, since f̂ is Lipschitz, we have

Λ̌[μ̄, ν̄fromx′
(w′)]Rw′,x′(w) ≤ −〈x′ − w′, f̂(w′, μ̄, v̄fromx′

)〉+ 3L||w − w′||d ||x′ − w′||d. (5.2)

For any solution t 
→ y(t) of system (3.3) generated by the joint control (ū, v̄), we have

dg(y(t))

dt
−

〈∂g(x)
∂x

∣∣∣
x=y(t)

, f̂(y(t), ū(t), v̄(t))
〉
= 0

for any smooth function g. Hence, similarly to (4.9), for Λ̂[ū, v̄]g(x)
�
=

〈∂g(x)
∂x

|x=y(t), f̂(x, ū, v̄)
〉
,

the process

g(Y ′(t))−
t∫

t0

Λ̂[ū, v̄]g(Y ′(s)) ds (5.3)

for all smooth functions g : X → R independent of the last coordinate becomes a martingale; in

particular, we have Dynkin’s formula (4.7). In addition, we have

Λ̂[ūto w′
(x′), v̄]Rx′,w′(x) =

d∑
i=0

(πix
′ − πiw

′)πif̂(x, ū
to w′

(x′), v̄)

= 〈x′ − w′, f(x, ūto w′
(x′), v̄)〉 ≤ 〈x′ − w′, f(x′, ūto w′

(x′), v̄)〉+ 3L||x− x′||d ||x′ − w′||d (5.4)

in the case x,w, x′, w′ ∈ [0;T ] × R
d+1. Adding (5.4) and (5.2), we obtain for all such x, w, x′,

and w′ and any μ̄ ∈ Ǔς , v̄ ∈ V̄ the estimate

Λ̂[ūto w′
(x′), v̄]Rx′,w′(x) + Λ̌[μ̄, ν̄fromx′

]Rw′,x′(w) ≤ 3L

2

(
4||x′ − w′||2d + ||x− x′||2d + ||w − w′||2d

)
.

(5.5)
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5.2. Construction of a guide for the first player. Suppose that the first player learns

the position of the trajectory x(·) of the real game at some times (tk)k∈N given in advance. We

assume that this sequence of times is increasing, t0 = 0, and some tk equals T . For this sequence

of times, we define the fineness of the partition r
�
= maxk∈N,tk≤T |tk − tk−1| and the mapping

R+ 	 t 
→ τΔ(t)
�
= max{ti | ti ≤ t}.

Let us describe a stepwise strategy of the first player for the chosen partition (tk)k∈N.

Let the first player apply an optimal stationary strategy μopt at each time on the component Z<;

in particular, let the first player use ϕopt[z(t)] as their intensity of termination of the game. Then

this player uses ϕopt[z(t)] on the first component as well, i.e., in the real game.

Let the first player try to minimize the distance from z(·) to x(·) on the first, real, component

as follows: on the interval [tk−1; tk), this player uses a control that is best (at the time tk−1)

for the shift of x to z(tk−1). Thus, the first player applies the following rule: R+ 	 t 
→
(uto z(τΔ(t))(x(τΔ(t)), μ

opt[z], ϕopt[z]) ∈ Υ1
�
= U × Ǔς . Further, within the subgame calculated by

the first player on Z<, let the second player as imagined by the first try to maximize the distance

from z(·) to x(·), applying a stationary strategy that is worst for the shift of z towards x(τΔ(t)).

Then, however, the strategy R+ 	 t 
→ νfromx(τΔ(t)), which depends nonanticipatingly on x and

stationarily on z, is used as ν. Thus, the following strategy of the first player is specified: at each

time,

υ̃t[x, z] = (uto z(τΔ(t))(x(τΔ(t))), μ
opt[z], ϕopt[z], νfrom x(τΔ(t))) ∈ Υ1. (5.6)

Since this strategy is stepwise, it is admissible.

Now, having all the required constructions, we can proceed to proving the theorem.

