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1. INTRODUCTION

In the Introduction we state two classical results from elementary number theory, two lemmas
from Thue and Vinogradov. In the second part of the paper we extend their results and illustrate
the use of the new method by an application.

The lemmas of Thue and Vinogradov are clever applications of Dirichlet’s box principle (also
called the pigeonhole principle). Our first result will go beyond that; it works with smaller sets. The
technique we are using here is a variant of the so-called polynomial method in additive combinatorics.
We are going to use Rédei polynomials [8], and the last step in the proof of Theorem 4 (and in its
later variants) is based on Stepanov’s method [9]; if a degree d polynomial is vanishing on a set
of size n with multiplicity at least m, then n ≤ d/m. The same method will be used in the last
section, where we prove an inequality in additive combinatorics.

The lemmas of Thue and Vinogradov. Thue’s lemma is a useful tool in elementary number
theory. The most famous application of the lemma is to prove Fermat’s theorem on sums of two
squares. There is a nice description of Thue’s argument in Proofs from THE BOOK [1]. The lemma
is used in finding solutions of Diophantine equations involving quadratic forms. There are various
examples for such theorems and exercises in Nagell’s Introduction to Number Theory [6, Ch. 6,
pp. 188–226] and in Vinogradov’s Elements of Number Theory [14].

Lemma 1 (Thue’s lemma) [12]. Let p be a prime. For any a ∈ N, p � a, there are x and y,

x, y ∈ {1, 2, . . . , �√p �},

such that

ax ≡ ±y (mod p).

Thue’s lemma was extended by Vinogradov to an asymmetric form. He used it in the paper
“On a general theorem concerning the distribution of the residues and non-residues of powers” [13,
Lemma 1], where he gave an elementary proof of the Pólya–Vinogradov inequality. His extension,
the following lemma, can also be used to find solutions for some quadratic forms, more efficiently
than Thue’s lemma.
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Lemma 2 (Vinogradov’s lemma). Let p be a prime. For any a ∈ N, p � a, and α ∈ F
∗
p, there

are x and y,

x ∈ {1, 2, . . . , α} and y ∈
{
1, 2, . . . ,

⌊ p

α

⌋}
,

such that

ax ≡ ±y (mod p),

or equivalently

a ≡ ± y

x
(mod p).

Vinogradov’s result was generalized to multiple congruences by Brauer and Reynolds in [3],
where they provide a complete historic review of the re-discoveries and generalizations of the Thue–
Vinogradov lemma, up to 1951. In the same paper they proved the following result [3, Theorem 4].

Theorem 3. Let g and k be positive integers where k is even, and let p be an odd prime with
p ≡ 1 (mod k) such that g ≤ p. We set h = �p/g�. If D is a k-th power residue, then at least one
of the numbers 1k, 2k, . . . , hk is congruent to one of the numbers D, 2kD, . . . , (g − 1)kD.

Theorem 3 was also proved, independently, by Porcelli and Pall using Farey sequences in [7].
We are going to prove an improvement on this theorem in Section 3.

2. THE EXTENSION

The Thue–Vinogradov lemma is about initial segments providing solutions to ax ≡ ±y (mod p)
for all a. What can we say about shorter segments? We are going to use the polynomial method—
in this case the Rédei polynomials—to prove that initial segments of Fp give many solutions to
the above congruence. Rédei polynomials were used in number theory, group theory, and in the
geometry of finite fields. There is a nice survey on basic theorems and examples of such applications
of the Rédei polynomials (and other algebraic methods in combinatorics) in [2].

Theorem 4. Let p be a prime. For any α, β ∈ N, α(β + 1) ≤ p− 1, there are at least α(β + 1)
distinct a ∈ F

∗
p for which there are x and y,

x ∈ Iα = {1, 2, . . . , α} and y ∈ Iβ = {1, 2, . . . , β},

such that

ax ≡ ±y (mod p). (2.1)

In Vinogradov’s lemma, if α(β + 1) > p, then the conclusion of the theorem holds for every
a ∈ F

∗
p, even with y ∈ {1, 2, . . . , β − 1}, so there are infinitely many cases when Vinogradov’s lemma

gives a better bound (by one) if one needs to capture every a ∈ F
∗
p. The importance of Theorem 4

is that it covers the range when αβ < p, when simple pigeonhole arguments do not work.

