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Abstract—We study a free-time optimal control problem for a differential inclusion with mixed-
type functional in which the integral term contains the characteristic function of a given open
set of “undesirable” states of the system. The statement of this problem can be viewed as
a weakening of the statement of the classical optimal control problem with state constraints.
Using the approximation method, we obtain first-order necessary optimality conditions in the
form of the refined Euler–Lagrange inclusion. We also present sufficient conditions for their
nondegeneracy and pointwise nontriviality and give an illustrative example.
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1. STATEMENT OF THE PROBLEM AND AUXILIARY RESULTS

We study the following optimal control problem (P ):

J(T, x(·)) = ϕ(T, x(0), x(T )) +

T∫

0

λ(x(t))δM (x(t)) dt → min, (1.1)

ẋ(t) ∈ F (x(t)), (1.2)

x(0) ∈ M0, x(T ) ∈ M1. (1.3)

Here x(t) ∈ R
n is the state vector at time t ≥ 0; F : Rn ⇒ R

n is a set-valued mapping with nonempty
convex compact values that is locally Lipschitz continuous in the sense of the Hausdorff metric
(hereinafter, the local Lipschitz continuity of mappings/functions is understood as their Lipschitz
continuity on any bounded subset of their domain of definition); M0 and M1 are nonempty closed
sets in R

n; ϕ : [0,∞) ×R
n × R

n → R
1 is a locally Lipschitz continuous function; λ : Rn → (0,∞) is

a continuously differentiable function (C1(Rn)); and δM (·) is the characteristic function of a given
open set M in R

n, i.e.,

δM (x) =

{
1, x ∈ M,

0, x /∈ M.
(1.4)

Concerning the set M and its complement G = R
n \ M , we assume that each of these sets is

nonempty and for any x ∈ G the Clarke tangent cone TG(x) (see [15]) has a nonempty interior
(intTG(x) �= ∅). The terminal time T > 0 of the control process is assumed to be free.

By trajectories of the system, we will mean all absolutely continuous solutions x : [0, T ] → R
n

of the differential inclusion (1.2) that are defined on arbitrary time intervals [0, T ], T > 0. A trajec-
tory x(·) defined on [0, T ] will be said to be admissible in problem (P ) if it satisfies the boundary
conditions (1.3). An admissible trajectory x∗(·) defined on [0, T∗], T∗ > 0, is optimal in problem (P )
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if the value of the functional (1.1) on (T∗, x∗(·)) is equal to its minimum value on the set of such
pairs.

Optimal control problems for differential inclusions have been studied by many authors (see [15,
16, 21, 24, 30, 31]). Interest in these problems stems, on the one hand, from the fact that specifying
a differential relation as a differential inclusion allows one to uniformly cover a large number of
extremal problems for various dynamic systems, including feedback systems, control systems with
regular mixed constraints, as well as systems defined by a family of differential equalities and
inequalities. On the other hand, an optimal control problem for a differential inclusion arises
naturally in relation to the question of whether the necessary optimality conditions obtained are
invariant with respect to the method of specifying the differential relation.

The main difference between problem (P ) and various “standard” optimal control problems
(see [15, 19, 25, 31]) is that the integral term in the functional (1.1) contains a discontinuous
function δM (·) of the state variable. This integral term penalizes the appearance of the trajectories
of the system in a given set M of “undesirable” states of the system. Such undesirable sets M
(“risk zones”) can appear in many applied problems. For example, the set M may correspond
to the overload or unstable operation of a technical system. The positive function λ(·) in the
functional (1.1) determines which states x ∈ M are still more preferable. In optimal control theory,
one usually models the presence of a set M of undesirable states by a state constraint (see [16; 25,
Ch. 6; 31]) of the form

x(t) ∈ G = R
n \M, t ∈ [0, T ].

In this case, the set G (“safety zone”) is assumed to be closed (i.e., the risk zone M is an open
set). Note that in contrast to problems with state constraints, an admissible trajectory x(·) in
problem (P ) may penetrate the set M (sometimes this is even inevitable), but such a situation
is undesirable. Optimal control problems with state constraints can be regarded as the limit case
of problem (P ) with a constant function λ(x) ≡ λ > 0, x ∈ R

n, as λ → ∞. In this sense the
statement of problem (P ) weakens the statement of the classical optimal control problem with state
constraints.

Optimal control problems involving a closed set M of undesirable system states have been
previously studied in [11, 12, 26, 27, 29]. In [26, 27] the case of a linear control system and a convex
compact set M ⊂ R

n was considered, and it was assumed that an optimal trajectory x∗(·) intersects
the boundary of M at most at finitely many time points and only in a regular way (see [26, 27]
for details). In the papers [11, 12, 29] based on an approximation method, a more general case was
studied where the control system is affine in control and the set M ⊂ R

n is nonempty and closed,
without any a priori assumptions about the behavior of the optimal trajectory x∗(·). Note that the
constructions used in [11, 12, 29] cannot be directly applied to the case of an open set M . At the same
time, the case of an open set M is of greatest interest. In this case, there is a natural connection
between problem (P ) and the classical optimal control problem with state constraints (see [10]
for details). Moreover, in this case the integral term in (1.1), which contains the characteristic
function δM (·), is lower semicontinuous, which entails (under natural additional assumptions) the
existence of a solution in problem (P ) (see [8, Theorem 1]).

The case of an open set M was considered in [7–9], where necessary optimality conditions for
problem (P ) were obtained in Clarke’s Hamiltonian form using an approximation method. The
aim of this paper is to further develop the approximation method and use it to obtain necessary
optimality conditions for problem (P ) in the form of a refined Euler–Lagrange inclusion; in this form,
the specific features of the differential relation given by the differential inclusion (1.2) are taken
into account in the most complete way. As is well known, the refined Euler–Lagrange inclusion
implies Clarke’s Hamiltonian inclusion [15, 16], the Euler–Lagrange inclusion [14, 24], and the
maximum condition (for a detailed discussion of various variants of necessary optimality conditions
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for optimal control problems with differential inclusions, see the review [22]). The results obtained
here strengthen the necessary optimality conditions established earlier in [7–9].

The main difficulties in obtaining necessary optimality conditions for problem (P ) are associated
with the fact that the integrand in (1.1) is discontinuous in the state variable, which does not allow
us to directly use any infinitesimal methods; moreover, the right-hand side of (1.2) is set-valued
and nonsmooth, which also complicates the analysis. To overcome these difficulties, we apply the
approximation method (see [5]). The original optimal control problem (P ) with discontinuous inte-
grand is approximated by a sequence of optimal control problems for smooth control systems with
smooth integrands and nonsmooth terminal constraints, for which necessary optimality conditions
are available (see [20, 21]). For the original problem (P ), we then obtain necessary optimality
conditions by passing to the limit in the relations of the Pontryagin maximum principle for the
approximating problems. Previously, such an approach to deriving necessary optimality conditions
in optimal control problems for differential inclusions with state constraints was used in [6] (see
also [5]).

In what follows, by NA(a) = T ∗
A(a) and N̂A(a) we denote, respectively, the Clarke normal

cone [15] and the cone of generalized normals [21, 22] to a closed set A ⊂ R
n at a point a ∈ A;

∂A stands for the boundary of A. Next, by H(A,ψ) = supa∈A〈a, ψ〉 we denote the support function
of a closed set A ⊂ R

n. Then the function H(F (·), ·): H(F (x), ψ) = maxf∈F (x)〈f, ψ〉, x ∈ R
n,

ψ ∈ R
n, is the Hamiltonian of the differential inclusion (1.2). By graphF (·) = {(x, y) : y ∈ F (x)}

we denote the graph of the set-valued mapping F (·), and by ∂̂ϕ(T, x1, x2), the generalized gradient
of the locally Lipschitz continuous function ϕ( · , · , ·) at a point (T, x1, x2) ∈ [0,∞) × R

n × R
n

(see [21, 22]). Let A+ B = {a+ b : a ∈ A, b ∈ B} and αA = {αa : a ∈ A} be the algebraic sum of
sets A and B in R

n and the product of a number α ∈ R
1 and a set A ∈ R

n, respectively.
For an arbitrary x ∈ R

n and any i ∈ N = {1, 2, . . .}, we set

δ̃i(x) = min{iρ(x,G), δM (x)},

where ρ(x,G) = min{‖x − ξ‖ : ξ ∈ G} is the distance from a point x to the nonempty closed set
G = R

n \M , and the function δM (·) is defined in (1.4).
For i ∈ N introduce a function δi : R

n → R
1 as

δi(x) =

∫

Rn

δ̃i(x+ z)ωi(z) dz, (1.5)

where ωi(·) is a smooth (C∞(Rn)) centrally symmetric probability density with suppωi(·) ⊂ 3−i
B
n.

Here B
n is the closed unit ball in R

n centered at zero. Then, for any i, the function δi(·) is smooth,
since it is the convolution with the smooth function ωi(·).

The following two results are direct consequences of the definition of the characteristic func-
tion δM (·), the continuity of the positive function λ(·), and the Fatou lemma (see the proofs of
similar Lemmas 1 and 2 in [7]).

Lemma 1. For any x ∈ R
n one has the inequality

δi(x) ≤ δM (x) +
i

3i
, i ∈ N.

Lemma 2. If a sequence {xi(·)}∞i=1 of continuous functions xi : [0, T ] → R
n, T > 0, converges

uniformly to a continuous function x : [0, T ] → R
n, then

lim inf
i→∞

T∫

0

λ(xi(t))δi(xi(t)) dt ≥
T∫

0

λ(x(t))δM (x(t)) dt.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 315 2021



30 S. M. ASEEV

Lemmas 1 and 2 imply (see [8, Theorem 1]) that the integral functional JM : C([0, T ],Rn) → R
1,

T > 0, defined by the equality

JM (x(·)) =
T∫

0

λ(x(t))δM (x(t)) dt (1.6)

is lower semicontinuous.
The following result allows us to construct a sequence of smooth control systems that approxi-

mate the differential inclusion (1.2) (see [5, 6]).
Lemma 3. Let Z ⊂ R

n be an open bounded set, L the Lipschitz constant of the set-valued map-
ping F (·) on Z + B

n, and S = sup{ξ∈F (x), x∈Z+Bn}‖ξ‖. Define a sequence of functions {Hi( · , ·)}∞i=1,

Hi : Z × R
n → R

1, by the equality

Hi(x, ψ) =

∫

R2n

H(F (x+ z), ψ + ‖ψ‖v)ωi(z)ωi(v) dz dv +
2(L+ S)

3i
‖ψ‖, (1.7)

where ωi(·) is a centrally symmetric smooth probability density with suppωi(·) ⊂ 3−i
B
n. Then for

any i the function Hi( · , ·) is infinitely differentiable on Z × (Rn \ {0}). Moreover, for any x ∈ Z
the function ψ → Hi(x, ψ) is positively homogeneous and subadditive on R

n.
Lemma 3 follows directly from the properties of the convolution and [28, Proposition 2.5]. Indeed,

being the convolution with a smooth function, the function Hi( · , ·) defined in (1.7) is infinitely
differentiable on Z × (Rn \ {0}). By [28, Proposition 2.5], for any x ∈ Z, z ∈ B

n and an arbitrary
v ∈ R

n, the function

ψ → H(F (x+ z), ψ − ‖ψ‖v) +H(F (x+ z), ψ + ‖ψ‖v)
is positively homogeneous and subadditive on R

n. Since the density ωi(·) is centrally symmetric,
this implies that for any x ∈ Z the function ψ → Hi(x, ψ) is also positively homogeneous and
subadditive on R

n.
By Lemma 3, for any i ∈ N and all x ∈ Z formula (1.7) defines the support function

H(Fi(x), ψ) = Hi(x, ψ), ψ ∈ R
n, (1.8)

of a convex compact set Fi(x) ⊂ R
n, i.e., the value of a set-valued mapping Fi : Z ⇒ R

n. Moreover,
in view of (1.7) we have

F (x) ⊂ Fi(x) ⊂ F (x) +
2(L+ S)

3i−1
B
n (1.9)

for any i ∈ N and all x ∈ Z. Indeed,

H(Fi(x), ψ) −H(F (x), ψ)

=

∫

R2n

[
H(F (x+ z), ψ + ‖ψ‖v) −H(F (x), ψ)

]
ωi(z)ωi(v) dz dv +

2(L+ S)

3i
‖ψ‖

≤
∫

R2n

∣∣H(F (x+ z), ψ + ‖ψ‖v) −H(F (x), ψ + ‖ψ‖v)
∣∣ωi(z)ωi(v) dz dv

+

∫

R2n

∣∣H(F (x), ψ + ‖ψ‖v) −H(F (x), ψ)
∣∣ωi(z)ωi(v) dz dv +

2(L+ S)

3i
‖ψ‖

≤
(

1

32i
+

1

3i

)
L‖ψ‖ + 1

3i
S‖ψ‖+ 2(L+ S)

3i
‖ψ‖ ≤ 2(L+ S)

3i−1
‖ψ‖,
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which implies the second inclusion in (1.9). In a similar way, we obtain

H(F (x), ψ) −H(Fi(x), ψ) ≤
(

1

32i
+

1

3i

)
L‖ψ‖+ 1

3i
S‖ψ‖ − 2(L+ S)

3i
‖ψ‖ ≤ 0,

which implies the first inclusion in (1.9). Thus, inclusions (1.9) are proved.
For i ∈ N consider the differential inclusion

ẋ(t) ∈ Fi(x(t)), (1.10)

where the set-valued mapping Fi(·) is defined on the set Z in terms of its support function given
by (1.7) and (1.8). Then the set-valued mapping Fi(·) is Lipschitz continuous on Z, and all sets
Fi(x), x ∈ Z, are convex and compact. Therefore, for any compact set D ⊂ R

n+1, the set Xi of all
trajectories x(·) of the differential inclusion (1.10) that are defined on a fixed time interval [0, T ],
T > 0, and satisfy the inclusion (t, x(t)) ∈ D for all t ∈ [0, T ] is compact in the space C([0, T ],Rn).
Moreover, by virtue of (1.9) the set X =

⋂
i∈N Xi coincides with the set of all trajectories of the

differential inclusion (1.2) on [0, T ] that satisfy the inclusion (t, x(t)) ∈ D for all t ∈ [0, T ].
Note that since the support function of the set-valued mapping Fi(·) is smooth on Z× (Rn \ {0}),

the differential inclusion (1.10) can be explicitly represented as a smooth control system (see [5, 6]
for details).