6. PROOF OF THEOREM 1

Assume that the second player has all information about the strategy of the first player; in

particular, the first player knows both the rule (5.6) and the position x and z at each moment t

and, hence, knows the trajectory of the double game of the first player realized in the course of the

game. Fix an arbitrary counterstrategy of the second player, which assigns in a nonanticipating

way to each trajectory (x, z)(·) of the double game a distribution Q̃
II[P̃I](x,z)(·) on the Skorokhod

space D(R+,U × Ǔς × Vς × V̄) such that its projection onto D(R+,U × Ǔς × Vς) coincides with

the distribution P̃
I chosen by the first player together with the rule (5.6). In particular, for the

counterstrategy Q̃
II, we could take an arbitrary element QII from QII, i.e., a counterstrategy of the

original game; in this case, the above mapping would not depend on z.

Fix initial conditions (x0
�
= (0, x∗, 0), z0 = (0, y0, 0)) such that ||x∗ − y0||2 ≤ 7L2γ2e−12LT

and y0 ∈ hRd. For this it is sufficient (see (3.1)) to choose as y0 the element from hZd nearest

to x∗. For the strategy P
I of the first player, we take the described stepwise strategy and fix an

arbitrary realization P̃
all
δ(x0,z0)

of the resulting joint strategy P̃
I+II. Thus, we have specified both

the probability P̃
χ
δ(x0,z0)

, which tracks only the position of the system, and the realization P̂
all
δx0

not

containing the guide. In particular, if the second player chooses the counterstrategy Q
II = Q̃

II

among the counterstrategies of the original game, the distribution P̂
all
δx0

becomes a realization of

some joint strategy from Q
II[PI].

Since the initial position is fixed, we will omit the corresponding lower indices.
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6.1. Divergence of trajectories. Define a stopping time τ
�
= min{t |π0Y ′′(t) ≥ T} ∪ {T}

and consider two consecutive times tk−1 and tk from the partition and, together with them, stopping

times t′
�
= min(tk−1, τ) and t′′

�
= min(tk, τ). On the interval [t′; t′′), the first player implements

a constant control (ūto w′
(x′), μ̄opt, νfromx′

), where x′ = Y ′(t′) and w′ = Y ′′(t′). Disintegrating

P̃
χ over x′ = Y ′(t′) and w′ = Y ′′(t′), we consider for all x′ ∈ X and w′ ∈ Z< the corresponding

conditional expected value Ẽ
χ
t′,x′,w′ of the difference ||Y ′′(t′′)− Y ′(t′′)||2d − ||Y ′′(t′)− Y ′(t′)||2d.

From the definitions of Rx′,w′ and Rw′,x′ (see (5.1)) and the chain of equalities

||w − x||2d − ||w − x+ x′ − w′||2d = −2
d∑

i=0

πi(x
′ − w′)πi(w − x)− ||x′ − w′||2d

= 2

d∑
i=0

πi(x
′ − w′)πi(x− x′ + w′ − w) + ||x′ −w′||2d = 2Rx′,w′(x) + 2Rw′,x′(w) + ||x′ − w′||2d,

we have the inequality
(
||x−w||2d − ||x′ −w′||2d

)
/2 ≤ ||x−x′||2d + ||w−w′||2d +Rx′,w′(x)+Rw′,x′(w).

Putting S(x,w, x′, w′)
�
= ||x− x′||2d +Rx′,w′(x) +Rw′,x′(w) + ||w − w′||2d, we get

Ẽ
χ
t′,x′,w′ ||Y ′(t′′)− Y ′′(t′′)||2d ≤ ||x′ − w′||2d + 2Ẽχ

t′,x′,w′S(Y
′(t′′), Y ′′(t′′), x′, w′). (6.1)

Let us estimate the expected values of R and S. Substituting the stopping time t′′, since (4.8)

and (5.3) are martingales, we obtain

Ẽ
χ
t′,x′,w′Rx′,w′(Y ′(t′′)) = Ẽ

χ
t′,x′,w′

t′′∫

t′

Λ̂[ūtow
′
(x′), v̄]Rx′,w′(Y ′(s)) ds,

Ẽ
χ
t′,x′,w′Rw′,x′(Y ′′(t′′)) = Ẽ

χ
t′,x′,w′

t′′∫

t′

Λ̌[μ̄opt, v̄fromx′
(w′)]Rw′,x′(Y ′′(s)) ds.

