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1. INTRODUCTION
Let p, denote the nth prime. We prove the following result.

Theorem 1.1. There are positive absolute constants ¢ and C such that the following holds.
Let € be a real number with 0 < ¢ < 1. Then there is a number co(e) > 0, depending only on e,
such that if t e R, y € R, m € Z, q € Z, and a € Z satisfy the conditions

co(e) <y<lnz, 1<m<cely, 1<q¢<y'™  (a,9) =1,

then

y >exp(0m>.

X
#{ <P <X Pp=...=pPptm=a (mOd Q)a pn—i—m_pngy} 277'(517)<

2 2qInzx

Theorem 1.1 extends a result of Maynard [5, Theorem 3.3|, who established the same result but
with y = elnx.
From Theorem 1.1 we obtain

Corollary 1.1. There is an absolute constant C' > 0 such that if m is a positive integer and
x and y are real numbers satisfying exp(Cm) <y < lnz, then

exp(Cm
#{;<pn§:13ipn+m—pn§y}277($)(21im) ! )

Let us introduce necessary notation. The expression b | a means that b divides a. For a fixed a
the sum Zb‘ ., and the product Hb‘ ., should be interpreted as being over all positive divisors of a.

We will use I. M. Vinogradov’s notation: A < B means that |A| < ¢B with a positive absolute
constant c.

We reserve the letter p for primes. In particular, the sum Zp< 5 should be interpreted as being
over all prime numbers not exceeding K.

We will also use the following notation:

#A is the number of elements of a finite set A;

N, Z, R, and C are the sets of all positive integers, integers, real numbers, and complex numbers;

P is the set of all prime numbers;
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CONSECUTIVE PRIMES IN SHORT INTERVALS 145

[x] is the integer part of a number z; i.e., [x] is the largest integer n such that n < z;
{z} is the fractional part of a number z; i.e., {z} =z — [z];
[x] is the smallest integer n such that n > x;
Re s and Im s are the real and imaginary parts of a complex number s;
(a1,...,ay) is the greatest common divisor of integers aq, ..., an;
[a1,...,ay] is the least common multiple of integers aq, ..., ay;
©(n) is the Euler totient function: p(n) = #{1 <m <n: (m,n) =1};
u(n) is the Mobius function, which is defined as follows:
() p(1) =1,
(ii) p(n) = 0 if there is a prime p such that p? | n, and
(iii) pu(n)=(-1)*if n=gqy...qs, where ¢ < ... < g5 are primes;

A(n) is the von Mangoldt function:

A(n) =
0 if n#pk

P~ (n) is the least prime factor of n > 1 (by convention P~ (1) = +00);

() = n!/(k!(n — k)!) is the binomial coefficient.

For real numbers a and b we use (a,b) and [a,b] to denote, respectively, the open and closed
intervals with endpoints a and b. By (aq,...,a,) we also denote a vector; the meaning of the
notation should be clear from the context.

By definition, we put
Z =0 and H =

%) %)

{lnp if n=p"

We define
M ={n e N: u(n) # 0}.

We will use the following functions:

xT

li(x):/litt, P(z,2) =#{1<n<z: P (n)>z},

2
@) =31 0@ =% lmp, @) =3 AMm),

p<z p<x n<x
m(r;q,a) = > L Y(xig,a) = > A(n).
p<z, p=a (mod q) n<z, n=a (mod q)

Let m > 1 and a be integers. If (a,m) = 1, then a®™ = 1 (mod m) (the Fermat Euler
theorem). Let d be the smallest positive value of v for which a” =1 (mod m). We call d the order
of a (mod m) and say that a belongs to d (mod m).

Let g be a positive integer. We recall that a Dirichlet character modulo q is a function x: Z — C

such that

1
n) = 0 for all n € Z such that (n,q) > 1.
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146 A. O. RADOMSKII

By X, we denote the set of all Dirichlet characters modulo g. We recall that #X, = ¢(¢) and
that the principal character modulo q is

{1 if (n,q) =1,

Xol) == (n,q) > 1.

Let x € X,. We say that the character x restricted by (n,q) = 1 has period ¢ if it has the property
that x(m) = x(n) for all m,n € Z such that (m,q) =1, (n,q) =1 and m = n (mod ¢1). Let ¢(x)
denote the conductor of x, which is the least positive integer g; such that x restricted by (n,q) =1
has period ¢1. We say that x is primitive if ¢(x) = ¢, and imprimitive if ¢(x) < ¢. By X we denote
the set of all primitive characters modulo q. We observe that the principal character modulo 1
is primitive. On the other hand, any principal character modulo ¢ > 1 is imprimitive, since its
conductor is clearly 1. For x € X, we put

B, (x) = 1 if x is the principal character modulo ¢,
Xo X = 0 otherwise,

Yle,x) =Y Am)x(n),  ¥(z,x) = (e, x) — By, (Y.

n<x

A character  is said to be real if x(n) € R for all n € Z. A character x is said to be complex if
there is an integer n such that Im(x(n)) # 0.

We say that characters x; and x, (modulo ¢; and modulo g9, respectively) are equal and write
X1 = X if x1(n) = x9(n) for any integer n. Otherwise, we say that characters y; and x, are not
equal and write x; # X»-

Let x be a Dirichlet character modulo q. The corresponding L-function is defined by the series

L(S’X) = Z X,’izl)
n=1

for s € C with Res > 1. It is well known that if y is not the principal character modulo ¢, then
L(s,x) can be analytically continued to C. If y is the principal character modulo ¢, then L(s, x)
can be analytically continued to C\ {1} with a simple pole at s = 1.

We say that two linear functions Li(n) = ain + by and La(n) = asn + be with integer coefficients
are equal and write L1 = Lo if a1 = as and b; = by. Otherwise, we say that the linear functions Ly
and Lo are not equal and write Lj # Lo.

Let £ ={L1,..., L} be a set of k linear functions with integer coefficients:

Ll(n):am—i—bz, i=1,...,k.
For L(n) = an +b, a,b € Z, we define
k
Ar = |al H |ab; — ba;|.
i=1

We say that L(n) = an + b belongs to £ (L € L) if there is an i, 1 < i < k, such that L = L;.
Otherwise, we say that L(n) = an + b does not belong to £ (L ¢ L).
This paper is organized as follows. In Sections 2—4 we give necessary lemmas. In Section 5 we

prove Theorem 1.1 and Corollary 1.1.
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CONSECUTIVE PRIMES IN SHORT INTERVALS 147

2. PREPARATORY LEMMAS

In this section we present some well-known lemmas which will be used in the following sections.

Lemma 2.1 (see, for example, [6, Ch. 1|). Let = be a real number with x > 2. Then

n\* 1
blln$§H<1—p> <bglnz and b31n$§H<1—|—p>§b4lna:,

p<z p<z
where b;, 1 = 1,...,4, are positive absolute constants.

Lemma 2.2 (see, for example, [4, Chs. 1, 2|). The limits lim,_, o0 ¥(z)/x, limy_y 100 0(z) /2,
lim, 400 m(x)/(xz/Inx), and lim, 400 pp/(nlnn) exist and

O LTI A I (PR
From Lemma 2.2 we obtain
Lemma 2.3. It holds that
bsr < (x) < bz, brr < 0(z) < bgx for x>2, (2.1)
by h:x < 7m(x) < b lrir for x>2, (2.2)

biinln(n +2) < p, < bonln(n + 2) for n>1,

where b;, 1 =5,...,12, are positive absolute constants.

Lemma 2.4 (see, for example, |7, Ch. 2]|). Let n be an integer with n > 1. Then
1
o(n) = nH(l - p>'
pln

From Lemma 2.4 we readily obtain the following two lemmas.

Lemma 2.5. Let m and n be integers with m > 1 and n > 1. Then
p(mn) = o(m)e(n).

Lemma 2.6. Let m and n be integers with m > 1, n > 1, and (m,n) =1. Then
p(mn) = o(m)e(n).

Lemma 2.7. Let n be an integer with n > 1. Then
2
n p=(d)
= . 2.3
o) = 2= ol 2

Proof. For n = 1, equality (2.3) holds. Let n > 1. Let us express n in the standard form
n=q"...q%, where ¢; < ... < ¢ are prime numbers. Applying Lemmas 2.4 and 2.6, we have

so?n) :H<l_;>_1:H<l+pi1> :<qul—1>'”<l+qr1—1>

pln pln

B (“ so(lqo) <1+ w(?ﬁ) SEONEDS o). ol

s=1 1<i1<...<is<r

e i Pl a) dr deM ¢(d) o ¢(d)
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148 A. O. RADOMSKII

Lemma 2.8 (see, for example, |6, Ch. 1]). Let n be an integer with n > 1. Then
>
o) 2 e Inln(n +2)’
where ¢ > 0 is an absolute constant.
Lemma 2.9 (see, for example, [1, Ch. 28|). Let = be a real number with x > 2. Then

1
Z (n) <clnz,

1<n<zx ®

where ¢ > 0 is an absolute constant.
Lemma 2.10 (see, for example, [2, Ch. 5]). Let n be an integer with n > 1. Then

Z lnp < c¢lnln(3n),

p
pln

where ¢ > 0 is an absolute constant.
Lemma 2.11. Let a, b, and c be integers such that (a,b) | c. Then the equation

ar+by=c (2.4)

has a solution in integers.

Proof. We put d = (a,b). Then ¢ = dl for some | € Z. It is well known (see, for example, |7,
Ch. 1, Exercise 1]) that the equation

ar +by=d (2.5)
has a solution in integers. Let zyp € Z and yy € Z be a solution of (2.5). Then the integers lxg
and lyg satisfy (2.4). O

Lemma 2.12. Let n and k be integers such that 1 < k < n. Then

<Z> > k~k(n — k)F. (2.6)
Proof. For k = n inequality (2.6) holds. Let 1 < k < n. Then
n n! nn—1)...(n—k+1) _ (n—k)* —k i
= = > >k - k). O
<k> Kl (n — k)| k! 2 g 2R

Lemma 2.13 (see [3, Ch. 0]). Let x and z be real numbers such that 2 < z < x/2. Then
x

¢ >
(:1:72) = Colnza

where cg > 0 is an absolute constant.

3. LEMMAS ON DIRICHLET CHARACTERS
In this section we give some well-known lemmas on Dirichlet characters which will be used in
the following sections.

Lemma 3.1. Let a, b, and n be integers such that 1 < a < b, a | b, and (n,a) =1. Then there
is an integer t such that (n+ ta,b) = 1.