2. CONSTRUCTION OF A SEQUENCE OF APPROXIMATING PROBLEMS

Let x∗(·) be an optimal admissible trajectory in problem (P ) and T∗ > 0 be the corresponding
optimal time. Let us choose a sequence of functions {zi(·)}∞i=1, zi(·) ∈ C2([0, T∗],Rn), such that the
sequence {‖żi(t)‖}∞i=1 is uniformly bounded on [0, T∗] and żi(·) → ẋ∗(·) in L1([0, T∗],Rn) as i → ∞.
Since ess supt∈[0,T∗]‖ẋ∗(t)‖ < ∞, it is clear that such a sequence {zi(·)}∞i=1 exists. In what follows,
we will assume that the trajectory x∗(·) and all functions zi(·) are continuously extended to the
infinite interval [T∗,∞) by constants: x∗(t) ≡ x∗(T∗) and zi(t) ≡ zi(T∗), t ≥ T∗.

Define sets M̃0 and M̃1 as follows:

M̃0 =

{
M0 if x∗(0) ∈ M,

M0 ∩G if x∗(0) ∈ G
and M̃ 1 =

{
M1 if x∗(T∗) ∈ M,

M1 ∩G if x∗(T∗) ∈ G.

For i ∈ N let F̃i : [0,∞)× R
n ⇒ R

n+1 be a set-valued mapping defined by

F̃i(t, x) =
{
(u, v) : u ∈ F (x), v = ‖u− żi(t)‖

}
, t ≥ 0, x ∈ R

n. (2.1)

It is easy to see that the mapping F̃i( · , ·) is locally Lipschitz continuous. Namely, if Z is a bounded
subset of R

n, L is the Lipschitz constant of F (·) on Z, and Ki = maxt∈[0,T∗]‖z̈i(t)‖, then F̃i( · , ·)
satisfies the Lipschitz condition on [0,∞) × Z with the constant 2L + Ki. Moreover, the set-
valued mapping F̃i(t, ·) is Lipschitz continuous in x on Z uniformly in t ∈ [0,∞) with the Lipschitz
constant 2L independent of i, and for any bounded subset Z in R

n there exists an S > 0 such that
‖F̃i(t, x)‖ ≤ S for all (t, x) ∈ [0,∞) × Z. For the further reasoning, we choose a bounded open
set Z such that x∗(t) + B

n ⊂ Z for all t ∈ [0, T∗]. Accordingly, we thereby fix the constants L
and S.

Let Φi : [0,∞) × R
n ⇒ R

n+1, i ∈ N, be a set-valued mapping defined as the convex hull
of F̃i( · , ·):

Φi(t, x) = conv F̃i(t, x), t ≥ 0, x ∈ R
n. (2.2)

Then the set-valued mapping Φi( · , ·) satisfies the same Lipschitz and boundedness conditions (with
the same constants 2L, Ki, and S) as F̃i( · , ·).
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Let us introduce a new state variable x̃ = (x, y), x ∈ R
n, y ∈ R

1, and choose a sequence {γi}∞i=1,
γi > 0, such that γi(1 +Ki) → 0 as i → ∞.

Consider the following sequence of optimal control problems {(P̃i)}∞i=1 with free terminal
time T > 0:

J̃i(T, x̃(·)) = ϕ(T, x(0), x(T )) + ‖x(0)− x∗(0)‖2 + (T − T∗)
2 + γiy(T )

+

T∫

0

λ(x(t))δM (x(t)) dt → min,

˙̃x(t) = (ẋ(t), ẏ(t)) ∈ Φi(t, x(t)), (2.3)

|T − T∗| ≤
T∗
2
, ‖x(t)− x∗(t)‖ ≤ 1

2
, t ∈ [0, T ],

x(0) ∈ M̃0, y(0) = 0, x(T ) ∈ M̃1. (2.4)

Note that for any i ∈ N the function x̃∗i (·) = (x∗(·), y∗i (·)) with y∗i (t) =
∫ t
0‖ẋ∗(s) − żi(s)‖ ds,

t ∈ [0, T∗], is an admissible trajectory in problem (P̃i). Moreover, the sequence {y∗i (T∗)}∞i=1 is
bounded. Just as above, every admissible trajectory x̃(·) = (x(·), y(·)) in (P̃i) defined on [0, Ti],
Ti > 0, is assumed to be continuously extended to the interval [Ti,∞) by a constant. Since the
functional (1.6) is lower semicontinuous (see [8]) and the set of admissible trajectories x̃(·) in (P̃i) is
compact in C([0, 3T∗/2],Rn+1), for any i there exists a solution x̃i(·) = (xi(·), yi(·)) of problem (P̃i).
Let Ti be the corresponding optimal terminal time.

Lemma 4. The following conditions hold :

lim
i→∞

Ti = T∗, (2.5)

xi(·) → x∗(·) in C([0, T∗],R
n) as i → ∞, (2.6)

ẋi(·) → ẋ∗(·), ẏi(·) → 0 in L1([0, T∗],R
n) as i → ∞, (2.7)

lim
i→∞

Ti∫

0

λ(xi(t))δM (xi(t)) dt =

T∗∫

0

λ(x∗(t))δM (x∗(t)) dt. (2.8)

Proof. Since x∗(·) is an optimal trajectory in problem (P ), xi(·) is an admissible trajectory
in problem (P ), x̃i(·) is an optimal trajectory in problem (P̃i), and x̃∗(·) = (x∗(·), y∗i (·)), y∗i (t) =∫ t
0‖ẋ∗(s)− żi(s)‖ ds, t ∈ [0, T∗], is an admissible trajectory in problem (P̃i), it follows that

J(T∗, x∗(·)) ≤ J(Ti, xi(·)) = ϕ(Ti, xi(0), xi(Ti)) +

Ti∫

0

λ(xi(t))δM (xi(t)) dt

≤ ϕ(Ti, xi(0), xi(Ti)) + ‖xi(0)− x∗(0)‖2 + (Ti − T∗)
2 + γiyi(Ti) +

Ti∫

0

λ(xi(t))δM (xi(t)) dt

≤ ϕ(T∗, x∗(0), x∗(T∗)) + γiy
∗
i (T∗) +

T∗∫

0

λ(x∗(t))δM (x∗(t)) dt = J(T∗, x∗(·)) + γiy
∗
i (T∗). (2.9)

Therefore,

‖xi(0)− x∗(0)‖2 + (Ti − T∗)
2 + γiyi(Ti) ≤ J(T∗, x∗(·)) − J(Ti, xi(·)) + γiy

∗
i (T∗) ≤ γiy

∗
i (T∗).
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Since y∗i (T∗) =
∫ T∗
0 ‖ẋ∗(s)− żi(s)‖ ds → 0 as i → ∞, we have xi(0) → x∗(0) and Ti → T∗ as i → ∞

(see (2.5)) and γiyi(Ti) ≤ γiy
∗
i (T∗) for all i ∈ N. This last inequality implies

yi(Ti) =

Ti∫

0

‖ẋi(s)− żi(s)‖ ds ≤ y∗i (T∗) → 0, i → ∞.

Therefore, ẏi(·) → 0 strongly in L1([0, T∗],R1) as i → ∞ (see (2.7)).
Further, due to (2.1) and (2.2) we have

ẋi(t) =

n+2∑
j=1

αi
j(t)u

i
j(t), uij(t) ∈ F (xi(t)), αi

j(t) ≥ 0,

n+2∑
j=1

αi
j(t) = 1,

yi(t) =

n+2∑
j=1

αi
j(t)‖uij(t)− żi(t)‖.

Hence, since żi(·) converges strongly to ẋ∗(·) in L1([0, T∗],Rn), we find that ẋi(·) converges strongly
to ẋ∗(·) in L1([0, T∗],Rn) as i → ∞ (see (2.7)). Recalling that xi(0) → x∗(0) as i → ∞, we conclude
that xi(·) → x∗(·) in C([0, T∗],Rn) (see (2.6)).

In view of (2.5)–(2.7) and the continuity of ϕ( · , · , ·), it follows from (2.9) that

lim sup
i→∞

Ti∫

0

λ(xi(t))δM (xi(t)) dt ≤
T∗∫

0

λ(x∗(t))δM (x∗(t)) dt.

On the other hand, by Lemmas 1 and 2 we have

lim inf
i→∞

Ti∫

0

λ(xi(t))δM (xi(t)) dt ≥
T∗∫

0

λ(x∗(t))δM (x∗(t)) dt.

This proves equality (2.8). �
For every fixed i ∈ N, using formula (1.7), we construct a smooth approximation

˙̃x(t) = (ẋ(t), ẏ(t)) ∈ Φi,j(t, x(t)), j = 1, 2, . . . , (2.10)

of the differential inclusion (2.3). Namely, for i, j ∈ N we set

H(Φi,j(t, x), ψ̃) =

∫

R2n+1

H
(
F̃i(t, x+ z), ψ̃ + ‖ψ̃‖ṽ

)
ωj(z)ω̃j(ṽ ) dz dṽ +

2(L+ S)

3j
‖ψ̃‖. (2.11)

Here t ≥ 0, x ∈ Z, ψ̃ = (ψ,ψn+1) with ψ ∈ R
n and ψn+1 ∈ R

1, and the functions ωj(·) and ω̃j(·)
are smooth centrally symmetric probability densities with suppωj(·) ⊂ 3−j

B
n and supp ω̃j(·) ⊂

3−j
B
n+1, respectively.

By Lemma 3, formula (2.11) defines the support function for the right-hand side of the differential
inclusion (2.10). If a trajectory x̃(·) of (2.10) is defined on [0, T ], T > 0, then we will always assume
that it is continuously extended to the infinite interval [T,∞) by a constant.

For a fixed i ∈ N and j → ∞, consider the following sequence of optimal control problems
{(Pi,j)}∞j=1 with free terminal time T > 0:

J̃i,j(T, x̃(·)) = ϕ(T, x(0), x(T )) + ‖x(0)− x∗(0)‖2 + (T − T∗)
2 + γiy(T )

+

T∫

0

λ(x(t))δj(x(t)) dt → min, (2.12)
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˙̃x(t) = (ẋ(t), ẏ(t)) ∈ Φi,j(t, x(t)), (2.13)

|T − T∗| ≤
T∗
2
, ‖x(t)− x∗(t)‖ ≤ 1

2
, t ∈ [0, T ], (2.14)

x(0) ∈ M̃0, y(0) = 0, x(T ) ∈ M̃1. (2.15)

Lemma 5. For any i, j ∈ N, problem (Pi,j) has a solution x̃i,j(·) = (xi,j(·), yi,j(·)) defined
on [0, Ti,j ], where Ti,j > 0 is the corresponding optimal time. For every i ∈ N, passing to a
subsequence if necessary, we have

lim
j→∞

Ti,j = Ti, (2.16)

(xi,j(·), yi,j(·)) → (xi(·), yi(·)) in C([0, Ti],R
n) as j → ∞, (2.17)

(ẋi,j(·), ẏi,j(·)) → (ẋi(·), ẏi(·)) weakly in L1([0, Ti],R
n+1) as j → ∞, (2.18)

lim
j→∞

Ti,j∫

0

λ(xi,j(t))δj(xi,j(t)) dt =

Ti∫

0

λ(xi(t))δM (xi(t)) dt, (2.19)

where x̃i(·) = (xi(·), yi(·)) is a solution of problem (P̃i) and Ti > 0 is the optimal time in (P̃i)
corresponding to x̃i(·).