Adding and using inequality (5.5), we get

Ẽ
χ
t′,x′,w′

(
Rx′,w′(Y ′(t′′)) +Rw′,x′(Y ′′(t′′))

)

= Ẽ
χ
t′,x′,w′

t′′∫

t′

[
Λ̂[ūtow

′
(x′), v̄]Rx′,w′(Y ′(s)) + Λ̌[μ̄opt, v̄from x′

(w′)]Rw′,x′(Y ′′(s))
]
ds

≤ 3L

2

t′′∫

t′

Ẽ
χ
t′,x′,w′

(
4||x′ − w′||2d + ||Y ′(s)− x′||2d + ||Y ′′(s)− w′||2d

)
ds.

Thus, the following inequality holds for S:

Ẽ
χ
t′,x′,w′

[
S(Y ′(t′′), Y ′′(t′′), x′, w′)− ||Y ′(t′′)− x′||2d − ||Y ′′(t′′)− w′||2d

]

≤ 3LẼχ
t′,x′,w′

t′′∫

t′

(
2||x′ − w′||2d +

||Y ′(s)− x′||2d + ||Y ′′(s)− w′||2d
2

)
ds.
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By the estimates (3.4) and (4.15), we have

Ẽ
χ
t′,x′,w′ ||Y ′(t)− x′||2d

(3.4)

≤ L2(tk−1 − tk)
2,

Ẽ
χ
t′,x′,w′ ||Y ′′(t)− w′||2d

(4.15)

≤ L(t− tk−1)
(
h
√
d+ 1 +

4M(et−tk−1 − 1)3/2

3(t− tk−1)

)

for all t ∈ [tk−1; tk], where M2 = hL
√
d+ 1 + L2. For Ẽ

χ
t′,x′,w′S(Y ′(t′′), Y ′′(t′′), x′, w′), let us

substitute the stopping time t′′ ≤ t′ + tk−1 − tk as t and define the function g(r)
�
= (h

√
d+ 1 +

4M(er − 1)3/2/3r + Lr)(1 + Lr)/6, where r = maxti≤T (ti − ti−1). Then

Ẽ
χ
t′,x′,w′S(Y

′(t′′), Y ′′(t′′), x′, w′) ≤ 6L(t′′ − t′)||x′ − w′||2d + 6L(tk − tk−1)g(r).

Now, returning to (6.1), we obtain

Ẽ
χ
t′,x′,w′||Y ′(t′′)− Y ′′(t′′)||2d ≤ (1 + 12L(tk − tk−1))Ẽ

χ
t′,x′,w′||Y ′(t′)− Y ′′(t′)||2d + 12L(tk − tk−1)g(r).

Integrating the resulting estimate over all t′ = min(tk−1, τ) and (x′, w′) = (Y ′(t′), Y ′′(t′)), we get

Ẽ
all
[
||Y ′(t′′)− Y ′′(t′′)||2d − e12L(tk−tk−1)||Y ′(t′)− Y ′′(t′)||2d

]
≤ 12L(tk − tk−1)g(r);

now, substituting t′ = min(tk−1, τ) and t′′ = min(tk, τ), we obtain

Ẽ
all||Y ′(min(tk, τ))− Y ′′(min(tk, τ))||2d

≤ e12L(tk−tk−1)Ẽ
all||Y ′(min(tk−1, τ)) − Y ′′(min(tk−1, τ))||2d + 12L(tk − tk−1)g(r)e

12L(tk−tk−1).