Proof. If (n,b) =1, we take t = 0. Let (n,b) > 1. Then the set @ = {p | b: pta} is nonempty.
Let Q@ ={q1,...,q-} with ¢1 < ... <¢,. Let 1 <i <r. Since (a,q;) =1, the congruence

n+ta=1 (mod ¢)
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CONSECUTIVE PRIMES IN SHORT INTERVALS 149

has a solution; i.e., there is an integer m; such that n +am; =1 (mod g¢;). Consider the system
.................. (3.1)

Since the numbers ¢, ...,q, are coprime, the system has a solution. Let an integer ty satisfy
system (3.1). We claim that tg is a desired number, i.e., that (n + tga,b) = 1. Assume the contrary:
(n + tpa,b) > 1. Then there is a prime p such that p | b and p | (n + tga). If p1a, then p € Q, ie.,
p = q; for some 1 < i < r. However,

n+tia=1 (mod ¢;)

and hence p 1 (n + tpa). We arrive at a contradiction. Thus this case is impossible. Hence, p | a.
Since p | (n + toa), we see that p | n. Hence, (n,a) > 1. This contradicts the hypothesis of the
lemma. Therefore, the assumption (n + tpa,b) > 1 is false. Hence, (n + tga,b) =1. O

Lemma 3.2. Let ¢ > 2 be an integer and x € X,. Suppose that x restricted by (n,q) =1 has
period q1. Then x restricted by (n,q) =1 also has period (q,q1)-

Proof. We put § = (¢,q1). Let m and n be integers such that (m,q) = 1, (n,q) = 1, and
m =n (mod §). We need to prove that x(m) = x(n). By Lemma 2.11, there are integers k and [
such that

m+ gk =n-+ql.

We put A =m + ¢k = n + ql. Since (n,q) = 1, we have (n + gl,q) = 1. Hence, (A4, q) = 1. Since
x has period ¢, it follows that

X(4) = x(n +ql) = x(n).
Since (4,q) =1, (m,q) =1, and A = m (mod gq;), we have x(A4) = x(m). Hence, x(m) = x(n). O
Lemma 3.3. Let ¢ > 1 and x € X,. Then c(x) divides q.
Proof. If ¢ = 1, then ¢(x) = 1 and the statement is obvious. Let ¢ > 2. By Lemma 3.2,

x restricted by (n,q) = 1 has period 6§ = (¢(x),q). If ¢(x) is not a divisor of ¢, then § < ¢(x), which
contradicts the definition of the conductor. [

Lemma 3.4. Let ¢ > 1 and x € Xy. Then there exists a unique Dirichlet character x; € X(y)

such that .
) = {xl(n) if (n,q) =1, (3.2)

1o if (n,q) > 1.

Furthermore, x, is primitive.
We say that x; induces x.

Proof of Lemma 3.4. I. Let ¢ = 1. Then ¢(x) = 1, #X1 = 1, and x; = X, so the statement
is obvious.

II. Let ¢ > 2 and x be a primitive character modulo ¢q. Then c¢(x) = ¢ and we can take
X1 = X- Let us prove the uniqueness. Suppose that there are two different characters x;,x, € X,
satisfying (3.2). Then for any n such that (n,q) > 1 we have x;(n) = 0 = xy(n). For any n
such that (n,q) = 1, we have x;(n) = x(n) = xy(n). Therefore, x;(n) = xo(n) for any integer n;
i.e., X1 = X», a contradiction.

III. Let ¢ > 2 and x be an imprimitive character modulo ¢. Then 1 < ¢(x) < ¢ and by
Lemma 3.3 we have ¢(x) | ¢. We define x;. Let n € Z. Consider several cases.
If (n,c(x)) > 1, then we put x;(n) =0.
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150 A. O. RADOMSKII

If (n,c(x)) =1, then by Lemma 3.1 there is an integer ¢ such that (n + tc(x),q) = 1. We put

x1(n) = x(n +te(x))-

The choice of ¢ subject to the indicated condition is immaterial, since x restricted by (n,q) = 1 has
period ¢(x). Thus, x;(n) is defined for any integer n. We claim that x; is a character modulo ¢(x).
By construction,

x1(n) =0 for any n € Z such that (n,c(x)) > 1.

By Lemma 3.1, there is an integer ¢ such that (1 + tc(x),q) = 1. Since the choice of such a ¢ is
immaterial, we take ¢ = 0. We have x;(1) = x(1) = 1. Now we prove that

x1(n+c(x)) = x1(n) for all n € Z. (3.3)

If (n,c(x)) > 1, then we have (n + ¢(x), c(x)) > 1. Hence,

x1(n+c(x)) = 0= x1(n).

Let (n,c(x)) = 1. Then we have (n + ¢(x),c(x)) = 1. By Lemma 3.1, there are integers ¢; and o
such that (n +tic(x),q) =1 and (n + c(x) + t2c(x),q) = 1. By construction, we have

x1(n) = x(n+tic(x))  and  xi(n+c(x)) = x(n + c(x) + tac(x))-

Since x restricted by (n,q) = 1 has period ¢(x), we have x(n + t1c(x)) = x(n + c(x) + tac(x)).
Hence, x;(n) = x;(n + ¢(x)) and (3.3) is proved. Now we prove that

x1(mn) = x1(m)x;(n) for all m,n € Z. (3.4)

If (m,c(x)) > 1, then we have (mn,c(x)) > 1. Hence, x;(mn) = 0 and x;(m) = 0. Therefore,
relation (3.4) holds. Similarly, (3.4) holds if (n,c(x)) > 1. Let (m,c(x)) = 1 and (n,c(x)) = 1.
Then (mn,c(x)) = 1. By Lemma 3.1, there are integers t1, t9, and t3 such that (m + t1¢(x),q) = 1,
(n + tac(x),q) = 1, and (mn + tsc(x),q) = 1. We put my = m + t1¢(x), n1 = n + tec(y), and
u = mn + tzc(x). By construction,

xi(mn) =x(uw),  xi(m)=x(mi), and  x;(n) = x(n1).

Since y is a totally multiplicative function, it follows that

x1(m)x1(n) = x(m1)x(n1) = x(min1).

Since (m1,q) = 1 and (n1,q) = 1, we have (min1,q) = 1. It is clear that min; = u (mod ¢(x)).
Since x restricted by (n,q) = 1 has period ¢(x), we find that x(u) = x(mini). Therefore,
x1(mn) = x1(m)x;(n) and (3.4) is proved. Thus, we have proved that y; is a character modulo ¢(x),
le, x; € Xc(x)'

Now we prove that x; satisfies (3.2). It suffices to show that

xi(n)=x(n) if (n,q) =1 (3.5)

Since (n,q) = 1, we have (n,c(x)) = 1 (see Lemma 3.3). By Lemma 3.1, there is an integer ¢ such
that (n + te(x),q) = 1. By construction x;(n) = x(n + tc(x)). Since (n +te(x),q) =1, (n,q) =1,
and n + te(x) = n (mod c(x)), we have x(n + tc(x)) = x(n). Hence, x;(n) = x(n) and (3.5) is
proved.

Now we prove that x; is a primitive character. Suppose that there is a positive integer g2 such
that x, restricted by (n,c(x)) = 1 has period gz. Let m and n be integers such that (m,q) = 1,
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(n,q) =1, and m = n (mod ¢2). By Lemma 3.3, we have (m,c(x)) = 1 and (n,c(x)) = 1. Then
(see (3.5))

x(m) = x1(m) = x1(n) = x(n).

Hence, y restricted by (n,q) = 1 has period ¢y. From the definition of a conductor it follows that
g2 > ¢(x). Hence, x; is a primitive character.

Now we prove the uniqueness. Suppose that there are two different characters xi,x, € Xc(y)
satisfying (3.2). If (n,c(x)) > 1, then x;(n) = 0 = xy(n). Let (n,c(x)) = 1. By Lemma 3.1, there
is an integer ¢ such that (n + tc(x),q) = 1. Since x; and x4 are periodic functions with period ¢(x),
we have

x1(n) = x1(n +te(x)) = x(n + te(x)) = x2(n + te(x)) = x2(n).
Thus, x;(n) = xy(n) for any n € Z, and so x; = x,. We obtain a contradiction. The uniqueness is
proved. [J

Lemma 3.5. Let g > 1 be an integer expressed in the standard form as q = g7 ... q%", where

g < ... < q- are primes and «q,...,0, are positive integers. Let x be a Dirichlet character
modulo q. Then there exist unique characters x; modulo ¢, i =1,...,r, such that

x(n) = x1(n)...x,.(n) for all . (3.6)
Furthermore, if the character x is real, then all characters x,, i =1,...,r, are real. If the charac-
ter x 1s primitive, then all characters x;, i =1,...,r, are primitive.

Proof. For any 1 < i < r we take A; such that
A;=1 (mod ¢;") and A;=0 (mod q]o.‘j) forany j#i, 1<j<r. (3.7)

Since the moduli of these congruences are coprime, the system has a solution (see, for example, |7,
Ch. 4]). Thus, integers Ay,..., A, are defined.
Let 1 <i<randné€Z. We put

x;(n) =x <nAZ- + Z Aj> . (3.8)
1<) <r, ji

It is easy to show that y; is a Dirichlet character modulo ¢;".
Now we prove that (3.6) holds. Let n € Z. Setting

n; = nA; + E Aj, 1=1,...,7,
1<j<r, j#i

we have

xi(n) . xp(n) = x(n1) ... x(nr) = x(n1 ... ny).
From (3.7) we obtain

ny...np =n (mod ¢5°) forany 1<s<r.

Hence, nj ...n, — n is divisible by g, i.e.,

ny...np=n (mod q).

Hence, x(n1...n,) = x(n) and (3.6) is proved.
Now we prove the uniqueness of the representation of y in the form (3.6). Suppose that

x(n) =x1(n) ... Xr(n), (3.9)
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where x; is a Dirichlet character modulo ¢/, ¢ = 1,...,7. Let 1 <4 < r and n € Z. We have
(see (3.7))
nA; + Z Aj=1 (mod ¢g*) forany 1<s<r, s#i,
1<j<r, j#i
and
nA; + Z A;=n  (mod ¢}").
1<j<r, j#i
Hence,
)Zs<nAi+ Z Aj>:1 forany 1<s<wr s#i,
1<j<r, j#i
and

%i(nAi+ > Aj):%‘(n)-

1<j<r, j#i
From (3.9) we obtain
X(ml- + > Aj> = %i(n).
1<j<r, j#i

Therefore (see (3.8)), xi(n) = x;(n). Since this equation holds for any n € Z, we have Y; = x;,

i=1,...,r. Thus, the uniqueness of the representation of y in the form (3.6) is proved.
We see from (3.8) that if the character x is real, then all characters x,, 7 = 1,...,r, are real. We
claim that if the character x is primitive, then all characters x,, ¢ = 1,...,r, are primitive. Assume

the contrary: there is an 4, 1 <4 <, such that the character y; is imprimitive. Then ¢(x;) < ¢;".
Since ¢(x;) | ¢i* (see Lemma 3.3), we have

cx)=q), B<a
We put

i=q¢ JI 4"

1<j<r, j#i

Let us show that the character y restricted by (n,q) = 1 has period ¢. Take integers m and n such
that (m,q) = (n,q) =1 and m =n (mod q). Let 1 < j <r, j # 4. Since

m=n (mod q]o-‘j),
we have x;(m) = x;(n). Since (m,¢") = (n,¢;") =1,
m=n (mod q;-B),
and x; restricted by (n,¢;") = 1 has period qf, we have x;(m) = x;(n). This implies

xm)=x;m) J[ x;m=xin) J[ x;0)=xn).