Proof. The function x̃∗i (·) = (x∗(·), y∗i (·)) with y∗i (t) =
∫ t
0‖ẋ∗(s) − żi(s)‖ ds, t ∈ [0, T∗], is an

admissible trajectory in problem (Pi,j). The functional (1.6) is lower semicontinuous and the set
of admissible trajectories x̃(·) in (Pi,j) is compact in C([0, 3T∗/2],Rn+1), so for any i, j ∈ N prob-
lem (Pi,j) has a solution x̃i,j(·) = (xi,j(·), yi,j(·)) defined on an interval [0, Ti,j ], T∗/2 ≤ Ti,j ≤ 3T∗/2.

For any fixed i the set of trajectories of system (2.13) that satisfy the constraints (2.14)
and (2.15) and are continuously extended by constants to the interval [Ti,j,∞) is compact in the
space C([0, 3T∗/2],Rn+1). The sequence {Ti,j}∞j=1 is bounded. Therefore, passing to a subsequence
if necessary, we can assume that Ti,j → Ti > 0 as j → ∞ (see (2.16)) and the sequence {x̃i,j(·)}
converges uniformly to some trajectory x̃i(·) = (xi(·), yi(·)) of the inclusion (2.3) defined on the
interval [0, Ti]; moreover, the trajectory x̃i(·) satisfies the constraints (2.14) and (2.15) for T = Ti.
Thus, x̃i(·) is an admissible trajectory in problem (P̃i) and condition (2.17) holds. Since the
sequences {ẋi,j(t)}∞j=1 and {ẏi,j(t)}∞j=1 are uniformly bounded, condition (2.18) follows.

Let us prove that the admissible trajectory x̃i(·) is optimal in problem (P̃i). Let x̂i(·) =

(ξi(·), ζi(·)) be an arbitrary admissible trajectory in (P̃i) defined on some interval [0, T̂i], T̂i > 0.
Since x̃i,j(·) is an optimal admissible trajectory in problem (Pi,j), j ∈ N, and x̂i(·) is an admissible
trajectory in (Pi,j), it follows from Lemma 1 that

ϕ
(
Ti,j, xi,j(0), xi,j(Ti,j)

)
+ (Ti,j − T∗)

2 + γiyi,j(Ti,j) +

Ti,j∫

0

λ(xi,j(t))δj(xi,j(t)) dt

≤ ϕ(T̂i, ξi(0), ξi(T̂i)) + (T̂i − T∗)
2 + γiζi(T̂i) +

̂Ti∫

0

λ(ξi(t))δj(ξi(t)) dt

≤ ϕ(T̂i, ξi(0), ξi(Ti)) + (T̂i − T∗)
2 + γiζi(T̂i) +

̂Ti∫

0

λ(ξi(t))δM (ξi(t)) dt +
j

3j

̂Ti∫

0

λ(ξi(t)) dt

≤ J̃i(x̂i(·), T̂i) +
j

3j−1
T∗ max

t∈[0,3T∗/2]
λ(ξi(t)). (2.20)
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On the other hand, Lemma 2 implies the inequality

lim inf
j→∞

Ti,j∫

0

λ(xi,j(t))δj(xi,j(t)) dt ≥
Ti∫

0

λ(xi(t))δM (xi(t)) dt.

Therefore, passing to the limit in (2.20) as j → ∞, we obtain

J̃i(x̃i(·), Ti) = ϕ(Ti, xi(0), xi(Ti)) + (Ti − T∗)
2 + γiyi(Ti) +

Ti∫

0

λ(xi(t))δM (xi(t)) dt ≤ J̃i(x̂i(·), T̂i).

Thus, the inequality J̃i(x̃i(·), Ti) ≤ J̃i(x̂i(·), T̂i) holds. Since x̂i(·) is an arbitrary admissible trajec-
tory in (P̃i), we see that x̃i(·) is an optimal admissible trajectory in (P̃i) and Ti is the corresponding
optimal time in this problem.

Equality (2.19) follows from (2.16), (2.17), and Lemmas 1 and 2. �
Theorem 1. For all i ∈ N one can choose numbers j(i) in such a way that limi→∞ j(i) = ∞,

limi→∞ 3−j(i)Ki = 0, (xi,j(i)(·), yi,j(i)(·)) → (x∗(·), y∗(·)) in C([0, T∗],Rn+1), (ẋi,j(i)(·), ẏi,j(i)(·)) →
(ẋ∗(·), 0) in L1([0, T∗],Rn+1) as i → ∞, and, in addition,

lim
i→∞

Ti,j(i)∫

0

λ(xi,j(i)(t))δj(i)(xi,j(i)(t)) dt =

T∗∫

0

λ(x∗(t))δM (x∗(t)) dt. (2.21)

Proof. Since {xi,j(·)}∞j=1 and {yi,j(·)}∞j=1 converge uniformly to xi(·) and yi(·), respectively, on
[0, Ti] as j → ∞, Ti → T∗ as i → ∞, and since {xi(·)}∞i=1 and {yi(·)}∞i=1 converge uniformly to x∗(·)
and zero, respectively, on [0, T∗] as i → ∞, we can choose the sequence {j(i)}∞i=1 in such a way that
the sequences {xi,j(i)(·)}∞i=1 and {yi,j(i)(·)}∞i=1 converge uniformly to x∗(·) and zero, respectively,
on [0, T∗] as i → ∞. Since the sequences {ẋi,j(i)(·)}∞i=1 and {ẏi,j(i)(·)}∞i=1 are uniformly bounded
on [0, T∗], we have ẋi,j(i)(·) → ẋ∗(·) weakly in L1([0, T∗],Rn) and ẏi,j(i) → 0 weakly in L1([0, T∗],R1)
as i → ∞. Due to the inequality ẏi,j(i)(t) ≥ 0 on [0, T∗], the weak convergence of {ẏi,j(i)(·)} to zero
in L1([0, T∗],R1) implies its strong convergence to zero in L1([0, T∗],R1) as i → ∞.

Next, using (2.13) we have

ẋi,j(i)(t)
a.e.
=

n+2∑
k=1

α
i,j(i)
k (t)u

i,j(i)
k (t) + li,j(i)(t),

ẏi,j(i)(t)
a.e.
=

n+2∑
k=1

α
i,j(i)
k (t)

∥∥ui,j(i)k (t)− żi(t)
∥∥ +mi,j(i)(t),

where

u
i,j(i)
k (t) ∈ F̃i(t, xi,j(i)(t)) and

(
li,j(i)(t),mi,j(i)(t)

)
∈ L+ S

3j−1
B
n+1.

Therefore,

‖ẋi,j(i)(t)− żi(t)‖
a.e.
≤

n+2∑
k=1

α
i,j(i)
k (t)

∥∥ui,j(i)k (t)− żi(t)
∥∥+ ‖li,j(i)(t)‖

a.e.
≤ ẏi,j(i)(t) + ‖li,j(i)(t)‖+ |mi,j(i)(t)|.
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Since żi(t) → ẋ∗(t) strongly in L1([0, T∗],Rn) as i → ∞, ẏi,j(i)(t) → 0 strongly in L1([0, T∗],R1)
as i → ∞, and Ti,j(i) → T∗ as i → ∞, it follows that the sequence {xi,j(i)(·)}∞i=1 converges strongly
to x∗(·) in L1([0, T∗],Rn).

Increasing the number j(i) if necessary, we can assume that limi→∞ 3−j(i)Ki = 0 (without loss
of generality).

The proof of condition (2.21) is completely similar to that of condition (2.19) in Lemma 5. �
In what follows, for brevity, for each i ∈ N we will denote problem (Pi,j(i)) by (Pi), the optimal

trajectory x̃i,j(i)(·) in it by x̃i(·) = (xi(·), yi(·)), and the corresponding optimal time Ti,j(i) by Ti.
Then by Theorem 1 we have limi→∞ 3−j(i)Ki = 0, (xi(·), yi(·)) → (x∗(·), y∗(·)) in C([0, T∗],Rn+1),
(ẋi(·), ẏi(·)) → (ẋ∗(·), 0) in L1([0, T∗],Rn+1) as i → ∞, and

lim
i→∞

Ti∫

0

λ(xi(t))δj(i)(xi(t)) dt =

T∗∫

0

λ(x∗(t))δM (x∗(t)) dt. (2.22)

Corollary 1. Under the hypotheses of Theorem 1, passing to a subsequence if necessary, we
can assume that

lim
i→∞

δj(i)(xi(t)) = δM (x∗(t)) for a.e. t ∈ [0, T∗]. (2.23)

Proof. Since the set M is open, it follows from the definition of the functions δM (·) and δi(·),
i ∈ N (see (1.4) and (1.5)), and the uniform convergence of {xi(·)}∞i=1 to x∗(·) on [0, T∗] that
limi→∞ δj(i)(xi(t)) = δM (x∗(t)) = 1 for all t ∈ [0, T∗] such that x∗(t) ∈ M . Consider now the set of
those t ∈ [0, T∗] for which x∗(t) ∈ G. In this case δM (x∗(t)) = 0, and in view of (2.22) we have the
equality

lim
i→∞

∫

{t∈[0,T∗] : x∗(t)∈G}

λ(xi(t))δj(i)(xi(t)) dt = 0.

Since the functions λ(xi(·))δj(i)(xi(·)), i ∈ N, are nonnegative, we obtain

lim
i→∞

meas
{
t ∈ [0, T∗] : x∗(t) ∈ G, λ(xi(t))δj(i)(xi(t)) > ε

}
= 0

for any ε > 0; i.e., the sequence {λ(xi(·))δj(i)(xi(·))}∞i=1 converges on the set {t ∈ [0, T∗] : x∗(t) ∈ G}
to zero in measure. Therefore, passing to a subsequence if necessary, we can assume that the
sequence {λ(xi(t))δj(i)(xi(·))}∞i=1 converges to zero for a.e. t ∈ [0, T∗] such that x∗(t) ∈ G, and
hence for a.e. t ∈ [0, T∗]. Since limi→∞ λ(xi(t)) = λ(x∗(t)), t ∈ [0, T∗], and the function λ(·) is
positive on M , this yields condition (2.23). �

By Corollary 1 and Lebesgue’s dominated convergence theorem (see [23, Ch. VI, § 3]), we can
assume without loss of generality that the equality

lim
i→∞

t∫

0

ξ(xi(s))δj(i)(xi(s)) ds =

t∫

0

ξ(x∗(s))δM (x∗(s)) ds (2.24)

holds for every continuous function ξ : Rn → R
n and every t ∈ [0, T∗].

3. MAIN RESULT

The following theorem is the main result of the paper.
Theorem 2. Let x∗(·) be an optimal admissible trajectory in problem (P ) and T∗ > 0 be the

corresponding optimal time. Then there exists a constant ψ0 ≥ 0, an absolutely continuous function
ψ : [0, T∗] → R

n, and a bounded regular n-dimensional Borel measure η on [0, T∗] such that the
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following conditions hold :

(1) the measure η is concentrated on the set M = {t ∈ [0, T∗] : x∗(t) ∈ ∂G} and is nonpositive
on the set of continuous functions y : M → R

n with values y(t) ∈ TG(x∗(t)), t ∈ M, i.e.,
∫

M

y(t) dη ≤ 0;

(2) the refined Euler–Lagrange inclusion holds for a.e. t ∈ [0, T∗]:

ψ̇(t) ∈ conv

⎧⎨
⎩u :

⎛
⎝u, ψ(t) +

t∫

0

λ(x∗(s)) dη + ψ0

t∫

0

δM (x∗(s))
∂λ(x∗(s))

∂x
ds

⎞
⎠

∈ N̂graphF (·)(x∗(t), ẋ∗(t))

⎫⎬
⎭ ;

(3) for t = T∗ as well as for any point t ∈ [0, T∗) of right approximate continuity1 of δM (x∗(·)),
one has the equality

H

⎛
⎝F (x∗(t)), ψ(t) +

t∫

0

λ(x∗(s)) dη + ψ0

t∫

0

δM (x∗(s))
∂λ(x∗(s))

∂x
ds

⎞
⎠

− ψ0λ(x∗(t))δM (x∗(t)) = H(F (x∗(0)), ψ(0)) − ψ0λ(x∗(0))δM (x∗(0));

(4) the transversality condition holds:

⎛
⎝H

⎛
⎝F (x∗(T∗)), ψ(T∗) +

T∗∫

0

λ(x∗(s)) dη + ψ0

T∗∫

0

δM (x∗(s))
∂λ(x∗(s))

∂x
ds

⎞
⎠, ψ(0),

−ψ(T∗)−
T∗∫

0

λ(x∗(s)) dη − ψ0

T∗∫

0

δM (x∗(s))
∂λ(x∗(s))

∂x
ds

⎞
⎠

∈ ψ0∂̂ϕ(T∗, x∗(0), x∗(T∗)) + {0} × N̂
˜M0

(x∗(0))× N̂
˜M1

(x∗(T∗));

(5) the nontriviality condition holds:

ψ0 + ‖ψ(0)‖ + ‖η‖ �= 0.