Proof. Denote by D ⊂ F
∗
p the set of elements a which are not expressible as in (2.1). The

key of the argument is the construction of a polynomial following Rédei [8] and Szőnyi [10]. Their
method was specialized to Cartesian products in [4], in a way that we are going to follow here. The
polynomial is defined as

H(x, y) =

β∏
i=0

(x− i)
∏

1≤k≤α
0≤j≤β

(x+ ky − j) =
∏

0≤k≤α
0≤j≤β

(x+ ky − j).
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An important feature of the polynomial above is that whenever b ∈ D, all roots of H(x, b) are
distinct elements of Fp, i.e., H(x, b) divides xp − x. To see that, let us consider two possible cases
of repeated roots below.

1. If the second product term (with y) had two equal roots, then we would have

−kb+ j ≡ −k′b+ j′ (mod p)

for some 1 ≤ k, k′ ≤ α and 0 ≤ j, j′ ≤ β. If k = k′ then j = j′, but then the two linear terms are
the same, which is impossible. Note that b 	= 0, so

|k − k′|b ≡ ±(j′ − j) (mod p),

which contradicts the assumption b ∈ D.
2. The remaining case is when

−kb+ j ≡ j′ (mod p)

for some 1 ≤ k ≤ α and 0 ≤ j, j′ ≤ β, leading to

kb ≡ ±(j′ − j) (mod p),

which contradicts the assumption b ∈ D.
The degree of H is δ = αβ + α + β + 1. In particular, when α = β, the degree is (α + 1)2. It

was Szőnyi’s observation in [10] (see also [11]) that there is an auxiliary polynomial of degree p− δ,
denoted by f(x, y), such that

F (x, b) = f(x, b)H(x, b) = xp − x if b ∈ D. (2.2)

For the details on how to find f , we refer to [10] and [4]. Let us consider F (x, y) as a polynomial
in x with coefficients hi(y) ∈ Fp[y]:

F (x, y) = f(x, y)H(x, y) = Fy(x) = xp + h1(y)x
p−1 + h2(y)x

p−2 + . . .+ hp(y),

where the degree of hi is at most i. From (2.2) one can see that hi(y) are zero for many y values,
whenever y ∈ D. If hi(y) = 0 for more than i distinct y values, then hi(y) ≡ 0. This is the crucial
point of the application of Rédei’s method. If one can show that hi 	≡ 0 for some i, then |D| ≤ i.
When |D| is small, one could use Rédei’s theorem, which describes the structure of fully reducible
lacunary polynomials (like in [10]); however, we follow a simpler calculation which gives a better
bound in this case. Let us check the polynomial F (x, y) when y = 0:

F (x, 0) = f(x, 0)

(
β∏

i=0

(x− i)

)α+1

= xp + c1x
p−1 + c2x

p−2 + . . .+ cp. (2.3)

We need to show that a polynomial with form like in (2.3) has a nonzero ci coefficient for some
not too large i. Let ci denote the nonzero coefficient with the smallest index i. Checking the
derivatives based on the first and second rows, we see that F ′(x, 0) will vanish with multiplicity at
least α on at least β + 1 places and it has degree p− i− 1. This implies that p− i− 1 ≥ α(β + 1)
and then |D| ≤ i ≤ p− 1− α(β + 1) as needed. �

Remark 5. Theorem 4 was stated for initial segments, but the same proof works if one requires

x ∈ μIα = {μ, 2μ, . . . , αμ} and y ∈ νIβ = {ν, 2ν, . . . , βν}

for some ν, μ ∈ N with p � νμ.
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Remark 6. It was noted by the anonymous referee and other readers of an earlier version of
this paper that Theorem 4 can be improved for shorter initial segments. For example, if

x, y ∈ Iα = {1, 2, . . . , α}

and 2α2 < p, then the number of distinct a ∈ F
∗
p such that a ≡ ±x/y (mod p) is twice the number of

(ordered) pairs (u, v) ∈ N
2 with (u, v) = 1 and u, v ≤ α, which is asymptotically 12π−2α2 ∼ 1.21α2

(see, e.g., [14, Ch. II, Problem 21, b]).
Let us denote the difference set of A ⊂ Fp by A,

A = A−A = {a− b | a, b ∈ A}.