1<j<r, j# 1<j<r, j#

We have proved that y restricted by (n,q) = 1 has period g. But then ¢(x) < ¢ < ¢. This
contradicts the fact that the character x is primitive. Hence, all characters x,, i = 1,...,r, are
primitive. Lemma 3.5 is proved. [
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Lemma 3.6. Let g be a positive integer such that there exists a real primitive character x
modulo q. Then the number q is of the form 2%k, where o € {0,...,3} and k > 1 is an odd
square-free integer.

Proof. Modulo ¢ = 1 there exists a real primitive character; namely, y(n) = 1 for all n € Z.
The number 1 is of the form 2%k; namely, « = 0 and k = 1.

Let ¢ > 1 be an integer such that there exists a real primitive character xy modulo gq. Suppose
that ¢ = p"s, where p > 3 is a prime number, (p,s) = 1, and » > 2. Let ¢ = p"~!s. We claim
that the character x restricted by (n,q) = 1 has period q. Let m and n be integers such that
(m,q) = (n,q) =1 and m =n (mod q). We have m =n+ qt, t € Z, and

prfl r—1 p’r'*l
mP = (g =ar Y (p . >(zjt)lnp’“‘l—l =+ Y AP T (3.10)
i=1 i=1

where

Let 2 <4 < p"~!. Then

/r'_l . T_l . . .
A = <p ‘ >(pr—18)z — pr8<p ‘ >p(7,—l)r—7,81—1.

i
It is clear that : — 1 > 1. We claim that
(i—1)r—i>0 (3.11)
or, which is equivalent, i(r — 1) > r. Indeed, since i > 2 and r > 2, we have
ifr=1)>2(r—1)>r.
Hence, A; = p"sN, where N € N. Thus, for any 2 < i < p" !,
A; =0 (mod q).
We have Ay = p"~1(p"~ts) = p"sp" 2. Since r > 2, we obtain
A1 =0 (mod q).
Hence (see (3.10)),
mP =nP " (mod q).
Using the properties of a character, we obtain
Oe(m)?"™" = (x(m))?

Since (m,q) = (n,q) = 1 and the character y is real, we have x(m), x(n) € {—1,1}. Since p > 3 is
a prime number and r > 2 is an integer, it follows that p"~! is an odd positive integer. Therefore,
if x(m) =1, then x(n) = 1, while if x(m) = —1, then x(n) = —1 as well. Thus, x(m) = x(n). We
have proved that the character y restricted by (n,q) = 1 has period ¢q. Consequently,

r—1

c(x) <qg<aq.

This contradicts the fact that y is a primitive character. Hence, the number ¢ is of the form 2%k,
where a > 0 is an integer and k > 1 is an odd square-free integer.
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We claim that o < 3. Assume the contrary: o« > 4. Let k = ¢1...¢q,, where ¢; < ... < ¢, are
odd primes. By Lemma 3.5, we have

x(n) = x1(n)xa(n) - - Xp41(n), (3.12)

where x, is a real primitive character modulo 2% and x; is a real primitive character modulo ¢;_1, ¢ =
2,...,7+1(if k =1, then x,,..., X, are omitted in (3.12)). It is well known (see, for example, |7,
Ch. 6]) that if numbers v and v run independently through the sets {0,1} and {0,...,2%72 — 1}
respectively, then (—1)” - 57 runs (without repetitions) through a reduced residue system modulo 2¢.
Hence, for any n with (n,2) = 1 there are unique numbers v(n) € {0,1} and v(n) € {0,...,2%72 — 1}
such that

n=(—=1)"™.57™ (mod 2%). (3.13)

Since (—1)% = 1, we have (x;(—1))? = 1. Thus,
x1(=1) = (-1)%, a€{0,1}.

It is well known (see, for example, [7, Ch. 6]) that the number 5 belongs to 272 (mod 2%); in
particular, 52°° =1 (mod 2¢). Hence,

20(72

(x1(5)" =1
We obtain
x1(5) = exp <27m' 2ab_2>, be{0,...,272 —1}.

We see from (3.13) that if n is such that (n,2) = 1, then

x1(n) = (=1)%™ exp <2m' Z’Q’L(Z)) (3.14)

We claim that (b,2) = 1. Indeed, assume the contrary: (b,2) > 1. We show that then x; restricted
by (n,2%) = 1 has period 2°7!. Let m and n be integers such that (m,2%) = (n,2%) = 1 and
m =n (mod 2 1). We have

m = (=1)"™ .57 (mod 2%) and n=(=1)"™ .57 (mod 2%).

2&—1

Since these congruences also hold modulo , we have

(=1)Ym) .57 = (—1)¥() .57 (mod 2071, (3.15)
Since a > 4, we obtain
(=) 57 = (—1)¥() .57 (;mod 4).
It is clear that
(=) 570 = (—1)¥(") (mod 4)  and  (=1)"™ .57 = (—1)*™  (mod 4).

Hence,
(=)™ = (=1)*™  (mod 4).
If v(m) =0, then v(n) = 0; if v(m) = 1, then v(n) = 1. Thus,
v(m) =v(n). (3.16)
Therefore (see (3.15)),
57m) = 57 (mod 2071).
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Suppose, for definiteness, that v(m) > y(n). We have
57(n)(5v(m)—'y(n) ~1)=0 (mod 2071,
Since (57" 22=1) = 1, we obtain
570M=1M) _1 =0 (mod 2°71).

Hence,

57~ =1 (mod 2°71).
Since 5 belongs to 2¢73 (mod 2%71), we have (see [7, Ch. 6])
y(m) —y(n) =0 (mod 2°73).

Therefore,

y(m) = 7y(n) +2°7%t, (3.17)
where ¢ > 0 is an integer. Since (b,2) > 1, we have
b= 2, (3.18)

where b > 0 is an integer. We obtain (see (3.14) and (3.16)—(3.18))

7 m 7 n a—3
valm) = (-1 exp (2 1) ) = (1)) exp (2" ET)

by(n)

2a—3

> exp(2mibt) = (—1)@™ exp <2méﬁ@> = x,(n).

= (—1)™ exp <2m'

Thus, we have proved that x; restricted by (n,2%) = 1 has period 2*~!. Hence,
c(xy) <2071 <2,

This contradicts the fact that x; is a primitive character. Hence, (b,2) = 1.
For n =5 we have v(5) = 0 and 7(5) = 1. Therefore (see (3.14)),

. b b
x1(5) = exp <2m 2a_2> = exp <7T2 2a_3>.

Since @ > 4 and (b,2) = 1, we have Im(x;(5)) # 0. This contradicts the fact that y; is a real
character. Hence, 0 < a < 3. Lemma 3.6 is proved. [

Lemma 3.7. Let q1 and g2 be positive integers with q1 # g2, X, be a primitive character
modulo q1, and x4 be a primitive character modulo qa. Then x| # Xo.

Proof. Assume the contrary: x; = Xx,. Let m and n be integers such that (m,q1) = (n,q1) =1
and m =n (mod ¢2). Then

x1(m) = xa2(m) = x2(n) = x1(n).

Hence, x; restricted by (n,q1) = 1 has period g2. Hence, ¢(x;) < ¢2. Since x; is a primitive
character modulo ¢, we have ¢(x;) = ¢1. Thus, ¢1 < g2. Similarly, it can be proved that g2 < ¢;.
Hence, q1 = gq2. We have arrived at a contradiction, which means that x; # x,. O
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4. LEMMAS ON 9 (z, x)

In this section we present some lemmas on 1 (z, x). Most of these lemmas are well known. The
proof of Lemma 4.6 is based on Maynard’s ideas (see the proof of Theorem 3.2 in [5]). The proof
of Lemma 4.9 follows a standard proof of the Bombieri—Vinogradov theorem (see, for example, |1,
Ch. 28]).

Lemma 4.1. Let u > 2 be a real number, and let QQ > 2 and W be integers with (W,Q) = 1.
Then

YW = o) = w(0) XGZXQMWW (u, x)

(the overbar denotes complex conjugation).
Proof. We define

o =y g "
Since (see, for example, [1, Ch. 4])
1
»(0) Xg};@ X(W)x(n) = Igw(n),
we have
QW) = 3 A = S AmIgw(n) = S AM) o 3 x(W)x(n)
nEWnéﬁ)d Q) n<u n<u x€Xg
1 1
= (W)< A(n) (n)> = (W)ep(u, x).
#(Q) XE;QX Z * #(Q) X§Q * *

Let x, be the principal character modulo Q. Since (W, Q) = 1, it follows that x,(W) = 1. We have

Z X(W)EXO(X)U =X, (W)u = u.

X€Xq
Hence,
U 1 1 ,
YwRW) = 0 = ) Xez);Q X(W) ((u, x) = Ex, (0u) = o(Q) XEE;Q X(W)e' (u, X).

Lemma 4.1 is proved. [

Lemma 4.2 (see, for example, [1, Ch. 14]). There is a positive absolute constant a > 0 such
that if x is a complex character modulo q, then L(s,x) has no zeros in the region

a
In(q|t
IS b X
1-— if tl <1
Ing

(here s =0 +it, 0 = Res, and t =Ims). If x is a real nonprincipal character modulo q, the only
possible zero of L(s,x) in this region is a single (simple) real zero. Furthermore, L(s,x) can have
a zero in the region Q for at most one of the real nonprincipal characters x (mod q).