Proof. Let x∗(·) be an optimal trajectory in problem (P ), T∗ > 0 an optimal time, and
{(Pi)}∞i=1 the sequence of approximating problems (Pi) = (Pi,j(i)), i ∈ N (see (2.12)–(2.15)). We
will assume that the sequence {j(i)}∞i=1 is chosen so that all the hypotheses of Theorem 1 are
satisfied and equality (2.24) holds for every continuous function ξ : Rn → R

n and every t ∈ [0, T∗].
Further, for any i, j ∈ N the differential inclusion (2.13) is equivalent (the sets of their trajectories

coincide) to a smooth control system

˙̃x(t) = (ẋ(t), ẏ(t)) = fi,j(t, x(t), u(t)), u(t) ∈ U, (3.1)

1Recall that a point t ∈ [0, T ), T > 0, is called a point of right approximate continuity of a function ξ : [0, T ] → R
1

if there exists a Lebesgue measurable set E ⊂ [t, T ] such that t is a density point of E and the function ξ(·) is
right-continuous at the point t along the set E (see [23, Ch. IX, § 6]).
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where

U =

{
u = (α1, . . . , αn+2, ṽ1, . . . , ṽn+2) : αk ≥ 0,

n+2∑
k=1

αk = 1, ṽk ∈ R
n+1, ‖ṽk‖ = 1

}

and

fi,j(t, x, u) =

n+2∑
k=1

αk
∂

∂ṽ
H(Φi,j(t, x), ṽk).

Here the vector functions fi,j( · , · , ·) and ∂fi,j( · , · , ·)/∂x are locally Lipschitz continuous in their
arguments (t, x, u) on [0,∞) × Z × U (see [6, Lemma 3]).

By Theorem 1, for all sufficiently large i, we in fact have strict inequalities in (2.14). Therefore,
for all sufficiently large i, the optimal trajectory x̃i : [0, Ti] → R

n+1 in problem (Pi) satisfies the
necessary optimality conditions given by the Pontryagin maximum principle for free-time optimal
control problems without state constraints and with nonsmooth terminal constraints [20–22] (see
also [6, Theorem 3, Lemma 2]). Namely, there exist numbers ψ0

i ≥ 0 and absolutely continuous
functions ψ̃i : [0, Ti] → R

n+1, ψ̃i(·) = (ψ̂i(·), ψ̂n+1
i (·)), such that

− ˙̂
ψi(t)

a.e.
=

∂

∂x
Hi(t, xi(t), ψ̃i(t))− ψ0

i

(
λ(xi(t))

∂δj(i)(xi(t))

∂x
+ δj(i)(xi(t))

∂λ(xi(t))

∂x

)
, (3.2)

〈ψ̃i(t), ˙̃xi(t)〉 a.e.
= Hi(t, xi(t), ψ̃i(t)), (3.3)

(
hi(Ti), ψ̂i(0),−ψ̂i(Ti)

)
∈ ψ0

i

(
∂̂ϕ(Ti, xi(0), xi(Ti)) +

(
2(Ti − T∗), 2(xi(0) − x∗(0)), 0

))

+ {0} × N̂
˜M1

(xi(0)) × N̂
˜M2

(xi(Ti)), −ψ̂n+1
i (Ti) = ψ0

i γi, (3.4)

ḣi(t)
a.e.
∈ ∂tHi(t, xi(t), ψ̃i(t)), (3.5)

ψ0
i + ‖ψ̃i(0)‖ �= 0. (3.6)

Here the function Hi( · , · , ·) is defined for all t ≥ 0, x ∈ Z, and ψ̃ = (ψ̂, ψ̂n+1), ψ̂ ∈ R
n, ψ̂n+1 ∈ R

1,
by the equality (see (2.11))

Hi(t, x, ψ̃) = H(Φi,j(i)(t, x), ψ̃),

the absolutely continuous function hi(·) is defined on [0, Ti] by the equality

hi(t) = Hi(t, xi(t), ψ̃i(t))− ψ0
i λ(xi(t))δj(i)(xi(t)), (3.7)

and ∂tHi(t, xi(t), ψ̃(t)) is the partial Clarke subdifferential [15] of the locally Lipschitz continuous
function Hi( · , · , ·) with respect to t. Since x̃ = (x, y), x ∈ Z, y ∈ R

1, and the right-hand side of (3.1)
does not depend on y, it follows (see the second condition in (3.4)) that ψ̂n+1

i (t) ≡ ψ̂n+1
i = −ψ0

i γi
on [0, Ti].

Multiplying the adjoint variables ψ0
i and ψ̃i(·) by a positive factor and recalling (3.6) and the

second condition in (3.4), we can assume without loss of generality that

ψ0
i + ‖ψ̂i(0)‖ + ψ0

i

Ti∫

0

∥∥∥∥
∂δj(i)(xi(t))

∂x

∥∥∥∥dt = 1. (3.8)

We define adjoint variables ηi, ψi : [0, Ti] → R
n as

ηi(t) = ψ0
i

∂δj(i)(xi(t))

∂x
, ψi(t) = ψ̂i(t)−

t∫

0

λ(xi(s))ηi(s) ds− ψ0
i

t∫

0

δj(i)(xi(s))
∂λ(xi(s))

∂x
ds.
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In terms of the variables ηi(·) and ψi(·), system (3.2) takes the form (see (2.11))

−ψ̇i(t)
a.e.
=

∫

R2n+1

∂

∂x
H

⎛
⎝F̃i(t, xi(t) + z),

⎛
⎝ψi(t) +

t∫

0

λ(xi(s))ηi(s) ds + ψ0
i

t∫

0

δj(i)(xi(s))
∂λ(xi(s))

∂x
ds, ψ̂n+1

i

⎞
⎠

+

∥∥∥∥∥∥

⎛
⎝ψi(t) +

t∫

0

λ(xi(s))ηi(s) ds+ ψ0
i

t∫

0

δj(i)(xi(s))
∂λ(xi(s))

∂x
ds, ψ̂n+1

i

⎞
⎠
∥∥∥∥∥∥ ṽ

⎞
⎠

× ωj(i)(z) ω̃j(i)(ṽ ) dz dṽ. (3.9)

In view of (3.8), passing to a subsequence if necessary, we can assume that ψ0
i → ψ0 ≥ 0

and ψi(0) = ψ̂i(0) → ψ0, ‖ψ0‖ ≤ 1, as i → ∞. Also, using the condition limi→∞ Ti = T∗ and
Helly’s theorem (see, for example, [13, Theorem 15.1.i]), we can assume that the sequence {ηi(·)}∞i=1

converges weakly as i → ∞ to a regular n-dimensional Borel measure η, suppη ⊂ [0, T∗]; namely,
for every continuous function ξ : [0,∞) → R

n we have

lim
ε→0

lim
i→∞

T∗+ε∫

0

〈ξ(t), ηi(t)〉 dt =
T∗∫

0

ξ(t) dη. (3.10)

Let us prove that condition (1) holds. Let τ ∈ [0, T∗] and either x∗(τ) ∈ intM or x∗(τ) ∈ intG.
Then, according to the definition (1.5) of δi(·), i ∈ N, and the uniform convergence of the sequence
{xi(·)}∞i=1 to x∗(·) on [0, T∗], there exist ε > 0 and δ > 0 such that either xi(t) + εBn ⊂ M or
xi(t) + εBn ⊂ G for all sufficiently large i and all t in the δ-neighborhood of τ in [0, T∗]. Therefore,
for all sufficiently large i, either δj(i)(xi(t)) ≡ 1 or δj(i)(xi(t)) ≡ 0 for all t in the δ-neighborhood of τ
in [0, T∗]. Hence, for all sufficiently large i, we have ηi(t) ≡ 0 in the δ-neighborhood of τ in [0, T∗].
Therefore, being the weak limit of the sequence {ηi(·)}∞i=1, the measure η is concentrated on the set
M = {t ∈ [0, T∗] : x∗(t) ∈ ∂G}. Clearly, the set M is closed and bounded; i.e., it is a compact set
in R

n.
If M = ∅, then condition (1) holds. Suppose that M �= ∅ and y : M → R

n is a continuous
function such that y(t) ∈ TG(x∗(t)), t ∈ M. Since intTG(x) �= ∅, x ∈ G, and the Clarke normal
cone is upper semicontinuous in this case (see [15]), to prove condition (1) we can assume without
loss of generality that there exists a δ > 0 such that y(t) ∈ N∗

δ (t) for all t ∈ M (see [3, Sect. 3]).
Here

Nδ(t) =
{
αy : ‖y − ξ‖ ≤ δ, ξ ∈ NG(x∗(t)), ‖ξ‖ = 1, α ≥ 0

}

is the conical δ-neighborhood of the Clarke normal cone NG(x∗(t)) and N∗
δ (t) is the polar cone

of Nδ(t).
Let us choose an arbitrary τ ∈ M and show that there exists an ε(τ) > 0 such that

∂δj(i)(xi(t))

∂x
∈ Nδ/2(τ), t ∈ [τ − ε(τ), τ + ε(τ)] ∩ [0, Ti], (3.11)

for all sufficiently large i.
Suppose that condition (3.11) fails. Then there exists a sequence τi → τ , i → ∞, such that

∂δj(i)(xi(τi))

∂x
/∈ Nδ/2(τ).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 315 2021



40 S. M. ASEEV

According to the definition of δi(·), we have

∂δj(i)(xi(τi))

∂x
=

∫

Rn

∂δ̃j(i)(xi(τi) + z)

∂x
ωj(i)(z) dz =

∫

{z : j(i)ρ(xi(t)+z,G)≤1}

∂δ̃j(i)(xi(t) + z)

∂x
ωj(i)(z) dz

= j(i)

∫

{z : j(i)ρ(xi(τi)+z,G)≤1}

∂ρ(xi(τi) + z,G)

∂x
ωj(i)(z) dz.

Therefore, there exists a sequence zi → 0, i → ∞, such that

vi =
∂ρ(xi(τi) + zi, G)

∂x
/∈ Nδ/2(τ). (3.12)

Since the distance function ρ( · , G) is Lipschitz continuous with constant 1, we have ‖vi‖ = 1. Note
that vi ∈ NG(ξi), where ξi is a nearest point to xi(τi) + zi in G, and xi(τi) → x∗(τ), zi → 0; hence,
ξi → x∗(τ) as i → ∞. Passing to a subsequence, we obtain vi → v as i → ∞, where ‖v‖ = 1.
Since the Clarke normal cone is upper semicontinuous (in the case under study, intTG(x) �= ∅ for
x ∈ G), we obtain the inclusion v ∈ NG(x∗(τ)), which contradicts condition (3.12). This completes
the proof of condition (3.11).

Reducing ε(τ) > 0 if necessary and recalling that y(t) ∈ N∗
δ (t) for all t ∈ M, we can assume

that y(t) ∈ N∗
δ/2(τ) for all t ∈ M ∩ [τ − ε(τ), τ + ε(τ)]. Therefore,

〈
y(t),

∂δj(i)(xi(t))

∂x

〉
≤ 0, t ∈ M ∩ [τ − ε(τ), τ + ε(τ)].

According to the definition of η, this condition implies that for any point τ ∈ M there exists an
ε(τ) > 0 such that the inequality ∫

M∩[τ−ε1,τ+ε2]

y(t) dη ≤ 0

holds for all 0 < ε1, ε2 ≤ ε(τ). Since the set M is compact, this implies the validity of condition (1).
Lemma 6. For a.e. t ∈ [0, T∗] we have the equality

lim
i→∞

t∫

0

ηi(s) ds =

t∫

0

dη.

Proof. Let τ ∈ [0, T∗] be a continuity point of η, i.e., η(τ) = 0, where η(τ) is the atomic part
of the measure η at the point τ . Let us prove that

lim
k→∞

lim
i→∞

ψ0
i

τ+1/k∫

τ

∥∥∥∥
∂δj(i)(xi(s))

∂x

∥∥∥∥ds = 0. (3.13)

Clearly, if τ /∈ M, condition (3.13) holds. Suppose that τ ∈ M and condition (3.13) is violated.
Then, for some α > 0 and all sufficiently large k, we have

lim
i→∞

ψ0
i

τ+1/k∫

τ

∥∥∥∥
∂δj(i)(xi(s))

∂x

∥∥∥∥ds ≥ α.

Due to the assumption intTG(x) �= ∅, x ∈ G, there exists a number ε > 0 and a vector g ∈ R
n,

‖g‖ = 1, such that g ∈ N∗
ε (τ). According to the definition of δi(·) (see (1.5)), since the sequence
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{xi(·)}∞i=1 converges uniformly to x∗(·) on [0, T∗], for all sufficiently large i and k and every t ∈
[τ − 1/k, τ + 2/k] we have

∂δj(i)(xi(t))

∂x
=

∫

Rn

∂δ̃j(i)(xi(t) + z)

∂x
ωj(i)(z) dz

= j(i)

∫

{z : j(i)ρ(xi(t)+z,G)≤1}

∂ρ(xi(t) + z,G)

∂x
ωj(i)(z) dz ∈ Nε/2(τ).