Using the above notation, we can state a more general theorem with slightly weaker bounds. It
is practically the same as Theorem 1 in [4]; we include it here for completeness.

Theorem 7. Let p be a prime. For any A,B ⊂ Fp, where |A| = α and |B| = β, there are at
least

min(p, (α− 1)β + 1)

elements a ∈ Fp for which there are x ∈ A \ {0} and y ∈ B such that ax ≡ y (mod p).
Note that since A and B are symmetric about 0, we do not need the ± sign in the modular

equation. The proof which we are going to sketch below follows the proof of Theorem 4.
Proof. For a = 0 the trivial solution, ax ≡ b − b (mod p), works with any x ∈ A and b ∈ B.

Let us denote by D ⊂ F
∗
p the set of elements a which are not expressible as ax ≡ y (mod p). The

Rédei polynomial is now defined as

H(x, y) =
∏

1≤k≤α
1≤j≤β

(x+ aky − bj). (2.4)

Whenever d ∈ D, all roots of H(x, d) are distinct elements of Fp, i.e., H(x, d) divides xp − x. If
we had x+ akd− bj = x+ a�d− bs, then (ak − a�)d ≡ bj − bs (mod p), contradicting the selection
d ∈ D. The degree of H is δ = αβ. There is an auxiliary polynomial of degree p − δ, denoted by
f(x, y), such that

F (x, d) = f(x, d)H(x, d) = xp − x if d ∈ D. (2.5)

Let us consider F (x, y) as a polynomial in x with coefficients hi(y) ∈ Fp[y]:

F (x, y) = f(x, y)H(x, y) = Fy(x) = xp + h1(y)x
p−1 + h2(y)x

p−2 + . . .+ hp(y),

where the degree of hi is at most i. If we show that hi 	≡ 0 for some i, then |B| ≤ i. The polynomial
with y = 0 is

F (x, 0) = f(x, 0)

(
β∏

i=1

(x− bi)

)α

= xp + c1x
p−1 + c2x

p−2 + . . .+ cp. (2.6)

Let ci denote the nonzero coefficient with the smallest index i. Checking the derivatives based
on the first and second rows, we see that F ′(x, 0) will vanish with multiplicity at least α − 1 on
at least β places and it has degree p − i − 1. This implies that p − i − 1 ≥ (α − 1)β and then
|D| ≤ i ≤ p− 1− (α− 1)β as needed. �

Let d > 1 be a divisor of p− 1 and let Zd be a multiplicative subgroup of size d inside GF(p). If
there is an A ⊂ Fp such that A ⊂ Zd ∪ {0}, then by applying Theorem 7 with A = B we obtain the
following result, which was recently proved by Hanson and Petridis [5] (see also [4, Theorem 1]).
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Corollary 8. Let A ⊂ Fp be a set such that A−A ⊂ Zd ∪ {0}. Then

|A|(|A| − 1) ≤ d.

A slightly stronger statement in Theorem 7 holds when 0 /∈ A.
Theorem 9. Let A ⊂ F

∗
p and B ⊂ Fp, where |A| = α and |B| = β. There are at least

min(p, αβ + 1)

elements a ∈ Fp for which there are x ∈ (A ∪A) \ {0} and y ∈ B such that ax ≡ y (mod p).
Proof. Indeed, in this case instead of the polynomial (2.4) we can use

H(x, y) =

β∏
�=1

(x− b�)
∏

1≤k≤α
1≤j≤β

(x+ aky − bj),

increasing the degree of H(x, y) by β. The roots are still distinct for any d ∈ D, since −b� = aid− bj
would lead to the equation ad ≡ y (mod p) where x ∈ A and y ∈ B. The polynomial with y = 0
now is

F (x, 0) = f(x, 0)

(
β∏

i=1

(x− bi)

)α+1

with the exponent α+ 1 instead of α, leading to the improvement. �

3. CONGRUENT PAIRS

In this section we illustrate how to use Theorem 4 when we need many, almost p, solutions
in (2.1). The proof is similar to classical applications of the Thue–Vinogradov inequality. We are
going to show a variant of Theorem 3 stated in the Introduction.