Remark. It is easy to see that the constant a can be replaced by any constant a* such that
0<a*<a.
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Lemma 4.3 (see [1, Ch. 20]). Let x be a nonprincipal character modulo q and 2 < T < w.
Then

uﬁl
Y(u,x) = — + Ry(u,T),
B
where
Ra(u, T)| < O uln(quexp( = “ ™ ) + 0T n?(qu) + u/
R In(qT) ’

Here C > 0 is an absolute constant and a > 0 is the absolute constant in Lemma 4.2. The term
—uPL /By should be omitted unless x is a real character for which L(s,x) has a zero B1 (which is
necessarily unique, real, and simple) satisfying

61 >1-— .
Ing

Lemma 4.4 (Page’s theorem; see, for example, [1, Ch. 14]). There are absolute constants
a1 > 0 and a} > 0 such that the following holds. Let z > 3 be a real number. Then there is at most
one real primitive character x to a modulus qo, 3 < qo < z, for which L(s,x) has a real zero [
satisfying
ai

6>1-— i
Inz

If such a character x exists, then
! 2
ai(Inz)
> .
P = (Inln z)*

Such a modulus ¢ is said to be an ezceptional modulus in the interval [3, z].

Lemma 4.5. Let z > 3 be a real number. If an exceptional modulus qo in the interval [3, z]
exists, then the number qo is of the form 2%k, where « € {0,...,3} and k > 1 is an odd square-free
integer.

Proof. Suppose an exceptional modulus ¢ in the interval [3, z] exists. In particular, this means
that there exists a real primitive character xy modulo gg. By Lemma 3.6, the number ¢ is of the
form 2%k with « € {0,...,3} and an odd square-free integer £k > 1. [

Lemma 4.6. There are positive absolute constants cg, c1, Yo, and C such that the following
holds. Let x > co be a real number, qo be an exceptional modulus in the interval [3,exp(2¢y VIn x)],
Q be an integer such that 3 < Q < exp(2c1VInz) and Q # qo (the last inequality should be
interpreted as follows: if qo exists, then QQ # qo; if qo does not exist, then @ is any integer in the
indicated interval), and x be a primitive character modulo Q. Then

max Y (u, )| < Crexp(—3c1VInw).
2Sugw1+’}’0/\/lnz

Proof. We will choose ¢; and 7y later. The number ¢y depends on ¢; and vy and is large
enough, and x > ¢g(c1,70). We put

z = exp(2¢;VInz).

We have z > 3 if the number cq(c1,70) is chosen large enough. By Lemma 4.4, there is at most one
real primitive x to a modulus qg, 3 < qo < z, for which L(s, x) has a real zero § satisfying
aq al

>1-— =1- . 4.1
2 Inz 201\/ln:1: (41)
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If such a character x exists, then

di(lnz)? ay(2c1V/In z)? ajc2 Inx

D2 (mmz)t T ((1/2) Il + In@e))* = (nlnz)? (42)

provided that cy(c1,70) is chosen large enough. Let @ be an integer such that 3 < Q < exp(2¢;VIn )
and Q) # qo, and let y be a primitive character modulo (). Since Q > 1, we see that x is a
nonprincipal character. By Lemma 4.3, if 2 < T < u, then

uPt
?;/)(Ua X) = - /81 + R4(U7T)7 (43)
where
2 alnu —17,.2 1/4
|Ry(u, T)| < C<uln (Qu) eXp<_ln(QT)> +uT ' In?(Qu) + uY/ lnu>
= C(A1 + Az + Ag). (4.4)

The term —uf1 /B is to be omitted unless x is a real character modulo @ for which L(s, x) has a
zero 31 (which is necessarily unique, real, and simple) satisfying

a
>1-— .
B1 nQ
Let
2<u< a:l'mo/\/lnw.

Let u > ¢a(c1), where ca(c1) > 0 is a number depending only on ¢;. We choose
T = exp(4c;Vinw). (4.5)

Then 2 < T < w if ea(cy) is chosen large enough.

I. Now we estimate the quantity

A1 = uIn?(Qu) exp (— 15(2%)) .

If ¢o(e1,70) is chosen large enough, then

Y0

1+ < 2. 4.6
Vinz (4.6)
Hence,
70
Inu < <1+ >lnm§2lnx, (4.7)
Vinz

QT < exp(201\/lna; + 401\/lnu) < exp(lOclx/lnm),

alnu alnu

In(QT) < 10¢;VIn z, T(QT) T 10¢,vInz

If ¢o(e1,70) is chosen large enough, then
nQ < 201\/1113: <Inz.

Therefore,
In?(Qu) < 2(ln2 Q + In? u) <10 In?z = 10exp(2Inlnz). (4.8)
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We have
alnu
Ay <10uexp| — —|—21nln$>.
! p( 1001\/1113:
Consider two cases.
(1) Let /4 < u < g1+0/Vine Then
Inz Yo >
<lhu<|1l+ Inzr <2Inz.
4 < Vinz
Let
a a
0<e < = — < —4¢;.
= \/160 40¢, =4
Hence,
_ alnu S_(cz/él)lnac :_a\/lnac < depving
10c1VIn z 10c1VIn z 40cy
and
alnu

— +21nlnx§—4clx/lnx+21nlnx§—701\/lnm
1001\/1113: 2

provided that cy(cy, 7o) is chosen large enough. If 0 < vy < ¢1/2, then
A < 101170/ Vine exp <— ;clx/ln x> =10z exp <— ;clx/lna: + ’yo\/ln m) <10z exp(—301\/ln x).

(2) Let ¢a(c1) < u < xM/* (we may assume that co(cr,70) > (c2(c1))* and ¢a(cp) > 10). We have

alnu
10c1vVInz

<10z* exp(2InInz) < 10z exp(—3c;VIn z)

A < 10uexp<— + 21nlna:> < 10uexp(2Inlnz)

provided that cy(c1,70) is chosen large enough.
Thus, if 0 < ¢1 < \/a/1607 0<9 <c1/2, x> co(c1,7), and ca(c1) < u < m”'yo/\/lnw, then

Ay <10z exp(—3c;VInz).
II. Now we estimate the quantity
Ay = uT 1 n?(Qu).
From (4.5) and (4.8) we obtain
Ay < 10uexp(—4cl\/lnu + 2lnlnm).
Consider two cases.

(1) Let 2%/10 < o < gl+70/Vine Then

9 9 15
10 Inz <lnu < <1+\/st> Inz <2Inz, —4clx/lnu§—4cl\/10 lnx<—401\/lnm.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 314 2021



160 A. O. RADOMSKII

Since 0 < y9 < ¢1/2, we have

1 1
Ay < 10$1+’yo/\/1nzexp<— 4501\/1na:—|—2lnln$> = 10xexp<— 4561\/ln:r—|—21nlna:+’)/o\/lna:>

1
< 10z exp <— 4361\/lnm + 2lnlnm> < 10z exp(—3¢;VIn z)
provided that co(c1,70) is chosen large enough.
(2) Let ca(c1) < u < 219, Then
Ay < 10uexp(—4cl\/lnu +2Inlnz) < 10uexp(2Inlnz)
< 102”7 exp(2Inlnz) < 10z exp(—3¢;Vin z)

provided that cy(c1,70) is chosen large enough.
Thus, if 0 < ¢; < \/a/160, 0 < y9 < ¢1/2, > cole1,70), and ea(cr) < u < g+90/Vinz then

Ay < 10z exp(—3c;VInz).
III. Now we estimate the quantity
Az = w4 .
Since (see (4.6) and (4.7))
Inu<2lnz and ul/t < 2(1+0/Vinz)/4 < a:l/z,

we have
Az < 2% Inz < zexp(—3c;VIn )

provided that cy(c1,70) is chosen large enough.
Finally, we obtain the following (see (4.4)): if 0 < ¢; < /a/160, 0 < 7o < ¢1/2, = > cole1,70),
and co(c1) <u < :EHVO/\AM, then

|Ry(u,T)| < 21Czexp(—3c1VInz), (4.9)
where C' > 0 is an absolute constant.
IV. Now we estimate the quantity (see (4.3))
uB
o3

If x is not a real character modulo @ for which L(s, x) has a zero 1 (which is necessarily unique,
real, and simple) satisfying

se]-

a

>1-— )
b nQ
then the term —u”! /B in (4.3) is to be omitted, and there is nothing to estimate. Let x be such a
character. Then x is a real primitive character modulo @. Since @ # ¢y, we have (see Lemma 3.7

and (4.1))

aq aq
<1- =1- .
b= In 2 201\/ln:1:

Hence,

Wf1| = uft < yl-e/Caving _ e (_ arlnu >
201\/lna:
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By the remark made after Lemma 4.2, we may assume that 0 < a < 1/2. Since @ > 3, we have

a 1 1
1— 1— .
b > nQ ~ " 23 2
Hence, 0 < 1/8; < 2. Thus,
arlnu
Ay < 2uexp| — . 4.10
t= p( 201\/lnm> ( )

Consider two cases.
(1) Let /2 < u < g1+0/VIne_ We have (see (4.6))

1
n233 <lnhu< <1+ 1o >lnm§21na;.

Vinz
We take
min{a, a1} ax 7
_ < _ .

0<e < 160 = dey = 201

Then,
_arlhu < ~(a/2)Inz _ _alx/lna: < _761\/1]”:.
2¢1vVIn x 2¢1VIn x 4cq 2

Since 0 < v9 < ¢1/2, we obtain (see (4.10))
Ay < g+ /Vine exp(— ;clx/lnx> = 2xexp <— ;clx/lnm + 'yo\/lna:> <2z exp(—3clx/lna:).

(2) Let ca(c1) < u < /2. Then (see (4.10))
Ay <2u < 2212 < 21 exp(—301\/lnm)

provided that cg(c1,70) is chosen large enough. Combining the estimates found at steps -1V
together, we obtain the following (see (4.3) and (4.9)): if 0 < ¢; < y/min{a, a1}/160, 0 < 7o < ¢1/2,
x> coler, %), and co(cr) <u < g1 T0/VIne (e

[(u, x)| < (21C + 2)z exp(—3cl\/ln x),

where C' > 0 is an absolute constant.
There is a number d(c1) > 0, depending only on ¢, such that

texp(—3c;vVInt) > 1 if t>d(cy).