Since this is true for all intervals [ti−1; ti), multiplying by e12L(tk−ti), we also obtain

e12L(tk−ti)Ẽ
all||Y ′(min(ti, τ))− Y ′′(min(ti, τ))||2d

≤ e12L(tk−ti−1)Ẽ
all||Y ′(min(ti−1, τ))− Y ′′(min(ti−1, τ))||2d + 12L(ti − ti−1)g(r)e

12L(tk−ti−1).

Successively substituting these inequalities into each other, we get

Ẽ
all||Y ′(min(tk, τ))− Y ′′(min(tk, τ))||2d

≤ e12Ltk Ẽall||Y ′(0)− Y ′′(0)||2d + 12Lg(r)

k∑
i=1

(ti − ti−1)e
12L(tk−ti−1);

replacing here the sum over lower rectangles for the integral, we obtain

Ẽ
all||Y ′(min(tk, τ))− Y ′′(min(tk, τ))||2d ≤ e12Ltk Ẽall||Y ′(0) − Y ′′(0)||2d + g(r)(e12Ltk − 1)

for all natural k. Now, from ||Y ′(0) − Y ′′(0)||2d ≤ 7L2e−12LT γ2, since T belongs to the partition,

we finally derive

Ẽ
all
t′ ||Y ′(min(T, τ)) − Y ′′(min(T, τ))||2d ≤ 7L2γ2 + e12LT g(r). (6.2)

Recall that, as shown in (4.4),

Ẽ
all|T − τ |2 ≤ Ẽ

all max
t∈[0;T+2h]

|π0Y ′(t)− π0Y
′′(t)|2 ≤ 2γ2. (6.3)
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Then the estimate (3.4) implies

Ẽ
all||Y ′(T )− Y ′(min(T, τ))||d ≤ 3

√
2Lγ. (6.4)

Further, recall that e−t(||Y̌ (t) − w′||2d + M2) is a supermartingale for M2 = hL
√
d+ 1 + L2

(see (4.12)). Then, for the stopping times min(T, τ) and T + 2γ, we have the inequality

e−T−2γ(1 + Ẽ
all||Y ′′(T + 2γ) − Y ′′(min(T, τ))||2d/M2) ≤ Ẽ

alle−min(T,τ).

Estimating its right-hand side by means of

Ẽ
alle−min(T,τ) = e−T

Ẽ
all[1 + emax(0,T−τ) − 1] ≤ e−T + Ẽ

allmax(0, T − τ)
(6.3)

≤ e−T +
√
2γ

and putting H(γ)
�
= (hL

√
d+ 1 + L2)γe2γ(2 +

√
2eT ), we obtain

e−T−2γ(1 + Ẽ
all||Y ′′(T + 2γ)− Y ′′(min(T, τ))||2d/M2) ≤ e−T +

√
2γ

and

Ẽ
all||Y ′′(T + 2γ)− Y ′′(min(T, τ))||2d ≤ M2(e2γ − 1 +

√
2eT+2γγ) ≤ H(γ).

Together with (6.2) and (6.4), since
√
7 + 3

√
2 < 7, we get

Ẽ
all||Y ′(T )− Y ′′(T + 2γ)||d ≤ 7Lγ +

√
H(γ) + e6LT

√
g(r). (6.5)

6.2. Divergence of payoffs. Denote by A the event

(π0Y
′′(T + 2γ) > T + γ)& (π0Y

′′(T + γ) > T )& (σ̄(Ŷ ) ≡ σ̄(Y ′));

here Ŷ (·) is the trajectory of the original game. Note that Ŷ (·) can differ from Y ′(·) only on [T ;∞)

and only because of a jump of Y ′ in the last coordinate. Jumps are impossible after the stopping

time τ ′ = min{t |π0Y ′′(t) > T + γ}. Since the intensities of the players do not exceed L, we find

that the probability of such a jump does not exceed

2L(γ + Ẽ
all|τ ′ − T |) < 2Lγ + 2LẼall max

t∈[0;T+2γ]
|π0Y ′′(t)− t|

(6.3)