Therefore, for any u ∈ R
n, ‖u‖ ≤ ε/2, the inclusion

∂δj(i)(xi(t))

∂x
+

∥∥∥∥
∂δj(i)(xi(t))

∂x

∥∥∥∥u ∈ Nε(τ)

holds for all t ∈ [τ − 1/k, τ + 2/k]. Hence we obtain
〈
∂δj(i)(xi(t))

∂x
, g

〉
≤ − ε

2

∥∥∥∥
∂δj(i)(xi(t))

∂x

∥∥∥∥, t ∈
[
τ − 1

k
, τ +

2

k

]
.

Consider a sequence {hk(·)}∞k=1 of continuous functions hk(·) : [0,∞) → [0, 1] such that hk(t) = 1
for t ∈ [τ, τ + 1/k] and hk(t) = 0 for t /∈ [τ − 1/k, τ + 2/k]. Then, for all sufficiently large k,
we have

lim
i→∞

ψ0
i

τ+2/k∫

τ−1/k

〈
∂δj(i)(xi(t))

∂x
, g

〉
hk(t) dt ≤ lim sup

i→∞
ψ0
i

τ+1/k∫

τ

〈
∂δj(i)(xi(t))

∂x
, g

〉
dt

≤ − ε

2
lim sup
i→∞

ψ0
i

τ+1/k∫

τ

∥∥∥∥
∂δj(i)(xi(t))

∂x

∥∥∥∥dt ≤ − εα

2
.

According to the definition of η and the choice of τ , this yields

0 = 〈g, η(τ)〉 = lim
k→∞

lim
i→∞

ψ0
i

τ+2/k∫

τ−1/k

〈
∂δj(i)(xi(t))

∂x
, g

〉
hk(t) dt ≤ − εα

2
.

We have arrived at a contradiction. Therefore, condition (3.13) holds.
The assertion of the lemma now follows from the definition of η, condition (3.13), and the fact

that almost every point of the interval [0, T∗] is a continuity point of η. �
Let us prove that condition (2) holds. To this end, consider the sequence {ψi(·)}∞i=1. Combining

equality (3.9), condition (3.8), and the fact that the set-valued mapping Φi,j(i)(t, ·) is Lipschitz
continuous with constant 2L independent of i, we have ‖ψ̇i(t)‖ ≤ κ(‖ψi(t)‖ + 1), t ∈ [0, Ti], where
κ ≥ 0 is a constant. Therefore, by Gronwall’s lemma (see [13, Lemma 18.1.i]), we can assume without
loss of generality that ψi(·) → ψ(·) in C([0, T∗],Rn) and ψ̇i(·) → ψ̇(·) weakly in L1([0, T∗],Rn)
as i → ∞, where ψ : [0, T∗] → R

n is a Lipschitz function, ψ(0) = ψ0. Since ψi(·) → ψ(·) uniformly
on [0, T∗] as i → ∞ and the sequence {‖ψ̇i(t)‖}∞i=1 is uniformly bounded on [0, T∗], it follows that
the inclusion ψ̇(t) ∈ conv Lsi→∞ ψ̇i(t) holds for a.e. t ∈ [0, T∗], where

Ls
i→∞

ψ̇i(t) =
{
q ∈ R

n : ∃{ij}∞j=1 : ψ̇ij (t) → q, j → ∞
}

is the upper topological limit of the sequence {ψ̇i(t)}∞i=1 as i → ∞. Further, żi(·) → ẋ∗(·) and
ẋi(·) → ẋ∗(·) strongly in L1([0, T∗],Rn), and also ẏi(·) → 0 strongly in L1([0, T∗],R1) as i → ∞.
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Therefore, passing to a subsequence if necessary, we can assume that żi(t) → ẋ∗(t), ẋi(t) → ẋ∗(t),
and ẏi(t) → 0 as i → ∞ for a.e. t ∈ [0, T∗]. Moreover, by Lemma 6, the equality

∫ t
0 dη =

limi→∞
∫ t
0 ηi(s) ds holds for a.e. t ∈ [0, T∗]. Now we fix an arbitrary t ∈ [0, T∗] for which all

the above conditions are satisfied.
Let q ∈ Lsi→∞ ψ̇i(t). Passing to a subsequence if necessary, we assume that ψ̇i(t) → q as i → ∞

and ‖żi(t)− x∗(t)‖ ≤ 1/i, i ∈ N. Let us prove the inclusion

q ∈ conv

⎧⎨
⎩u :

⎛
⎝u, ψ(t) +

t∫

0

λ(x∗(s)) dη + ψ0

t∫

0

δM (x∗(s))
∂λ(x∗(s))

∂x
ds

⎞
⎠

∈ N̂graphF (·)(x∗(t), ẋ∗(t))

⎫⎬
⎭ . (3.14)

To this end, it suffices to consider the case where limi→∞
(
ψ̂i(t), ψ̂

n+1
i

)
�= 0. Indeed, in view of (3.9)

we have

‖ψ̇i(t)‖ ≤ 2L
∥∥(ψ̂i(t), ψ̂

n+1
i

)∥∥
(
1 +

1

3i

)
.

Hence, if limi→∞
(
ψ̂i(t), ψ̂

n+1
i

)
= 0, in view of (2.24) we obtain

⎛
⎝q, ψ(t) +

t∫

0

λ(x∗(s)) dη + ψ0

t∫

0

δM (x∗(s))
∂λ(x∗(s))

∂x
ds

⎞
⎠ = lim

i→∞
(ψ̇i(t), ψ̂i(t))

= 0 ∈ N̂graphF (·)(x∗(t), ẋ∗(t)).

Therefore, in the case of limi→∞
(
ψ̂i(t), ψ̂

n+1
i

)
= 0 condition (2) holds.

So, suppose that limi→∞
(
ψ̂i(t), ψ̂

n+1
i

)
�= 0. Then

(
ψ̂i(t), ψ̂

n+1
i

)
�= 0 for all sufficiently large i.

By [6, Lemma 4] in this case for a.e. (z, ṽ ), z ∈ R
n, ṽ = (v, vn+1), v ∈ R

n, vn+1 ∈ R
1, we have the

inclusion(
− ∂

∂x
H
(
F̃i(t, xi(t) + z), ψ̃i(t) + ‖ψ̃i(t)‖ṽ

)
, ψ̃i(t) + ‖ψ̃i(t)‖ṽ

)
∈ Γ

graph ˜Fi(t,· )
(
xi(t) + z, p̃i(z, ṽ )

)
,

where

p̃i(z, ṽ ) =
(
pi(z, ṽ ), p

n+1
i (z, ṽ )

)
=

∂

∂(ψ,ψn+1)
H
(
F̃i(t, xi(t) + z), ψ̃i(t) + ‖ψ̃i(t)‖ṽ

)

is the unique supporting vector in the direction ψ̃i(t) + ‖ψ̃i(t)‖ṽ from the set Φi(t, xi(t) + z) =
conv F̃i(t, xi(t) + z), and Γ

graph ˜Fi(t,· )(xi(t) + z, p̃i(z, ṽ )) is the subnormal cone (i.e., the polar cone
of the contingent cone2) to the set graph F̃i(t, ·) at the point (xi(t) + z, p̃i(z, ṽ )). Note that the
uniqueness of p̃i(z, ṽ ) implies the inclusion p̃i(z, ṽ ) ∈ F̃i(t, xi(t) + z).

By the maximum condition (3.3), since the sets Φi,j(i)(t, x) are strictly convex, we have

(ẋi(t), ẏi(t)) =

∫

R2n+1

∂

∂(ψ,ψn+1)
H
(
F̃i(t, xi(t) + z), ψ̃i(t) + ‖ψ̃i(t)‖ṽ

)
ωj(i)(z) ω̃j(i)(ṽ ) dz dṽ

+
2(L+ S)

3i
ψ̃i(t)

‖ψ̃i(t)‖
.

2Recall that the contingent cone to a set A at a point ξ ∈ A is the set KA(ξ) = {v : ∃ vi → v, ∃αi → +0:
ξ + αivi ∈ A} (see [21]). Accordingly, ΓA(ξ) = K∗

A(ξ) = {p : 〈p, v〉 ≤ 0 ∀ v ∈ KA(ξ)}.
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This equality, together with the relation limi→∞ ẏi(t) = 0, implies

lim
i→∞

∫

R2n+1

∂

∂ψn+1
H
(
F̃i(t, xi(t) + z), ψ̃i(t) + ‖ψ̃i(t)‖ṽ

)
ωj(i)(z) ω̃j(i)(ṽ ) dz dṽ = 0.

By the definition of the set-valued mapping F̃i( · , ·) (see (2.1)), we have

∂

∂ψn+1
H
(
F̃i(t, xi(t) + z), ψ̃i(t) + ‖ψ̃i(t)‖ṽ

)
=

∥∥∥∥ ∂

∂ψ
H
(
F̃i(t, xi(t) + z), ψ̃i(t) + ‖ψ̃i(t)‖ṽ

)
− żi(t)

∥∥∥∥.
Therefore,

lim
i→∞

∫

R2n+1

∥∥∥∥ ∂

∂ψ
H
(
F̃i(t, xi(t) + z), ψ̃i(t) + ‖ψ̃i(t)‖ṽ

)
− żi(t)

∥∥∥∥ωj(i)(z) ω̃j(i)(ṽ ) dz dṽ = 0.

Hence, we can choose the number i(k) ≥ k in such a way that∫

R2n+1

∥∥∥∥ ∂

∂ψ
H
(
F̃i(k)(t, xi(k)(t)+z), ψ̃i(k)(t)+‖ψ̃i(k)(t)‖ṽ

)
− żi(k)(t)

∥∥∥∥ωj(i(k))(z) ω̃j(i(k))(ṽ ) dz dṽ ≤ 1

k2
.

Setting

Λk =

{
(z, ṽ ) ∈ R

2n+1 :

∥∥∥∥ ∂

∂ψ
H
(
F̃i(k)(t, xi(k)(t) + z), ψ̃i(k)(t) + ‖ψ̃i(k)(t)‖ṽ

)
− żi(k)(t)

∥∥∥∥ ≥ 1

k

}
,

we find that for any k ∫

Λk

ωj(i(k))(z) ω̃j(i(k))(ṽ ) dz dṽ ≤ 1

k
. (3.15)

Since the set-valued mapping F̃i(t, ·) is Lipschitz continuous with the constant 2L independent of i
and the sequence {‖ψ̃i(k)(t)‖}∞i=1 is bounded, we can assume that

∫

Λk

∥∥∥∥ ∂

∂x
H
(
F̃i(k)(t, xi(k)(t) + z), ψ̃i(k)(t) + ‖ψ̃i(k)(t)‖ṽ

)∥∥∥∥ωj(i(k))(z) ω̃j(i(k))(ṽ ) dz dṽ ≤ κ1
k
, (3.16)

where κ1 ≥ 0 is a constant.
Consider the vector(
− ∂

∂x
H
(
F̃i(k)(t, xi(k)(t) + z), ψ̃i(k)(t) + ‖ψ̃i(k)(t)‖ṽ

)
, ψ̃i(k)(t) + ‖ψ̃i(k)(t)‖ṽ

)

∈ Γ
graph ˜Fi(k)(t,· )

(
xi(k)(t) + z, p̃k(z, ṽ )

)
,

where (z, ṽ ) ∈ R
2n+1 \ Λk and p̃k(z, ṽ ) = (pk(z, ṽ ), p

n+1
k (z, ṽ )):

pk(z, ṽ ) =
∂

∂ψ
H
(
F̃i(k)(t, xi(k)(t) + z), ψ̃i(k)(t) + ‖ψ̃i(k)(t)‖ṽ

)
,

pn+1
k (z, ṽ ) =

∥∥∥∥ ∂

∂ψ
H
(
F̃i(k)(t, xi(k)(t) + z), ψ̃i(k)(t) + ‖ψ̃i(k)(t)‖ṽ

)
− żi(k)(t)

∥∥∥∥.
Since ‖żi(k)(t) − ẋ∗(t)‖ ≤ 1/k, we can assume (based on the definition of the sets Λk) that

‖pk(z, ṽ )− ẋ∗(t)‖ ≤ 2/k for a.e. (z, ṽ ) ∈ R
2n+1 \ Λk.

Let
(u,w) ∈ KgraphF (·)

(
xi(k)(t) + z, pk(z, ṽ )

)
, ‖(u,w)‖ = 1.
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Then, by the definition of the contingent cone, there exists a number β, |β| ≤ 1, such that

(u,w, β) ∈ Kgraph ˜Fi(k)(t,· )
(
xi(k)(t) + z, p̃k(z, ṽ )

)
.