We may assume that co(c1,70) > d(c1). Hence, if 2 < u < ca(ey), then (see (2.1))

)] = |3 Aln)x(n)

n<u

< Z A(n) = ¢(u) < beu < bgea(cr) < bgea(er)x exp(—3erVIn ).

n<u

Thus, if 0 < ¢; < y/min{a,a;}/160, 0 < v < ¢1/2, and = > ¢o(c1,70), then

max [(u, x)| < (21C + 2 + bgea(cr)) @ exp(—3c1VInz),
2§u§x1+'\/o/\/lnr

where C > 0 is an absolute constant. We take

_ v/min{a, a1} and o= ¢ _ v/min{a, a1 }

“ 16 2 32
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Since a > 0 and a; > 0 are absolute constants, we see that ¢1, 7o, co(c1,70) and ca(cy) are positive
absolute constants. Lemma 4.6 is proved. [J

Lemma 4.7 (see [1, Ch. 19]). Let u > 2 be a real number, Q > 2 be an integer, x € Xq, and
X1 be a primitive character modulo q; inducing x. Then

W)/(uv X) - 1[)/(U, X1)| < lnz(Qu)

Lemma 4.8 (see [1, Ch. 28|). Let Q1, Q2, and t be real numbers such that 1 < Q1 < Qo
and t > 2. Then

2 so(lQ) 2 o i(u )| < Cln4(t@2)<él + /610 Q, +t1/2622>,

2<u<t
Q1<Q<Q2 XE€XE

where C > 0 is an absolute constant.
Lemma 4.9. Let € and § be real numbers such that 0 < e <1 and 0 < 6 < 1/2. Then there
exists a number c(g,0) > 0, depending only on ¢ and ¢, such that if © € R and q € Z satisfy

the conditions x > c(g,8) and 1 < q < (Inz)'75, then there is a positive integer B for which the
following relations hold:

1§B§exp(01\/lna:), 1< <2, (B,q) =1
©(B)
and
max max Y(u; Q, W) — < cowexp(—c3VInz).
1<Q<zt/2-8 2<ugttr/Vine WELZ: (W.Q)=1 ( ) v(Q) ( )
(@.B)=1

Here cq1, v, ca, and c3 are positive absolute constants.

Proof. Let g, c1, 70 and C be the positive absolute constants in Lemma 4.6. We will choose ~
and c(e,d) = c(g,6,7) later; they are assumed to be small and large enough, respectively; for now,
let 0 <y <0, c(e,d,7) > co, and = > ¢(g,6,7). Let go be the exceptional modulus in the interval
[3,exp(2c1vInz)]. If go does not exist, then we take B = 1. If gy exists, then (see (4.2))

ay2 Inx calnz

= (nlnz)*  (lnlnz)*’

where ¢4 > 0 is an absolute constant. We have gg > 24 if ¢(e,d,v) is chosen large enough. By
Lemma 4.5, the number qq is of the form 2%k, where « € {0,...,3} and k > 3 is an odd square-free
integer. We put

q _ o calnz

20 = 8 7 §(lnlnx)*’

Let 7 = (My,q) and My = M;/7. Then (Ms,q) = 1. Since 7 < ¢ < (Inz)!7¢, we have

Moy — M1 > M1 > C41H1‘ _ C4(IDZL‘)‘E
7 7 T (nz)-c T 8(nlnaz)i(nz)—¢  8(nlnz)t

If ¢(e,d,7v) is chosen large enough, then My > 3. Hence, My > 3 is an odd square-free integer.
Furthermore, we have (M, q) = 1 and My divides qo. Let B be the largest prime divisor of M.
Hence, B > 3 is a prime number and B divides qy. We have (see Lemma 2.4)
B B B 1 < 1 3
©(B) B(1-1/B) 1-1/B~ 1-1/3 2

Thus, 1 < B < exp(2c1VInz) is an integer, (B,q) = 1, 1 < B/p(B) < 2, and B > 3 is a prime
divisor of ¢ if qg exists.

M, =
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Let u be a real number such that 2 < u < 2117/ \/h””, and let @@ and W be integers such that
2< Q< gl/29 (Q,B) =1, and (W,Q) = 1. By Lemma 4.1, we have

; 7W - = W ! 9 .
YW = 0= L) X;@ X(W) (u, x)
Therefore,
B = o< o S W
‘ 90(62 X;;Q

Since the right-hand side of this inequality does not depend on W, we have

ZW u, X))

XGXQ

max
Wez: (W,Q)=1

90(62

Let x € Xq, and let x; be a primitive character modulo ¢; inducing x. From Lemma 3.4 and
the definition of the inducing character (which is given below Lemma 3.4), we have ¢ = ¢(x), and
hence ¢; | Q (see Lemma 3.3). Applying Lemma 4.7, we find

9" (u, X)] < |9 (u, x1)| + 1n*(Qu).
Since #X¢g = ¢(Q), we obtain

max Y(u; QW) —

wez: (W,Q)=1 0(Q) > (19 (w,x0)| + In*(Qu))

XE€Xq

XGXQ

P(Q)

= In? (Qu) +

We can assume that
~
n <9 411
Vinz ( )
provided that c(e,d,7) is chosen large enough. Hence,
Y
Vinz

1
O<an§<2—5>lnx§1nx, n?2Q < In’z,

O0<Inu < (1—1— >lnx§2lnaj, ln2u§4ln2aj,

In?(Qu) < 2(ln2 Q + In? u) < 101n? z.

We obtain
U 1
max max Y(u; QW) — ' <10ln%z + max [Y' (u, x1)|-
9<u<ztr/Vine WEL: (W,Q)=1 »(Q) »(Q) X;(:Q 2<u<g+y/Vina 1
Therefore,
S = Z AQ = A1 + Z AQ
1SQSw1/2—(5 2SQSw1/2—(5
(@,B)=1 (@.B)=1
1
< A+ Z (10 In®z + Z max [Y' (u, X1)|>
9<Qal/2-5 P(Q) xeXo 2<y<gl+r/Vine
(@Q,B)=1
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B 1
< 102172 5]112:L’+A1 + Z Z Q) max y ‘wl(u’ Xl)‘
2<Q<zl/2-6 xEXq O(Q) 2<y<gi+r/Vine

(Q’B):l
=102 0%z 4+ A + 9, (4.12)

where

Ag = max max
2§u§x1+'\//\/lnz WEeZ: (W,Q)Zl

Q)|

Let us estimate the sum S’. Let Q be an integer with 2 < Q < 22/279 and (Q,B) =1, let x € Xp,
and let x; be the primitive character modulo ¢; inducing x. Since ¢q; | Q, we have 1 < ¢; < z1/2-0
and (q1,B) = 1. Hence,

= XY o )

2<Q<z!/?-% x€Xq Q) 2gugarinvine
(@,B)=1

S0 max W)Y !

L 2<u< 14+~/VInx maqi ’
1Sqlgml/275 Xlequ 2<u<z 1§m§x1/2*5/q1 QO( )
(q1,.B)=1

IN

Applying Lemmas 2.5 and 2.9, we obtain
1 1 1 1 1 1
2 ma) S ela) 2 ) S pla) 2 = o)
A A S P PG ! "

where C > 0 is an absolute constant. We have

S'<Clnzx Z ! ) Z max |¢/(U,X1)|-

(@ 2<u<L gl +/Vine

1<q <a?/?70 X1 €X4,
(q1,B)=1
Redenoting ¢; by @ and x; by x, we find
1
§'<Chz Y > max ¢/ (u,x)| = Clnz(S] + S5+ S3), (4.13)
1<Q<z/2-5 SO(Q) xeXg} 2§u§x1+w/\/lnz
(@,B)=1

where

Si= Y R  Sh= > Rg,  Sy= > Ry,

1<Q<Inz Inz<Q<exp(c1VInz) exp(c1vInz)<Q<al/2-9
(@B)=1 (Q,B)=1 (Q,B)=1
1
Rq = > max [ (u, x)],

QO(Q) Xexé 2§u§x1+"//\/lnz

and c; > 0 is the absolute constant in Lemma 4.6.

I. Now we estimate S7. We have

Si= Y Ro<Ri+ Y Ro=Ri+65, (4.14)
1<@Q<Inz 2<Q<Inzx
(Q’B):l
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(1) Let us estimate R;. Since #X; = 1, we have

Ry=  max - [{/(u,x)],

2§u$x1+’y/\/lnm

where x € X7, i.e., x(n) =1 for any n € Z. Since x is the principal character modulo 1, it follows
that

1/1/(% X) = ¢(Ua X) - u.
We have
b x) = S AWM = S AM) = ), () = ¥lw) — .

n<u n<u

It is well known (see, for example, [1, Ch. 18]) that
[h(u) — u| < Cu exp(—cVInw), u > 2, (4.15)

where C > 0 and ¢ > 0 are absolute constants. Consider two cases.
(i) Let 2% <u < g1/ Vinz (we may assume that c(e,d,7) > 16). Then (see (4.11))

v

1
Inz <lnu<|(1+
4 ( Vinz

>1na:§2lnac, —C\/lnug—;\/ln:r.

Hence,

¢ (u, x)| < Cu exp(—cx/lnu) < Cx1+7/‘/1nrexp<—§\/lnm>
= C’:rexp((’y— ;)\/lnzn) < C’:Eexp(—Z\/lna:)

provided that 0 < v < ¢/4.
(i) Let 2 < u < 2'/4. Then

1 (u, x)| < Cuexp(—evVInu) < Cu < Cz'/* < Czexp (—Z\/lnac)

provided that c¢(e,d,7) is chosen large enough.
We obtain

R, = max [Y (u, x)| < Cmexp(—Z\/lnx) (4.16)

2§u§x1+"//\/lnm

(2) Now we estimate

si= Y LS max Wl (4.17)

l -
9<Q<Inz SO(Q) xeXg} 2<u<glty/Ving

Let @ be an integer such that 2 < @ < Inz, and let x € X§. Then x is a nonprincipal character
modulo @, and hence ¢/ (u, x) = ¥(u, x). Consider two cases.
(i) Let 21/ < u < 21+7/VIne Then (see (4.11))

~y
Vinx

We may assume that c(e,d,7) > e!¢. Hence, Inu > (Inx)/4 > 4. We have

ilnxﬁlnug <1—|— >ln$§21n$.

2§Q§lnaz§4lnu§ln2u.
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Therefore (see, for example, [1, Ch. 22]),
[¥(u, )| < Cuexp(—c(2)vVinu),

where C' > 0 and ¢(2) > 0 are absolute constants. We have
2
—c(2)VInu < — 0(2 ) Vinz

and

[(u, x)| < Cu exp<— 0(22) VIn a:> < Czlt/Vine exp (— 0(22) VIn :r>

— cron(1- @) vins) = cromn( - vin)

provided that 0 < v < ¢(2)/4.
(i) Let 2 < u < /%, Then (see (2.1))

Y(u,x) =Y An)x(n)

n<u
and

(0] £ 3 A0 = 60) < b < e < Caesp (- Vine)

n<u

provided that c(e,d,7) is chosen large enough. Hence,

max  |ib(u, x)| < Czexp <— Cf) Vin ac)

2Su$w1+—y/\/lnr

Substituting this estimate into (4.17) and using the fact that #X¢ < #Xq = ¢(Q), we obtain
2 2
Sy < Cacexp(— C(ZL)\/ID$> Inx = Cwexp(— C(él)\/ln:r —|—lnlna:>

2
<Czx exp(— C(E;)\/ln$> (4.18)
provided that c(e,d,7) is chosen large enough.
Substituting (4.16) and (4.18) into (4.14), we find
S1 < Crexp(—cVInz), (4.19)

where C > 0 and ¢ > 0 are absolute constants.