Theorem 10. Let g and k be positive integers where k is even, and let p be an odd prime with
p ≡ 1 (mod k) such that g ≤ p. Let h ∈ N be a number given by

h =

⌈
p− k − g

g − 1

⌉
. (3.1)

If D is a k-th power residue, then at least one of the numbers 1, 2k, . . . , hk is congruent to one of
the numbers D, 2kD, . . . , (g − 1)kD.

If g ≥ h then the above h is at most as large as in Theorem 3, and h is smaller here by at least
one whenever g(k + g) ≥ p.

Proof. The equation xk ≡ D (mod p) has k solutions (see, e.g., [14, Ch. VI, § 5]). By Theo-
rem 4, if

(g − 1)(h + 1) + 1 ≥ p− k,

which is provided by condition (3.1), then there is an a ∈ Fp such that ak ≡ D (mod p) and

ax ≡ ±y (mod p) where x ∈ {1, 2, . . . , g − 1} and y ∈ {1, 2, . . . , h}.

The equations
ax ≡ ±y (mod p),

akxk ≡ yk (mod p),

Dxk ≡ yk (mod p)
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show that there is at least one congruent pair between

{D, 2kD, . . . , (g − 1)kD} and {1, 2k, . . . , hk},

as required. �

4. SUMSETS VS. DIRECTIONS

In this section we are going to leave the Cartesian product structure and prove a result which
generalizes Theorem 7 and other results. One of the most striking applications of Rédei’s method
is the bound on the number of directions determined by a set of points in the affine plane over
the finite field GF(q) of q elements. Given a set M of n points, what is the minimum number
of directions determined by M? We say that a direction m is determined by M if there is a line
mx + b − y = 0 spanned by two points of M , i.e., there are points (ai, bi), (aj , bj) ∈ M such that
m = (ai − aj)/(bi − bj) if bi 	= bj . If bi = bj and ai 	= aj, then the two points determine the m = ∞
direction.

In Theorem 7 we proved a lower bound on the number of directions determined by a Cartesian
product. It was better than Szőnyi’s bound in [10, 11], due to the special structure of the point set.
In the next result we generalize Theorem 7.

Let S ⊂ F2
p be an n-element subset and α ∈ F∗

p. Suppose that n < p. We define the weighted
sumset

Δα =
{
αai + bi | (ai, bi) ∈ S

}

and the ratio set

Q =

{
ai − aj
bi − bj

∣∣∣∣ (ai, bi), (aj , bj) ∈ S, bi 	= bj

}
.

The ratio set contains all directions determined by S with the possible exception of the ∞ di-
rection.

Theorem 11. With the above notation, if S is not collinear, i.e., if there are no elements
m,β ∈ Fp such that mai + β − bi ≡ 0 (mod p) for all (ai, bi) ∈ S, then |Q| ≥ |S| − |Δα|+ 1.

Proof. We are going to use the Rédei polynomial as before. Set

H(x, y) =
∏

(ai,bi)∈S
(x+ aiy − bi) (4.1)

and find f(x, y) such that f(x, y0)H(x, y0) = xp − x whenever y0 /∈ Q. Let us check the polynomial
when we set y = −α:

F (x,−α) = f(x,−α)
∏

(ai,bi)∈S
(x− αai − bi) = xp + c1x

p−1 + c2x
p−2 + . . .+ cp. (4.2)

As in the proof of Theorem 4, we check the derivatives to show that there is a small index i
such that ci 	= 0, so Q is large. A root αai + bi is a multiple root if there is an (aj , bj) ∈ S,
i 	= j, such that αai + bi ≡ αaj + bj (mod p). The derivative of the polynomial in (4.2) has at least
d = |S| − |Δα| roots, so i− 1 ≤ p− d, unless F (x, α) = (x+ c)p, when S is collinear. �

Note that setting α = 0 for a Cartesian product, S, gives back Theorem 7.
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