So, for a.e. (z, ṽ ) ∈ R
2n+1 \ Λk such that ṽ = (v, vn+1) ∈ supp ω̃j(i(k))(·), we have

〈
u,− ∂

∂x
H
(
F̃i(k)(t, xi(k)(t) + z), ψ̃i(k)(t) + ‖ψ̃i(k)(t)‖ṽ

)〉
+
〈
w, ψ̂i(k)(t) + ‖ψ̃i(k)(t)‖v

〉

≤ −β
(
ψ̂n+1
i(k) + ‖ψ̃i(k)(t)‖vn+1

)
≤
∣∣ψ̂n+1

i(k)

∣∣+ ‖ψ̃i(k)(t)‖
1

3j(i(k))
.

Therefore, there exists a vector ζk(z, ṽ ) ∈ R
2n, ‖ζk(z, ṽ )‖ ≤

∣∣ψ̂n+1
i(k)

∣∣+ ‖ψ̂i(k)(t)‖ · 3−j(i(k)), such that

(
− ∂

∂x
H
(
Fi(k)(t, xi(k)(t) + z), ψ̃i(k)(t) + ‖ψ̃i(k)(t)‖ṽ

)
, ψ̂i(k)(t) + ‖ψ̃i(k)(t)‖v

)

∈ ΓgraphF (·)
(
xi(k)(t) + z, p̃i(k)(z, ṽ )

)
+ ζk(z, ṽ ).

Fix an arbitrary ε > 0. Since the equality

N̂graphF (·)(x, y) = Ls

(xj ,yj)
graphF (·)−−−−−−→(x,y)

ΓgraphF (·)(xj , yj)

holds (see [21]) and the graph of the set-valued mapping N̂graphF (·)( · , ·) on the set graphF (·) is
closed, there exists a δ > 0 such that the inequality ‖(x, y) − (x∗(t), ẋ∗(t))‖ ≤ δ implies the inclusion

N̂ r
graphF (·)(x, y) ⊂ N̂ r

graphF (·)(x∗(t), ẋ∗(t)) + εB2n,

where
N̂ r

graphF (·)(x, y) = rB2n ∩ N̂graphF (·)(x, y)

and r is a positive number such that for all k we have 2(2L + 1)‖ψ̃i(k)(t)‖ ≤ r for a.e. (z, ṽ ) ∈
R
2n+1 \ Λk with ṽ = (v, vn+1) ∈ supp ω̃j(i(k))(·). Using the fact that the set-valued mapping F̃i(t, ·)

is Lipschitz continuous with the constant 2L independent of i, we obtain the inequality
∥∥∥∥
(
− ∂

∂x
H
(
Fi(k)(t, xi(k)(t) + z), ψ̃i(k)(t) + ‖ψ̃i(k)(t)‖ṽ

)
, ψ̂i(k)(t) + ‖ψ̃i(k)(t)‖v

)∥∥∥∥ ≤ r.

Since the quantity ψ̂n+1
i(k) = −ψ0

i(k)γi(k) is independent of z and ṽ and limi→∞ ψ̂n+1
i(k) = 0, it follows

that for all sufficiently large k the inclusion
(
− ∂

∂x
H
(
F̃i(k)(t, xi(k)(t) + z), ψ̃i(k)(t) + ‖ψ̃i(k)(t)‖ṽ

)
, ψ̂i(k)(t) + ‖ψ̃i(k)(t)‖v

)

∈ N̂graphF (·)(x∗(t), ẋ∗(t)) + εB2n

holds on the set R
2n+1 \ Λi(k). Therefore, on this set we have

− ∂

∂x
H
(
F̃i(k)(t, xi(k)(t) + z), ψ̃i(k)(t) + ‖ψ̃i(k)(t)‖ṽ

)

∈
{
u :

(
u, ψ̂i(k)(t) + ‖ψ̃i(k)(t)‖v

)
∈ N̂graphF (·)(x∗(t), ẋ∗(t)) + εB2n, ‖u‖ ≤ 4L‖ψ̃i(k)(t)‖

}
.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 315 2021



REFINED EULER–LAGRANGE INCLUSION 45

Using this inclusion, conditions (3.15) and (3.16), the condition

lim
i→∞

ψ̂i(t) = ψ(t) +

t∫

0

λ(x∗(s)) dη + ψ0

t∫

0

δM (x∗(s))
∂λ(x∗(s))

∂x
ds,

and the fact that the cone N̂graphF (·)(x∗(t), ẋ∗(t)) is closed and ε > 0 is arbitrary, from (3.9) we
obtain inclusion (3.14). Condition (2) is proved.

Let us prove that condition (3) holds. For i ∈ N we define functions pi(·) and qi(·) as

pi(t) = Hi

⎛
⎝t, xi(t),

⎛
⎝ψi(t) +

t∫

0

λ(xi(s))ηi(t) dt+ ψ0
i

t∫

0

δj(i)(xi(s))
∂λ(xi(s))

∂x
ds, ψ̂n+1

i

⎞
⎠
⎞
⎠,

qi(t) = ψ0
i λ(xi(t))δj(i)(xi(t)).

Then hi(t) = pi(t)− qi(t) for t ∈ [0, Ti] (see (3.7)).
By Lemma 1, Theorem 1, the second condition in (3.4), and the constraint at time t = 0

(see (2.4)), we have

lim
i→∞

pi(0) = H(F (x∗(0)), ψ(0)) and lim
i→∞

qi(0) = ψ0λ(x∗(0))δM (x∗(0)),

which implies the boundedness of the sequence {|hi(0)|}∞i=1.
By condition (3.5) we have

ḣi(t)
a.e.
∈ ∂tHi

⎛
⎝t, xi(t),

⎛
⎝ψi(t) +

t∫

0

λ(xi(s))ηi(t) dt+ ψ0
i

t∫

0

δj(i)(xi(s))
∂λ(xi(s))

∂x
ds, ψ̂n+1

i

⎞
⎠
⎞
⎠.

By virtue of (2.11) and [15, Theorems 2.7.2, 2.8.2], for a.e. t and arbitrary x and ψ̃ = (ψ̂, ψ̂n+1) we
have the inclusions

∂tHi(t, x, ψ̃) ⊂
∫

Rn+1

∂t max
u∈F (x+z)

(〈
u, ψ̂ + ‖ψ̃‖v

〉
+ ‖u− żi(t)‖

(
ψ̂n+1 + ‖ψ̃‖vn+1

))

× ωj(i)(z) ω̃j(i)(ṽ ) dz dṽ

⊂
∫

R2n+1

{(
ψ̂n+1 + ‖ψ̃‖vn+1

) ⋃
u∈F (x+z)

∂t‖u− żi(t)‖ωj(i)(z) ω̃j(i)(ṽ )

}
dz dṽ.

Hence, using the equality ψ̂n+1
i = −ψ0

i γi, we obtain

|ḣi(t)|
a.e.
≤

∫

R2n+1

Ki

(
ψ0
i γi +

1

3j(i)
‖ψ̃i(t)‖

)
ωj(i)(z) ω̃j(i)(ṽ ) dz dṽ.

In view of the conditions limi→∞Kiγi = 0 and limi→∞ 3−j(i)Ki = 0 (see Theorem 1), this inequality
implies that the sequence {ḣi(·)}∞i=1 converges to zero in L∞([0, T∗],R1) as i → ∞. Therefore,
without loss of generality we can assume that

lim
i→∞

hi(t) = h(t) ≡ H(F (x∗(0)), ψ(0)) − ψ0λ(x∗(0))δM (x∗(0)), t ∈ [0, T∗]. (3.17)
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According to the definition of η (see (3.10)) and the terminal constraint at time Ti (see (2.4)),
we have

h(T∗) = lim
i→∞

hi(Ti) = lim
i→∞

(
pi(Ti)− ψ0

i λ(xi(Ti))δj(i)(xi(Ti))
)

= H

⎛
⎝F (x∗(T∗)), ψ(T∗) +

T∗∫

0

λ(x∗(s)) dη + ψ0

T∗∫

0

δM (x∗(s))
∂λ(x∗(s))

∂x
ds

⎞
⎠

− ψ0λ(x∗(T∗))δM (x∗(T∗)).

Thus, in view of (3.17), we have shown that condition (3) holds at time T∗.
Let τ ∈ [0, T∗) be a point of right approximate continuity of δM (x∗(·)). Then the function

δM (x∗(·)) is right-continuous at the point τ along some measurable set E for which τ ∈ E is a right
density point. By Corollary 1, we can assume without loss of generality that limi→∞ δj(i)(xi(t)) =
δM (x∗(t)) for a.e. t ∈ E. Therefore, there exists a sequence {τk}∞k=1, τk ∈ E, such that τk → τ + 0
and limi→∞ δj(i)(xi(τk)) = δM (x∗(τk)). Hence, passing to a subsequence of {τk}∞k=1 if necessary, we
can assume without loss of generality that limi→∞ δj(i)(xi(τi)) = δM (x∗(τ)). Moreover, according
to the definition of η (see (3.10)), we can assume that

τ∫

0

λ(x∗(s)) dη = lim
i→∞

τi∫

0

λ(xi(s))ηi(s) ds.

Therefore,

h(τ) = lim
i→∞

hi(τi) = lim
i→∞

(
pi(τi)− ψ0

i λ(xi(τi))δj(i)(xi(τi))
)

= H

⎛
⎝F (x∗(τ)), ψ(τ) +

τ∫

0

λ(x∗(s)) dη + ψ0

τ∫

0

δM (x∗(s))
∂λ(x∗(s))

∂x
ds

⎞
⎠− ψ0λ(x∗(τ))δM (x∗(τ)).

In view of (3.17), this implies that condition (3) holds for every point t ∈ [0, T∗) of right approximate
continuity of δM (x∗(·)). Condition (3) is proved.

Since the cone of generalized normals N̂
˜M i
(·) to the closed set M̃ i, i = 0, 1, is upper semicon-

tinuous and the generalized gradient ∂̂ϕ( · , · , ·) of the locally Lipschitz continuous function ϕ( · , · , ·)
is also upper semicontinuous, condition (4) follows from Theorem 1 and the transversality condi-
tion (3.4).

Finally, let us prove that condition (5) holds. Suppose that ψ0 = 0 and ψ(0) = 0. Let us show
that then ‖η‖ �= 0. Indeed, in this case condition (3.8) yields the equality

lim
i→∞

ψ0
i

Ti∫

0

∥∥∥∥
∂δj(i)(xi(t))

∂x

∥∥∥∥ dt = 1. (3.18)

According to the definition of δi(·) (see (1.5)), this means that

lim
i→∞

ψ0
i j(i)

∫

{t∈[0,Ti] : j(i)ρ(xi(t),G)≤1}

∥∥∥∥∥∥
∫

Rn

∂ρ(xi(t) + z,G)

∂x
ωj(i)(z) dz

∥∥∥∥∥∥ dt = 1. (3.19)

Therefore, M = {t : x∗(t) ∈ ∂G} �= ∅; indeed, otherwise by Theorem 1 for all sufficiently large i
we would have ∂ρ(xi(t) + z,G)/∂x ≡ 0 for all t ∈ [0, Ti] and z ∈ suppωj(i)(·), which would
contradict (3.19).
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Since intTG(x) �= ∅, x ∈ G, there exists a δ > 0 such that for every τ ∈ M one can find a vector
g(τ) ∈ R

n, ‖g(τ)‖ = 1, for which the following inclusion holds:
{
y : ‖y − g(τ)‖ ≤ 2δ

}
⊂ TG(x∗(τ)).

Therefore,

〈g(τ), ξ〉 ≤ −2δ‖ξ‖, ξ ∈ NG(x∗(τ)). (3.20)

Next, for any τ ∈ M there exists an ε(τ) > 0 such that

∂δj(i)(xi(t))

∂x
∈ Nδ/2(τ), t ∈ [τ − ε(τ), τ + ε(τ)] ∩ [0, Ti],

for all sufficiently large i (see (3.11)). In this case, in view of (3.20), for all sufficiently large i
we have 〈

g(τ),
∂δj(i)(xi(t))

∂x

〉
≤ −δ

∥∥∥∥
∂δj(i)(xi(t))

∂x

∥∥∥∥, t ∈ [τ − ε(τ), τ + ε(τ)] ∩ [0, Ti].

By Lemma 6, choosing sufficiently small numbers 0 < ε1(τ) ≤ ε(τ) and 0 < ε2(τ) ≤ ε(τ), we can
assume that the equality

lim
i→∞

τ+ε2(τ)∫

τ−ε1(τ)

〈g(τ), ηi(t)〉 dt =
τ+ε2(τ)∫

τ−ε1(τ)

g(τ) dη (3.21)

holds for all τ ∈ M. Further, since the set M is compact, there exists a finite set of points {τk}Nk=1,
τk ∈ M, such that

M ⊂
N⋃
k=1

[
τk − ε1(τk), τk + ε2(τk)

]
. (3.22)

Then, using the fact that 〈g(τk), ∂δj(i)(xi(t))/∂x〉 is negative for all sufficiently large i and all
t ∈ [τk − ε1(τk), τk + ε2(τk)] ∩ [0, Ti], k = 1, . . . , N , we obtain

ψ0
i

N∑
k=1

∫

[τk−ε1(τk),τk+ε2(τk)]∩[0,Ti]

〈
g(τk),

∂δj(i)(xi(t))

∂x

〉
dt

≤ ψ0
i

∫
⋃N

k=1{[τk−ε1(τk),τk+ε2(τk)]∩[0,Ti]}

〈
g(τk),

∂δj(i)(xi(t))

∂x

〉
dt

≤ −δψ0
i

∫
⋃N

k=1{[τk−ε1(τk),τk+ε2(τk)]∩[0,Ti]}

∥∥∥∥
∂δj(i)(xi(t))

∂x

∥∥∥∥dt.