II. Now we estimate the quantity

1
B D@ 2 s, V0
exp(c1vVInz)<Q<zl/2-9 yexy 2Susel
(Q,B)=1

Let @ be an integer with exp(c;vVInz) < Q < /279 and (Q,B) = 1, and let x € X§. Since @ > 1,
we see that y is a nonprincipal character modulo ). Hence,

ﬂ),(uv X) = 1/’(% X)'
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We have
1
Sh = > > max  [¢(u, x)

Q <u< 1+v/VInz
exp(c1vVInz)<Q<zl/2-8 SO( ) xeX5 2suse
(@,B)=1

< S Y max ()l

exp (e VIn o) 2 Q<125 P(Q) (X 2Susal i/ Vine
Applying Lemma 4.8 with Q; = exp(c1VInz), Qo = z'/279 and t = 331‘”/\/1““"3, we obtain
Sl < C'lnt (:L,3/2—6+’Y/\/1nz) (:1: exp((7 _ cl)\/lnac) + £(5/6)(14+~/VInz) ln($1/2—6) + :L,l—6+’Y/(2\/1nz)>.

We can assume that

g 5 g 9
<4 and 1+ > <
\/lIl:L’ 6< \/ln;z 10

if ¢(e, d,7) is chosen large enough. Increasing C' if necessary, we have
S5 < Cln*a (zexp((y - cl)\/lnm) + 220 + x1_5/2).
Then
(y—c1)VInz < —621 Vinz

provided that 0 < v < ¢1/2. We obtain

xexp((fy— cl)\/lnm) Inz < xexp(—?\/lnx—kéllnlnx) < mexp(—i\ﬂnx),

2/101n° 2 < xexp(—ill\/lnm), 2021ty < xexp(—zl\/lnm)
provided that c(e,d,7) is chosen large enough. Redenoting 3C' by C' and ¢;/4 by ¢, we arrive at

S% < Cxexp(—cVinz), (4.20)

where C > 0 and ¢ > 0 are absolute constants.

ITI. Now we estimate the quantity

1
Inz<Q<exp(c1VvInx) XX 2<u<z 1+

Let Q be an integer with Inz < @ < exp(c;vInz) and (Q,B) = 1, and let x € X§- Since @ > 1,
we see that x is a nonprincipal character modulo @, and hence 9’ (u, x) = ¥ (u, x). We recall that if
an exceptional modulus g in the interval [3, exp(2c;v/Inz)] does not exist, then B = 1; if ¢q exists,
then B > 3 is a prime divisor of o, and so @ # qp. Since 0 < v < 7 and ¢(e,d,7) > ¢o, we see
from Lemma 4.6 that

max 9 (u, x)| < Cxexp(—Bclx/lnm).
QSUS‘ZL&-'\//\/lnz

Since #X§) < #Xg = ¢(Q), we obtain

Sl < Z Czexp(—3c1VInz) < Cxexp(—3c1VInz) exp(c; VIn )

In z<Q<exp(c1VInx)
(@,B)=1

= Czexp(—2c1VIn ). (4.21)
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From (4.19)-(4.21) we find
S, + 85+ 84 < Cxexp(—cvInz), (4.22)

where C' > 0 and & > 0 are absolute constants. Substituting (4.22) into (4.13), we obtain
S <C'zx exp(—E\/lna: + lnln:r) <C'z exp(— ; \/lna:)
provided that c(g,d,v) is chosen large enough. Redenoting C’ by C and ¢/2 by ¢, we arrive at

S < Czexp(—cVInz), (4.23)

where C > 0 and ¢ > 0 are absolute constants.
IV. We have
2127012 2 < 2?1’z < zexp(—cVIn ) (4.24)

provided that c¢(e,d,7) is chosen large enough (here ¢ > 0 is the absolute constant in (4.23)).

V. Now we estimate the quantity

A = max max |[(u: 1. W) — ul.
1 2SUS(E1+"//\/lnz Wez‘w( s Ly ) ‘

Let W € Z. We have
P w) = S Am) =3 Am) = v(w).

n<u, n=W (mod 1) n<u
Hence,
A = max |(u) — ul.
2Su$wl+w/\/lnz

Using (4.15) and arguing as in cases I(1), (i) and I(1), (ii), we obtain
A < Czexp(—cvVInz), (4.25)

where C > 0 and ¢ > 0 are absolute constants.
Substituting (4.23)-(4.25) into (4.12), we find

S < Crexp(—cVInz),

where C' > 0 and ¢ > 0 are absolute constants. Thus, if v is a sufficiently small positive absolute
constant, x > c(e, d,7) is a real number, and ¢ is an integer such that 1 < ¢ < (Inx)!~¢, then there
is an integer B such that

B
1§B§exp20\/lnm, 1< <2, B,q)=1
(261Vin ) o) (B.a)
and
max max Y(u; Q, W) — < Czxexp —eVInz ,
1<Q<m1/2—5 QSUSI1+"//\/lnw WeZ: (W,Q):l ( ) SD(Q) ( )
(Q.B)=1

where ¢1, C, and ¢ are positive absolute constants. Let us redenote 2¢; by ¢1, C by co, and ¢ by c3.
Since 7 is an absolute constant, we see that the positive number c¢(g,d,7) = ¢(e, ) depends only on
€ and 4. Lemma 4.9 is proved. [J

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 314 2021



CONSECUTIVE PRIMES IN SHORT INTERVALS 169

Lemma 4.10. Let ¢ and § be real numbers such that 0 < ¢ < 1 and 0 < § < 1/2. Then
there is a number c(e,d) > 0, depending only on € and §, such that if x € R and q € Z satisfy
the conditions x > c(g,0) and 1 < q < (Inz)'75, then there is a positive integer B for which the
following relations hold:

B
1§B§expcx/lnm, 1< <2, B,q)=1
(rvinz) e (B.q)
and
T
max max m(u; QW) — i(u) < cpxexp(—c3VIn ).

1<Q<gl/2-9 2<ualty/Vine WEL: (W,Q)=1 p(Q
(@.B)=1

Here cq1, 7, ca, and c3 are positive absolute constants.

Proof. We will choose the number ¢(g,0) later; it is assumed to be large enough. Let
c(g,0) > c(g,6), where ¢(e,d) is the number in Lemma 4.9. Let x € R and ¢ € Z be such that
x> ¢(e,8) and 1 < ¢ < (Inx)'~%. Then, by Lemma 4.9, there is a positive integer B such that

B

1§B§exp0\/ln$, 1< <2, B,q)=1 4.26
and
max max Ru; Q,W)| < coxexp(—c Vinz , 4.27
|<Qea/z-s 2Susaltr/Vine WEL: (WvQ>=1| ( )= e (~es ) (421
(QvB):l
where
U
R U7Q7W 3:"¢ U7Q7W -
( ) ( ) 5(0)
and c1, 7, c2, and c3 are positive absolute constants.
We put
li(u)
Ri(u; QW) :=w(u; Q, W) — . 4.28

Let Q € Z, W € Z, and u € Z be such that 1 < Q < z/279, (@,B) =1, (W,Q) = 1, and
3 <u < g/VInr We claim that

R(n;Q, W
R QW) < Cra? 4+ (R + 3 U@L (4.29)
nln“n
2<n<u-—1
where C7 > 0 is an absolute constant. We define
1 if n=W (mod Q), A(n)a(n)
a(n) = and m(u; QW) =
() {0 otherwise 1w @, W) nz<:u Inn
Let us show that
w(w; QW) = m(u;Q,W) + R(w; Q, W), |R(w;Q,W)| < Cull?, (4.30)

where C > 0 is an absolute constant. Let © > 8. Then

m(uQ,W) = a(f;):iglp = > > a(ﬁlm)

pm<u 1<m<Inu/In2 p<yl/m
1 m
et ¥ LY awm-sies
p<u 2<m<Inwu/In2 p<ul/m
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We have

Sy = > 1= m(u; Q, W)

p<u, p=W (mod Q)

and

ul/m 1 ul/m 1 1 Inu

g, < _ Loy < b1y 1/3
DS m SV 2 m =2 3" e
2<m<Inwu/In2 3<m<Inwu/In2

< U1/2 +'LL1/3 Inu < O/Ul/Q,
where C’ > 0 is an absolute constant. If 3 < u < 8, then

Z ; Z a(pm) S; Z 1_‘_:13 Z 120//§O//’LL1/2.

2<m<lInu/In2  p<yl/m p<81/2 p<8L/3

Thus, (4.30) is proved.

Since
P QW) = Alm
m<x
we have
P QW) —9(n —1;Q,W)
™ Q, W) Z Inn
2<n<u
_ . L 1 Y(u; Q, W)
- 2<;_1¢(H7Q’W)<m” In(n + 1)> T
B n ' T 1 u R(u; Q, W)
a 2<n§<:u_1<80(Q) +R(n,Q,W)> <lnn In(n + 1)> * o(Q)Inu + Inu ’
Further,
1 1 n+1 i 1 {t}
n n
2<nz<;b_1 ©(Q) <lnn - hﬂ(n—l-l)) B 2<§—1 0(Q) n/ tln?t o(Q 2<; . n/ tin2t
1 /“ dt [{that
(@) J 't )t
Since
[ dt [ 1 £ T dt u 2 _
/lnzt :/td<_lnt> ~ It 9 +/lnt ~ Tlnu + In2 +1i(u),
2 2 2
we obtain
u R(u; Q, W) u 2 li(u)
. W — _
m1(u; Q, W) SQu T o @mut o@m2 T Q)
_ 1 [t} 1
»(Q) 2/tln2t dt+2<nz<;b 1R @, W)<lnn ln(n+1)>'
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We have (see (4.30))

li(u)
m(u; Q, W) = + Ri(u; Q, W),
( ) #(0O) 1( )
where
2 (R R R(u: Q. W)
Ri(u; Q, W) = — dt + R(u; Q, W) +
QM= p@me T p@) [ et M TR,
+ 3 RnQW)( _— >
ez Inn  In(n+1)
We can estimate this quantity as
~ R(u; Q,W
Ry (1.0, W) / Wil (B w4 @)
t Inu
+ Y nQW|<1— ! > (4.31)
Tl Inn  In(n+1)/)" '
Since u > 3, we have
[R(u; Q, W)
< : . 4.32
I < |res @) 4.32)
Since
/{t} </dt__1“_1_1<1
tn?t tln?¢  Int|, 2 hu = In2’
2 2
it follows (see (4.30)) that
2 4 {t} dt| + |R(u; Q,W)| < +Cut? < (C+ u'/?. (4.33)
In2 tin?t T ~ In2 ln
2
Let f(z) = —In"'z and n > 2 be an integer. By the mean value theorem, there is a & € (n,n + 1)
such that
L sy =r=, Y < (434
Inn  In(n+1) B C&n?¢ T nln’n '
Substituting (4.32)—(4.34) into (4.31), we obtain (4.29). Hence,
max max \Rl(u Q,W)|
1/2—5 3SUSI1+'\//\/lnz Wez
1<Q<z L (@)=
(@B)=1
< . 1/2
- Z 3<U<I£<ak)"f/\/lnw IVI[’/lg)Z{ |R(u7Q’W)| + Z 3<U<Iwri?»§/\/lnw IVI[’/lg)Z{ ‘Clu |
1<Q<gl/270 PSU=Y (W,Q)=1 1<Q<a!/270 P20 W,Q)=
(@.B)=1 e (Q.B)=1 ue
+ Z max max Z |R(n;Q2, W)l
3<u<glty/Vine WEL nln“n
1<Q<al/2=0 7= (W,Q)=1 2<n<u—1
(@.B)=1 b
=57+ .5+ S55. (4.35)
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I. Now we estimate S;. We have (see (4.27))