≤ 2L(1 +
√
2)γ;

consequently, the probability of the event (σ̄(Ŷ ) �= σ̄(Y ′)) is not greater either. On the other hand,

(4.5) implies P̃
all((π0Y

′′(T + 2γ) > T + γ)& (π0Y
′′(T + γ) > T )) ≥ 1 − γ. Since L ≥ 2 and the

absolute values of the functions W and σ̄ are bounded by 1, we have

P̃
all( notA) Ẽall

(
|σ̄(Ŷ )− σ̄(Y ′′)|

∣∣ notA) ≤ 2L(3 + 2
√
2)γ ≤ 6L2γ. (6.6)

Consider a trajectory for which the event A is true. Recall that Ŷ (t) = Y ′(t) = Y ′(tT ) and

Y ′′(t) = Y ′′(tT ) for all t ≥ tT
�
= sup{t |π0Y ′′(t) < T + γ} ∪ {T}. Now, for the trajectory of the

process in the case of the event A, we have

σ̄(Y ′′) =

∞∫

0

heh(T+2γ−t)1[0;T+2γ)(t)W (Y ′′(t)) dt = W (Y ′′(T + 2γ)),

σ̄(Ŷ ) =

∞∫

0

heh(T+2γ−t)1[0;T+2γ)(t)W (Y ′(t)) dt = W (Y ′(T + 2γ)).
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In addition, in the case of A, a jump in the last coordinate may occur no more than once, and it

occurs simultaneously in both components by the distance 1 + π0Y
′ and 1 + π0Y

′′, respectively.

Hence, it follows from (6.3) that

Ẽ
all max

t∈[0;T+2γ]
|πd+1(Y

′(t)− Y ′′(t))|2 ≤ 2γ2,

whence, in particular, P̃all(A)Ẽall
(
|πd+1(Y

′(tT ) − Y ′′(tT ))|
∣∣A) ≤

√
2γ ≤ Lγ. Then in view of the

3L-Lipschitzness of the mapping y 
→ W (y), it follows from (6.5) that

P̃
all(A)Ẽall

(
|σ̄(Ŷ )− σ̄(Y ′′)|

∣∣A) ≤ 3L(8Lγ +
√

H(γ) + e6LT
√

g(r)).

Together with (6.6), this gives

Ẽ
all|σ̄(Ŷ )− σ̄(Y ′′)| ≤ 3L(10Lγ +

√
H(γ) + e6LT

√
g(r)). (6.7)

Recall that, by the construction of the double game, Y ′′ is the process generated in the Markov

game in which the first player uses on each interval [tk−1; tk) the strategy μ̄opt ≡ μ̄↓V̌ . Then

V̌(Y ′′(t)) becomes a supermartingale on each of these intervals; i.e.,

Ě
all(V(Y ′′(tk))|Y ′′(tk−1)) ≤ V(Y ′′(tk−1)).

Uniting over all intervals, we find that V̌(z0) ≥ Ẽ
allσ̄(Y ′′); i.e., by (6.7),

V̌(z0) ≥ Ẽ
allσ̄(Ŷ )− 30L2γ − 3L

√
H(γ)− 3Le6LT

√
g(r)

for any actions of the opponent v̄. Since Ẽ
allσ̄(Ŷ ) is exactly the objective function in the original

game and the game with a guide within the double game is one of the methods to play in the

original game for the first player in the case of discrimination of the first player by the second, we

have shown that

V + = V̂+(x0) ≤ V̌(z0) + 30L2γ + 3L
√

H(γ) + 3Le6LT
√

g(r).

Similarly, using a guide, we construct a strategy for the second player with a symmetric estimate.

Since γ =
√

2hT ln(hT ), and the grid step h and partition fineness r can be chosen arbitrarily

small, the equality V + = V − is also shown.
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