By conditions (3.18) and (3.22), passing to the limit on the left- and right-hand sides of the last
inequality, we obtain

N∑
k=1

∫

[τk−ε1(τk),τk+ε2(τk)]

g(τk) dη ≤ −δ < 0.

Therefore, ‖η‖ �= 0, and condition (5) is established. This completes the proof of Theorem 2. �
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4. NONDEGENERACY CONDITIONS

The result proved in the previous section (Theorem 2) is similar in form to the necessary opti-
mality conditions obtained in [6] in the case of an optimal control problem for a differential inclusion
with state constraints. Just as in [6, Theorem 1] (as well as in a number of other versions of the
Pontryagin maximum principle for problems with state constraints), a Borel measure η appears
in the relations of Theorem 2, which may lead to a situation where any admissible trajectory
satisfies these relations. In this case Theorem 2 does not provide any meaningful information, i.e.,
it degenerates. So conditions that would guarantee the nondegeneracy of Theorem 2 are of interest.
For more details on the degeneration of necessary optimality conditions for problems with state
constraints, see [2, § 2.4] and [3, Sect. 6] (see also [1, 4, 17, 18]).

The following result shows that in the abnormal case (i.e., for ψ0 = 0) condition (3) of Theorem 2
implies condition (a) of [6, Theorem 1] (condition (b) of [3, Theorem 1]). This allows us to investigate
the question of nondegeneracy of Theorem 2 in the same way as it was done in [3, 6] for problems
with state constraints.

Lemma 7. Suppose that an admissible trajectory x∗(·) is defined on an interval [0, T∗], T∗ > 0,
and satisfies the conditions of Theorem 2 together with adjoint variables ψ0 = 0, ψ(·) and a mea-
sure η. Then, for every τ ∈ [0, T∗], we have

H

⎛
⎝F (x∗(τ)), ψ(τ) +

τ∫

0

λ(x∗(s)) dη

⎞
⎠= H

⎛
⎝F (x∗(τ)), ψ(τ) +

τ∫

0

λ(x∗(s)) dη − λ(x∗(τ))η(τ)

⎞
⎠. (4.1)

Proof. Since ψ0 = 0, condition (3) of Theorem 2 at t = T∗ as well as at all points t ∈ [0, T∗)
of right approximate continuity of δM (x∗(·)) takes the form

H

⎛
⎝F (x∗(t)), ψ(t) +

t∫

0

λ(x∗(s)) dη

⎞
⎠ = H(F (x∗(0)), ψ(0)). (4.2)

Since the function H(F (·), ·) is continuous and the function t → ψ(t) +
∫ t
0 λ(x∗(s)) dη is right-

continuous, from condition (4.2) we find that for any τ ∈ (0, T∗]

H

⎛
⎝F (x∗(τ)), ψ(τ) +

τ∫

0

λ(x∗(s)) dη − λ(x∗(τ))η(τ)

⎞
⎠

= lim
t→τ−0

H

⎛
⎝F (x∗(t)), ψ(t) +

t∫

0

λ(x∗(s)) dη

⎞
⎠ = H(F (x∗(0)), ψ(0)).

Similarly, since the function t → ψ(t) +
∫ t
0 λ(x∗(s)) dη is right-continuous, it also follows from

condition (4.2) that for any τ ∈ (0, T∗]

H

⎛
⎝F (x∗(τ)), ψ(τ) +

τ∫

0

λ(x∗(s)) dη

⎞
⎠ = H(F (x∗(0)), ψ(0)).

Thus, (4.1) holds for every τ ∈ (0, T∗].
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Further, since (4.1) holds for a.e. t ∈ (0, T∗) and the function H(F (·), ·) is continuous, we have

H
(
F (x∗(0)), ψ(0) + λ(x∗(0))η(0)

)
= lim

t→0+0
H

⎛
⎝F (x∗(t)), ψ(t) +

t∫

0

λ(x∗(s)) dη

⎞
⎠

= H(F (x∗(0)), ψ(0)).

Thus, condition (4.1) is satisfied at the point τ = 0 as well. �
Let us show that we can use this result to obtain nondegeneracy and pointwise nontriviality

conditions for Theorem 2 similar to the well-known conditions for nondegeneracy and pointwise
nontriviality of the maximum principle for problems with state constraints (see [3, 6]). The proofs
are based on the use of condition (4.1) and are of technical character.

Following [3], we say that an admissible trajectory x∗(·) defined on [0, T∗] is controllable at the
endpoints x∗(0) and x∗(T∗) (with respect to the set G) if

H(F (x∗(0)),−g0) > 0 for any g0 ∈ NG(x∗(0)) ∩
[
−N̂

˜M0
(x∗(0))

]
, g0 �= 0,

and
H(F (x∗(T∗)), g1) > 0 for any g1 ∈ NG(x∗(T∗)) ∩

[
−N̂

˜M1
(x∗(T∗))

]
, g1 �= 0.

Theorem 3. Let an admissible trajectory x∗(·) be controllable at the endpoints x∗(0) and x∗(T∗)
and satisfy the conditions of Theorem 2. Then the following nondegeneracy condition holds :

ψ0 +meas

⎧⎨
⎩t ∈ [0, T∗] : ψ(t) +

t∫

0

λ(x∗(s))dη + ψ0

t∫

0

δM (x∗(s))
∂λ(x∗(s))

∂x
ds �= 0

⎫⎬
⎭ > 0.

Proof. Suppose that the assertion of the theorem is false. Then

ψ0 = 0 and ψ(t) +

t∫

0

λ(x∗(s))dη = 0 for a.e. t ∈ [0, T∗]. (4.3)

Since ψ0 = 0, it follows from Lemma 7 that condition (4.1) holds for any t ∈ [0, T∗]. This condition
coincides with the measure-jump condition (b) in [3, Theorem 1], which allows us to follow the
scheme of the proof of Theorem 2 in [3]. Indeed, by condition (2) of Theorem 2, we have

‖ψ̇(t)‖ ≤ κ

∥∥∥∥∥∥ψ(t) +
t∫

0

λ(x∗(s)) dη

∥∥∥∥∥∥
for a.e. t ∈ [0, T∗], where κ ≥ 0 is a constant. Therefore, ψ(t) ≡ ψ(0) and

h(t) = H

⎛
⎝F (x∗(t)), ψ(t) +

t∫

0

dη

⎞
⎠ ≡ H(F (x∗(0)), ψ(0)) = 0, t ∈ [0, T∗].

Further, using (4.3) we obtain ψ(0) + λ(x∗(0))η(0) = 0. If x∗(0) ∈ M , then η(0) = 0, so ψ(0) = 0.
Suppose that x∗(0) ∈ G. Then, by condition (1) of Theorem 2, the inclusion η(0) ∈ NG(x∗(0)) holds,
and hence ψ(0) = −λ(x∗(0))η(0) ∈ −NG(x∗(0)). On the other hand, by condition (4) of Theorem 2
we have ψ(0) ∈ N̂

˜M (x∗(0)). Therefore, due to the controllability of x∗(·) at the point x∗(0), we
again obtain the equalities ψ(0) = η(0) = 0. Using them together with the identity ψ(t) ≡ ψ(0),
t ∈ [0, T∗], and the second equality in (4.3), which is valid for a.e. t ∈ [0, T∗], we find that the
measure η vanishes on [0, T∗).
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Consider the point t = T∗. Using equality (4.1) at time T∗, we derive the following equality:
H(F (x∗(T∗)), λ(x∗(T∗))η(T∗)) = 0. Further, applying condition (1) of Theorem 2, we find that
λ(x∗(T∗))η(T∗) ∈ NG(x∗(T∗)), and by condition (4) we obtain λ(x∗(T∗))η(T∗) ∈ −N̂

˜M1
(x∗(T∗)).

Since the trajectory x∗(·) is controllable at x∗(T∗), we therefore have η(x∗(T∗)) = 0. Thus, we have
shown that ψ(0) = 0 and the measure η is zero, which contradicts the nontriviality condition (5) of
Theorem 2. Hence, condition (4.3) leads to a contradiction. �

Theorem 4. Let an admissible trajectory x∗(·) be controllable at the endpoints x∗(0) and x∗(T∗)
and satisfy the conditions of Theorem 2. Suppose in addition that

H
(
F (x∗(t)), (−1)ig

)
> 0 ∀g ∈ NG(x∗(t)), t ∈ (0, T∗), i = 1, 2. (4.4)

Then

ψ0 +

∥∥∥∥∥∥ψ(t) +
t∫

0

λ(x∗(s)) dη + ψ0

t∫

0

δM (x∗(s))
∂λ(x∗(s))

∂x
ds

∥∥∥∥∥∥ > 0, t ∈ (0, T∗). (4.5)

Proof. Consider the set

Δ =

⎧⎨
⎩t ∈ (0, T∗) : ψ(t) +

t∫

0

λ(x∗(s)) dη = 0

⎫⎬
⎭ .

Suppose that condition (4.5) is violated. Then ψ0 = 0 and Δ �= ∅. Therefore, by Lemma 7,
condition (4.1) holds for any t ∈ [0, T∗]. Further, repeating the arguments used in the proof of
Theorem 4 in [3] and employing condition (4.1), the controllability of x∗(·) at the endpoints x∗(0)
and x∗(T∗), condition (4.4), and the definition of η, we can show that the set Δ is both open and
closed with respect to the interval (0, T∗). Therefore, Δ = (0, T∗). Thus, in this case, we have

ψ0 +

∥∥∥∥∥∥ψ(t) +
t∫

0

λ(x∗(s)) dη + ψ0

t∫

0

δM (x∗(s))
∂λ(x∗(s))

∂x
ds

∥∥∥∥∥∥ = 0

for all t ∈ (0, T∗). However, this contradicts the assertion of Theorem 3. �

5. EXAMPLE

Consider the following optimal control problem (Pλ):

Jλ(T, x(·)) = T + λ

T∫

0

δM (x(t)) dt → min, (5.1)

{
ẋ1(t) = u1(t),

ẋ2(t) = u2(t),
u(t) = (u1(t), u2(t)) ∈ U =

{
u ∈ R

2 : ‖u‖ ≤ 1
}
, (5.2)

x(0) = x0 = (x1(0), x2(0)) = (−1, 0), x(T ) = x1 = (x1(T ), x2(T )) = (1, 0).

Here T > 0 is the free terminal time of the control process, λ > 0, and

M =
{
x ∈ R

2 : ‖x‖ < 1
}
.

In this case, G = R
2 \ M = {x ∈ R

2 : ‖x‖ ≥ 1}. Clearly, for any λ > 0 problem (Pλ) is a
particular case of problem (P ). Since the integral part of the functional (5.1) is lower semicontinuous
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(see [8, Theorem 1]), there exists an optimal admissible trajectory xλ(·) in problem (Pλ). Let Tλ > 0
be the corresponding optimal time. It is easy to see that Tλ ≤ π.

The optimal trajectory xλ(·) satisfies the conditions of Theorem 2. Therefore, there exists
a number ψ0

λ ≥ 0, an absolutely continuous function ψλ(·) = (ψ1
λ(·), ψ2

λ(·)), and a regular two-
dimensional Borel measure ηλ = (η1λ, η

2
λ) for which conditions (1)–(5) of Theorem 2 hold.

Since the right-hand side of (5.2) is independent of the state variable x and F (x) ≡ U = B
2,

x ∈ R
2, the refined Euler–Lagrange inclusion (see condition (2) of Theorem 2) in this case reads

ψ̇λ(t) = 0, ψλ(t) + λ

t∫

0

dηλ ∈ NU (ẋλ(t)).