Sl < E max max ‘“(U,Q,W)‘ <C2x p(_CS\/].nl’) ( 3 )
1/2-6 2<u<x1+"//\/lnm WeZ — ex
l<(Q<x) . - = (W, ) 1 4.36

II. Let us estimate Sy. We can assume that

~y
Vinz

provided that ¢(e, d) is chosen large enough. We have

<9

Sy < Clx1_5+7/(2\/1m) < Crt92 < :Eexp(—63\/ln:17) (4.37)

provided that ¢(e, §) is chosen large enough.

III. Now we estimate S5. Let Q, W, u, and n be integers such that 1 < Q < z/279, (Q,B) =1,
W,Q)=1,3<u<z*/Vnz and 2 <n <wu—1. Then

| R(n; Q, W) e e P | R(m; Q, V)

(V,Q)=1
Hence,
R(n; QW 1
Z | R( - )| < max - max |R(m; Q, V)| Z 12
o<n<u—1 T 2EmSe T 2<n<u—1 T
[ee]
<ec max max |R(m;Q,V)|, where c¢g = < 4o00.
B O2<m<zl+v/x/lnw VEL B(m: Q. V) 0 z_:z nln’n
T (V,Q)=1 "=
We have
max max Z |R(n;%, W) < ¢ max max |R(m;Q,V)|.
3§u§21€+z'y/\/lnm (W‘;E/QE)Z:I s<meu_1 nln“*n 2<m<gl+/Vina (v‘,/Qe)Z:1
Therefore (see (4.27)),
S3 < ¢ Z mex - max |R(m; Q, V)| < cocom exp(—c3VInx). (4.38)
gl S G
Substituting (4.36)-(4.38) into (4.35), we obtain (see (4.28))
I
mex - IMmax m(u; Q, W) — l(g) < eyzexp(—c3Vinz), (4.39)
ISQSI1/276 3SUSTL;+£/ Inz (W,Qe)zl SO

(@,B)=1

where ¢4 = co + 1 4 cgey > 0 is an absolute constant.
Let @ and W be integers such that 1 < Q < x1/279, (Q,B) =1, and (W,Q) = 1, and let u be
a real number with 2 < u < g1t/ Vinz - Consider two cases.

(1) Let 2 <wu < 3. Then

7 (u; QW) < w(u) <2,

o) ‘ < li(u) < L(3),
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and so
w(w; Q, W) — Ql;((g) < |m(u; Q,W)| + ‘:;((g) <2 +1i(3). (4.40)
(2) Let 3 < u < '+7/VIne_ Then
W) — ()| [ dt
0(Q) = / Int = 2/lmt = li3)
Hence,
oy | ) () ()
@ W)= 10 |=[stem- Jo - T0) + o)
o vy G |G~ | | o ()
< |7 ([u]; QW) 20| T 5(0) <Li(3) + |m([u); QW) 5(0) (4.41)
From (4.40) and (4.41) we obtain
li(u) li(u)
max max |m(u;Q, W) — < max max |m(u;Q, W) —
2<u<Lgl+y/Vine (V&/Qe)zil ¢(Q) 35u§21€+zv/¢1” (M%QG)Z:l P(Q)
+21(3) + 2. (4.42)
We can assume that
22 < zexp(—c3VInz) (4.43)

provided that ¢(e, §) is chosen large enough. From (4.39), (4.42), and (4.43) we obtain

li(u)
max max |m(u;Q, W) —

R A

< Z max max |7(u;Q, W) — li(u) + (21i(3) + 2)2/2

- 3<u<x1+'\//\/lnz WeZ (P(Q)

L<Q<al/270 "=0= op (W,Q)=1
(@,B)=1
< (ca+21(3) +2)x exp(—e3VInz). (4.44)

Thus, if x > ¢(e,d) is a real number and ¢ is an integer such that 1 < ¢ < (Inz)'~%, then there
is a positive integer B for which (4.26) and (4.44) hold. Let us redenote ¢(g,0) by c(g,0) and
¢4 + 21i(3) + 2 by ¢o. Lemma 4.10 is proved. O

5. PROOF OF THEOREM 1.1 AND COROLLARY 1.1

Let us introduce some additional notation. Let A be a set of integers, P a set of primes, and
L(n) = lin + Iy a linear function with integer coefficients. We define

A(z) ={ne A: z <n <2z}, A(z;q,a) = {n € A(z): n=a (mod q)},
L(A)={L(n): ne A}, Pra(z) = L(A(x)) NP, Pra(z;q,a) = L(A(z;9,a)) NP,

)
_o(|lilq)
P = )
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Let £ = {Ly,...,L;} be a set of distinct linear functions L;(n) = a;n +b;, i = 1,...,k, with
positive integer coefficients. We say such a set is admissible if for every prime p there is an integer n,
such that (Hf:1 Li(np),p) =1.

We focus on sets satisfying the following hypothesis, which is given in terms of (A, £, P, B, z,0),
where £ is an admissible set of linear functions, B € N, x is a large real number, and 0 < 6 < 1.

Hypothesis 1. For (A, L, P,B,z,0) and k = #L, the following holds.

(1) A is well distributed in arithmetic progressions:

#A(x)
D> max ;

1<q<a?

#A(x)

< (ln m)100k2 ’

#A(x;q,0) —

(2) The primes in L(A) NP are well distributed in most arithmetic progressions: for any L € £
we have

>, max ‘#PL7A($§ q,a)

1<q<2? (L(a),q)=1
(qu)zl

_ #Pralz) ‘ #Pr,a(x)
1(q) (In a:) 100K*°

(3) A is not too concentrated in any arithmetic progression: for any 1 < ¢ < z¥ we have

max #A(z;q,a) < #A(2) .

a€’Z q

Maynard proved the following result (see [5, Proposition 6.1]).

Proposition 5.1. Let a and 0 be real numbers such that o > 0 and 0 < 6 < 1. Let A be a
set of integers, P a set of primes, and L = {L1,...,Lr} an admissible set of k linear functions,
and let B and x be integers. Let the coefficients of L;(n) = a;n+ b; € L satisfy 1 < a;,b; < x for
all 1 <i <k, and let k < (Inz)/® and 1 < B < 2. Let 29/ < R < 293, Let p and € satisfy
k(lnlnz)?/Inz < p,& < 0/10, and define

S&D)={neN:p|n = (p >zt or p| D)}

Then there is a number C > 0 depending only on « and 6 such that the following holds. If
k> C and (A, L,P,B,z,0) satisfy Hypothesis 1, then there exist nonnegative weights wy, = wy, (L)
satisfying

k
w, < R[] [ 4 (5.1)
i=1 p|Li(n), ptB

such that the following statements hold.
(1) We have

k
S = <1 Lo < " ;) /m>> wﬁe)k (L) #A@)(n R)*. (5.2)
neA(z)

(2) For L(n) =arn+ by, € L we have

! B plar) -
ng%m) 1p(L(n))wy, > <1 + O<(lnaj)l/10>> o(B)F—1 &p(L) o #Pp, a(z)(In R)*1J,

k
+ O<¢é)k Sp(L) #A(z)(In R)k‘llk>. (5.3)
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(3) For L(n) =aon+by ¢ L and D <z, if Ar #0, we have

A D BF
> seoy Dy, <€ S D S0 #AD MR L (54)
neA(x)
where
k
Ar = |ao| [ ] laobi — boail.
i=1
(4) For L € L we have
k
S ow Y 1< P k) Soé)k &5(L) #A()(In R) 1. (5.5)

neA(z) p|L(n), p<zP, ptB

Here Iy, and Jy are quantities depending only on k, and Sp(L) is a quantity depending only
on L, and these satisfy

1<n<p: ML "
63(£):H<l—#{ snspiplllia (n)}><1_ > > exp(—ck), (5.6)
p p
piB
:/ /F2 .o te)dty .. dty > (2kInk) ™", (5.7)
0 0
o o o 2
In k
:/ / / (1, tn) dty | dty ... dtyr > I}f I (5.8)
0 0

for a smooth function F = Fj,: R¥ — R depending only on k. The implied constants here depend
only on «, 6, and the implied constants from Hypothesis 1. The constant ¢ in inequality (5.6) is
positive and absolute.

Proof of Theorem 1.1. First we prove the following

Lemma 5.1. Let k be a positive integer. Let a, q, and by,...,by be positive integers such that
by < ... <bg and (a,q) = 1. Let Li(n) = gn+a+qb;, i = 1,...,k. Then L = {Lq,..., Ly}
is an admissible set if and only if for any prime p such that p { q there is an integer m, with
my # b; (mod p) for all 1 <i < k.

Proof. (1) Let £L={Lq,...,Li} be an admissible set. Let p be a prime such that p { ¢. Since
L is an admissible set, there is an integer n, such that (Hle Li(np),p) = 1. Since (¢,p) = 1, there
is an integer ¢’ such that ¢¢’ = 1 (mod p). We put m, = —(n, + ¢’a). Let i be an integer with
1 <1 <k. Since (¢/,p) =1 and (L;(np),p) = 1, it follows that (¢’L;(np),p) = 1. We have

q/Li(np) = —mp+0b; (mod p).

Hence, m,, # b; (mod p).