Here NU (ẋλ(t)) is the normal cone (in the sense of convex analysis) to the unit ball U = B
2 at the

point ẋλ(t) ∈ U . Therefore, for a.e. t ∈ [0, Tλ] we have the equalities

ψ̇λ(t) = 0,

〈
ψλ(t) + λ

t∫

0

dηλ, ẋλ(t)

〉
=

∥∥∥∥∥∥ψλ(t) + λ

t∫

0

dηλ

∥∥∥∥∥∥ . (5.3)

Further, the optimal trajectory xλ(·) is controllable at the endpoints x0 and x1 (with respect to
the set G) and condition (4.4) holds. Hence, by Theorem 4, the trajectory xλ(·), the adjoint variables
ψ0
λ and ψλ(·) (ψλ(t) ≡ ψλ), and the measure ηλ satisfy the pointwise nontriviality condition (4.5):

ψ0
λ +

∥∥∥∥∥∥ψλ + λ

t∫

0

dηλ

∥∥∥∥∥∥ > 0, t ∈ (0, Tλ). (5.4)

Let us show that the following stronger condition holds in problem (Pλ):

ψ0
λ > 0 and

∥∥∥∥∥∥ψλ + λ

t∫

0

dηλ

∥∥∥∥∥∥ > 0, t ∈ [0, Tλ]. (5.5)

We begin with showing that ψ0
λ > 0. Indeed, suppose that ψ0

λ = 0. Then, by conditions (3)
and (4) of Theorem 2, for t = Tλ we have

‖ψλ‖ = H(F (x0), ψλ) = H

⎛
⎝F (x1), ψλ + λ

Tλ∫

0

dηλ

⎞
⎠ =

∥∥∥∥∥∥ψλ + λ

Tλ∫

0

dηλ

∥∥∥∥∥∥ = 0.

In addition, for ψ0
λ = 0, by Lemma 7, equality (4.1) holds for any t ∈ [0, Tλ). Since the function

t →
∫ t
0 dηλ is right-continuous on [0, Tλ), we then obtain the equality

∥∥∥∥∥∥ψλ + λ

t∫

0

dηλ

∥∥∥∥∥∥ = 0

for any t ∈ [0, Tλ], which, combined with the assumption ψ0
λ = 0, contradicts equality (5.4). There-

fore, for any λ > 0, Theorem 2 holds for problem (Pλ) with ψ0
λ > 0. The first condition in (5.5) is

proved.
Let us prove the second condition in (5.5). By conditions (3) and (4) of Theorem 2, we have

∥∥∥∥∥∥ψλ + λ

t∫

0

dηλ

∥∥∥∥∥∥ =

∥∥∥∥∥∥ψλ + λ

Tλ∫

0

dηλ

∥∥∥∥∥∥ = ‖ψλ‖ = ψ0
λ > 0 (5.6)
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for a.e. t ∈ [0, Tλ]. Since the function t →
∫ t
0 dηλ is right-continuous on [0, Tλ), this implies the

second condition in (5.5).
Without loss of generality, we will assume that ψ0

λ = 1. Then, in view of (5.5) and (5.6), we have∥∥∥∥∥∥ψλ + λ

t∫

0

dηλ

∥∥∥∥∥∥ ≡ 1, t ∈ [0, Tλ]. (5.7)

According to the second equality in (5.3), this means that

ẋλ(t)
a.e.
= ψλ + λ

t∫

0

dηλ, ‖ẋλ(t)‖
a.e.
= 1. (5.8)

Thus, the optimal trajectory xλ(·) always has the maximum (unit) velocity and may only lie on
the boundary ∂M = {x ∈ R

2 : ‖x‖ = 1} of the open ball M = {x ∈ R
2 : ‖x‖ < 1} or on straight

line segments connecting its boundary points. The set Mλ = {t ∈ [0, Tλ] : xλ(t) ∈ ∂M} is com-
pact. Therefore, there exist at most countably many nonoverlapping open intervals {(τ2i−1, τ2i)}∞i=1,
(τ2i−1, τ2i) ⊂ [0, Tλ], such that ‖xλ(t2i−1)‖ = ‖xλ(t2i)‖ = 1 and on each interval [τ2i−1, τ2i] ⊂ [0, Tλ]
the trajectory xλ(·) follows the straight line segment with vertices xλ(t2i−1) and xλ(t2i), i ∈ N,
in M .

Let Δ = Tλ −
∑∞

i=1(τ2i − τ2i−1) ≥ 0. Set

τ̃1 = 0, τ̃2 = τ2 − τ1, τ̃2i−1 = τ̃2i−2, τ̃2i = τ̃2i−1 + (τ2i − τ2i−1), i ≥ 2.

We define another trajectory x̃λ(·) of system (5.2) on [0, Tλ] as follows. For t ∈ [τ̃1, τ̃2], the trajectory
x̃λ(·) follows with unit velocity the straight line segment connecting the points x̃λ(0) = x0 and
x̃λ(τ̃2) ∈ ∂M in the same direction as xλ(·) on the interval [τ1, τ2]. Then, on each of the adjacent
intervals [τ̃2i−1, τ̃2i], i ≥ 2, the trajectory x̃λ(·) follows with unit velocity during time τ2i − τ2i−1

the straight line segment connecting the points x̃λ(τ2i−1) ∈ ∂M and x̃λ(τ2i) ∈ ∂M in the same
direction as xλ(·) on the interval [τ2i−1, τ2i]. On the final interval [Tλ −Δ, Tλ], the trajectory x̃λ(·)
lies on the circle ∂M , where the motion occurs with unit velocity from the point x̃(Tλ − Δ) =
limi→∞ x̃(τ̃i) ∈ ∂M to the terminal point x̃(Tλ) = x1.

It is easy to see that the trajectory x̃λ(·) thus constructed is admissible in problem (Pλ). It
transfers system (5.2) from the point x0 to the point x1 in the same time Tλ as xλ(·). The time
during which x̃λ(·) belongs to the set M coincides with that for xλ(·) and is equal to Tλ − Δ.
This implies the optimality of the trajectory x̃λ(·). Clearly, since x̃λ(·) is optimal, the system of
intervals {(τ̃2i−1, τ̃2i)}∞i=1 cannot contain more than one nonzero interval (τ̃1, τ̃2) of motion in the
set M . Indeed, if x̃λ(·) has two adjacent nonzero intervals (τ̃1, τ̃2) and (τ̃2, τ̃3) of motion in M , then
we can replace the motion along the segments [x̃λ(τ̃1), x̃λ(τ̃2)] and [x̃λ(τ̃2), x̃λ(τ̃3)] with the motion
with unit velocity along the segment [x̃λ(τ̃1), x̃λ(τ̃3)], which yields a new admissible trajectory x̂λ(·)
transferring system (5.2) from x0 to x1 in time T̂λ < Tλ (by the triangle inequality), with the
same time Δ of motion along the boundary of M as x̃λ(·); however, this contradicts the optimality
of x̃λ(·).

Consider the optimal trajectory x̃λ(·) with the interval [0, Tλ −Δ], Δ ∈ [0, π], of motion with
unit velocity along a straight line from the point x0 ∈ ∂M to the point x̃(Tλ − Δ) ∈ ∂M and
with the interval [Tλ −Δ, Tλ] of motion with unit velocity along an arc of the circle ∂M from the
point x̃(Tλ − Δ) to the point x1. For definiteness, we will assume that the motion is clockwise.
By a direct calculation, we find the corresponding value of the functional as a function of the
parameter Δ ∈ [0, π]:

Jλ(Tλ, x̃λ(·)) = J(Δ) = Δ+ 2(1 + λ) cos
Δ

2
.
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Since for Δ ∈ (0, π) we have

d2

dΔ2
J(Δ) = − (1 + λ)

2
sin

Δ

2
< 0,

the function J(·) is strictly concave on [0, π]. Therefore, it can take its minimum value only at the
extreme points Δ = 0 and Δ = π. Hence,

Jλ(Tλ, x̃λ(·)) = min{2(1 + λ), π}.

Thus, if 0 < λ < π/2 − 1, we have Jλ(Tλ, x̃λ(·)) = 2(1 + λ) < π and problem (Pλ) has a unique
optimal trajectory

xλ(t) = (−1 + t, 0), t ∈ [0, T 1
λ ], T 1

λ = 2.

If λ = π/2− 1, then Jλ(Tλ, x̃λ(·)) = π and there are three optimal trajectories in (Pλ):

xλ,1(t) = (−1 + t, 0), t ∈ [0, 2], xλ,2(t) = (cos(π − t), sin(π − t)), t ∈ [0, π],

and the trajectory

xλ,3(t) = (cos(π − t),− sin(π − t)), t ∈ [0, π],

which is symmetric to xλ,2(·) with respect to the x1-axis. If λ > π/2 − 1, then Jλ(Tλ, x̃λ(·)) = π
and there are two (symmetric with respect to the x1-axis) optimal trajectories

xλ,2(t) = (cos(π − t), sin(π − t)), xλ,3(t) = (cos(π − t),− sin(π − t)), t ∈ [0, π].

Consider the case λ = π/2− 1 and the first optimal trajectory in this case, xλ,1(t) = (−1 + t, 0),
t ∈ [0, T 1

λ ], T
1
λ = 2. The trajectory xλ,1(·) corresponds to the motion with unit velocity along the

coordinate axis x1 from the point x0 = (−1, 0) to the point x1 = (1, 0). In view of (5.6) and (5.8),
we have ‖ψλ‖ = 1 and ψλ + λ

∫ t
0 dηλ = (1, 0) for a.e. t ∈ [0, T 1

λ ]. Condition (1) of Theorem 2 implies
that the measure ηλ can take nonzero values only at time t = 0 and t = Tλ. Since the function
t →

∫ t
0 dηλ is right-continuous at zero, it follows that ψλ + ληλ(0) = (1, 0). Further, condition (1) of

Theorem 2 implies that the atom ηλ(0) has the form ηλ(0) = α0(1, 0), α0 ≥ 0. Therefore, ψ2
λ = 0.

Since we have ψ1
λ + (π/2 − 1)α0 = 1 and |ψ1

λ| = ‖ψλ‖ = 1, only the following two cases are possible:

(i) ψλ = (1, 0) and α0 = 0;
(ii) ψλ = (−1, 0) and α0 = 4/(π − 2).

Similarly, condition (1) of Theorem 2 implies that the atom ηλ(T
1
λ ) has the form ηλ(T

1
λ ) = α1(−1, 0),

α1 ≥ 0. Using condition (5.7) for t = Tλ, we obtain
∥∥ψλ + ληλ(0) + ληλ(Tλ)

∥∥ =
∣∣∣1−

(π
2
− 1

)
α1

∣∣∣ = 1.

Therefore, either α1 = 0 or α1 = 4/(π − 2), regardless of which case (i) or (ii) takes place for t = 0.
So, for the first optimal trajectory xλ,1(·) in the case λ = π/2 − 1, Theorem 2 allows nonzero atoms
ηλ(0) = α(1, 0) at the initial moment t = 0 and ηλ(Tλ) = −α(1, 0) at the final moment Tλ = 2,
where α = 4/(π − 2). However, Theorems 3 and 4 show that this does not lead to the degeneration
of the obtained necessary optimality conditions.

Consider now the second optimal trajectory xλ,2(t) = (cos(π − t), sin(π − t)), t ∈ [0, T 2
λ ], T

2
λ = π,

in the case λ = π/2− 1. The trajectory xλ,2(·) corresponds to the motion with unit velocity along
the unit circle (boundary of M) clockwise from the point x0 = (−1, 0) to the point x1 = (1, 0). In
view of (5.8), we have ψλ + λ

∫ t
0 dηλ = (sin(π − t),− cos(π − t)) for a.e. t ∈ [0, π]. Since the function

t →
∫ t
0 dηλ is right-continuous at zero, we then obtain ψλ + ληλ(0) = (0,−1). Condition (1) of
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Theorem 2 implies that the atom ηλ(0) has the form ηλ(0) = α0(1, 0), α0 ≥ 0. Therefore, ψ2
λ = −1.

In view of (5.6) we have ‖ψλ‖ = 1. Hence, ψ1
λ = 0. Further, condition (5.7) yields the equality∥∥∥∥ψλ +

π − 2

2
(α0, 0)

∥∥∥∥ =

∥∥∥∥
(
π − 2

2
α0,−1

)∥∥∥∥ = 1.

This implies α0 = 0. Similarly, at time T 2
λ = π we have ηλ(π) = α1(−1, 0), α1 ≥ 0. Then,

recalling (5.7), we obtain ∥∥∥∥ψλ − π − 2

2
(α1, 0)

∥∥∥∥ =

∥∥∥∥
(
π − 2

2
α1, 1

)∥∥∥∥ = 1.

Therefore, we have the equality α1 = 0. Thus, for the second optimal trajectory xλ,2(·) in the case
λ = π/2− 1, Theorem 2 holds with a measure ηλ that has only a continuous part. By virtue of (5.8),
the measure ηλ is absolutely continuous with respect to the Lebesgue measure μ on [0, π], and

dη1λ
dμ

= − cos(π − t),
dη2λ
dμ

= sin(π − t), t ∈ [0, π],

where dηiλ/dμ is the Radon–Nikodym derivative of the ith component ηiλ of ηλ with respect to
the Lebesgue measure μ, i = 1, 2. Thus, for the second optimal trajectory xλ,2(·) in the case
λ = π/2 − 1, Theorem 2 holds with a nonzero measure ηλ that is absolutely continuous with
respect to the Lebesgue measure.

The third optimal trajectory xλ,3(·) in the case λ = π/2 − 1 is completely similar to the
trajectory xλ,2(·), so the same conclusions apply to it.
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