(2) Suppose that for any prime p with p { ¢ there is an integer m,, such that m, # b; (mod p) for
all 1 <i < k. Let us show that then £ is an admissible set. First we observe that £ = {Ly,..., Ly}
is a set of distinct linear functions L;(n) = gn +{;, i = 1,...,k, with positive integer coefficients.
Thus, we need to prove that for any prime p there is an integer n, such that (H/;“:1 Li(ny), p) =1.
Let p be a prime number. Consider two cases.
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(i) Let p | g. Since (a,q) = 1, we have (a,p) = 1. Let ¢ be an integer with 1 < ¢ < k. For any
integer n we have

Li(n) =a (mod p),
and so L;(n) # 0 (mod p). Hence, (Hle Li(n),p) = 1. Therefore, in this case we may take any
integer as ny,.

(ii) Let ptgq. Then (¢,p) = 1, and so there is an integer ¢ such that
gc=a (mod p). (5.9)

By assumption, there is an integer m, such that m, # b; (mod p) for all 1 < i < k. We put
ny, = —my, — ¢. Let ¢ be an integer with 1 <7 < k. We have

np+c+b; Z0 (mod p).
Since (g,p) = 1, we obtain
qnp + qc+gb; 0 (mod p).
In view of (5.9) this yields L;(n,) # 0 (mod p). Hence, (L;(np),p) = 1. Since this holds for all
1 <4<k, we have (Hf”:1 Li(np),p) = 1. Lemma 5.1 is proved. [

The proof of the following lemma is based on Maynard’s ideas used in the proof of Lemma 8.1
in [5] (the notation L € £ was explained in the Introduction).

Lemma 5.2. There are positive absolute constants ¢ and C such that the following holds. Let
x and 7 be real numbers with x > ¢ and (Inz)~%19 <y < 1. Let k and a be positive integers. Let
bi,..., by be integers with 1 < b; <lnz,i=1,...,k. Let L ={Ly,...,Li} be a set of k linear
functions Li(n) =an+b;, i =1,... k. For L(n) =an +b, b € Z, we define

k
Ap=d" ] b -0l
=1

Then
Ap,
> Ay S Cninina+2)In(k + 1) Inz.
1<b<nlnz QD( L)
L=an+b¢ L

Proof. Consider two cases.

(1) Let £ > Inlnz. We can assume that Inlna > 100 provided that ¢ is chosen large enough.
Therefore, k& > 100. Let b be an integer such that 1 < b < nlnz and L = an+ b ¢ L. Then
A € N. Applying Lemma 2.8, we see that

Ay
¢(AL)

where ¢y > 0 is an absolute constant. Further,

<c¢olnln(Ap +2), (5.10)

k
InAp = (k+ 1)lna—|—Zln|bi —b|.
i=1

For any 1 < i < k we have |b; — b| < Inz. Hence,
InAr < (k4 1)lna+klnlnz < 2klna + k2.
Since

2kIna < k*In(a + 2) and E? < k?In(a + 2),
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we have

InAg < 2k*In(a + 2).
We observe that if ©w > 2 and v > 2 are real numbers, then
u+v < uv. (5.11)
Applying (5.11), we obtain
In(Ar +2) <In(3AL) =InAp +1n3 < 2k%In(a + 2) + 3 < 6k*In(a + 2).
Applying (5.11) again, we have
Inln(Ar +2) <In6+2Ink+1Inln(a+2) <2+2Ink+ 25Inln(a + 2)
<4Ink+25Inln(a+2) <100InkInln(a+2) <100In(k + 1) Inln(a + 2).

Substituting this estimate into (5.10), we obtain

Ap,
¢(AL)

where ¢; = 100cg > 0 is an absolute constant. Thus,

< 100co Inln(a +2)In(k + 1) = ¢; Inln(a + 2) In(k + 1),

3 (AALL) <ealnln(@+2)ln(k+1) > 1<echna+2)nk+1)pna

1<b<nlnz ¥ 1<b<nlnz
L=an+b¢ L L=an+b¢ L
<cnlnln(a+2)In(k+1)Inz. (5.12)

(2) Let 1 <k <Inlnz. For an integer b we define

k

A) =] b - bil-

i=1

Let b be an integer such that 1 < b < nlnz and L = an+ b ¢ L. Applying Lemmas 2.5 and 2.4,
we obtain

A dfTIA() attt o OAB) a A
e(AL) (@ H1AD)) ~ p(a"+h) (AD))  w(a) p(A(b))
Hence,
_ Ap a Ab) a3
ST L e el 2 ) T e B
L=an+b¢L L=an+b¢L

Applying Lemma 2.7, we have

s A(b) u

SN RN R S S
1<b<nlnz 1<b<nInz d|A(b)
L=an+b¢L L=an+b¢ L

_ p2(d) _
> > o) D DD DR (5.14)

1<b<nlnz 1<d<nlnz 1<b<nlnz d>nln:c
L=an+b¢L d|A(D) L=an+b¢L d|A(b)
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First we estimate the sum S3. Let b and d be positive integers such that 1 < b < nlnx,
L=an+b¢ L, d>nlnz, and d | A(b). We claim that

() #(d) Zpjalnp. (5.15)
p(d) — @(d)In(nnz)
We can assume that

d>nlnz > (lna:)l/lo > 100
provided that ¢ is chosen large enough. If y?(d) = 0, then inequality (5.15) holds. Let p?(d) # 0.
Then d is square-free. Therefore, Zm ¢Inp = Ind. Inequality (5.15) is equivalent to the inequality

In(nlnz) < Zlnp =Ind,
pld

which obviously holds. Thus, (5.15) is proved. We have

» Inp
Sy = Z Z N )S Z Z ln nlfnm)

1<b<nlnz d>171nw 1<b<nlnz d>171nw
L=an+b¢ L d|A(b) L=an+b¢ L d|A(b)

D O ED SRR SRS
1<b<nlnz p|A(d) ln 7]111 .’E) d>nlnx Qo(d)
L=an+b¢L pld, d|A(b)
Let be Nyd e N,and p e Pbesuch that 1 <b<nlnz, L=an+b¢ L, p| A(b),d>nlnzx, disa
multiple of p, and d | A(b). Then d = pt, where t € N, ¢ > (nlnx)/p, and t | A(b). We have (see
Lemmas 2.5 and 2.4)

2(d) = o(pt) = p(p)e(t) = (p = Dplt) = | p(t).

Hence,
pA(d) _ pP(pt) _ 2pP(pt) _ 2p%(1)
p(d)  ept) = pe(t) ~ pe(t)
We obtain (see Lemma 2.7)
W2(d) _ 2 WA 2 AW)
) Sy 90( ;:b " pe(An)
pld, d|A(b) t\A(b)

Therefore,

np 2 A(b) 2 A(b) Inp
Sy < = '
L=an+b¢L L=an+b¢ L

—9/10

Since n > (Inz) , we have

2 2 0
In(nlnz) = In((Inz)/10)  Inlnz’
Thus,
20 A(b) Inp
Sy < > > . (5.16)
ine o, PA0) ) P
L=an+b¢ L
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Let b be an integer such that 1 < b < nlnz and L = an +b ¢ L. Applying Lemmas 2.8
and 2.10, we obtain
A(b)
e(A(b))

where ¢y > 0 and c3 > 0 are absolute constants. We have

< nn(A(D) +2) < exlnln(BAD), Y P mIn(3A0)), (5.17)
PIA®)

k
InA(b) = Zln|bi —b| <klnlnz < (Inlnz)% (5.18)
i=1
Hence,
InIn(3A(b)) = In(In3 +In A(b)) < In(In3 + (Inlnz)?) < 3Inlnlnz (5.19)

provided that ¢ is chosen large enough. It follows from (5.17) and (5.19) that
A(b)
p(A(D

where ¢4 = 9cacs > 0 is an absolute constant. Substituting this estimate into (5.16), we obtain

\
) Z np < 9cye3(Inlnlnz)? = ¢4(lnlnlnz)?,
piae) P

20c4(InIn In x)?
Inlnx

Sy < nlnzx

We can assume that
20c4(InIn In x)?

Inlnx

provided that c is chosen large enough. Hence,

Sy <nlnz < In(k+ 1)nlnz <2In(k+ 1)nlnz. (5.20)

1
In2
Now we estimate S7. We have

B 2(d) W2(d) W2 (d)
D VD D Sl DR DR ) DRt S DI

1<b<nlnz 1<d<nlnz 1<d<nlnz 1<b<nlnz 1<d<nlnz 1<b<nlnz
L=an+b¢L d|A(b) L=an+b¢ L L=an+b¢ L
d|A(b) dlA(b)
2(d
= Yy 7 ((d)) No(d)= Y ) No(). (5.21)
1<d<nlnz ¥ 1<d<nlnz ¥
deM
Let d be an integer such that 1 < d < nlnx and d € M. We claim that
2n1
No(d) < " d” [ min{p, £}. (5.22)

pld

If d = 1, then the inequality is obvious. Let d > 1. We define
R(b) = (b—>51)...(b—by).
Then A(b) = |R(b)|. We have

No(dy= > 1= > oL

1<b<nlnz 1<b<nlnz
L=an+b¢ L L=an+b¢ L
d|A(b) R(b)=0 (mod d)
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Let d be expressed in the standard form as d = ¢y ... g, where ¢1 < ... < ¢, are prime numbers. It
is well known (see, for example, |7, Ch. 4|) that the congruence R(b) = 0 (mod d) is equivalent to
the system of congruences

.................. (5.23)

Let 1 < j <r. Let Q; be the set of numbers of a complete system of residues modulo ¢; satisfying
the congruence R(b) = 0 (mod ¢;). Since R(b;) = 0, we see that 2; # @. Since the leading
coefficient of the polynomial R(b) is 1 and the degree of the polynomial R(b) is k, we have #Q; < k
(see, for example, |7, Ch. 4]). It is also clear that #; < ¢;. Thus,

#Qj < min{Qj? k}

System (5.23) is equivalent to the union of T'= #8Q; ... #£), systems
.................. (5.24)

where 77 € Qq,...,7. € Q.. It is well known (see, for example, [7, Ch. 4]) that the system of
congruences (5.24) is equivalent to the congruence

b=x9 (mod d),

where xg = zo(71,...,7). It is also known that the numbers xo(71,...,7.), 71 € Q1,...,7 € Qp,
are incongruent modulo d. Thus,

{beZ: R(b) =0 (mod d)} = || {zo(m,....7) +dt: teZ}.

Tlegl,...,TTGQr

Let 11 € Qp,...,7 € Q, and xy = xo(71,...,7.). We have

Iz — 1-
#{teZ:1§x0+dt§nlnx}:[nnxd xo}—{ daﬂJrl

_nhhx—=z [(1-x _ nlnz .1
— p 6, (d +92>+1_ J +1—-6; -6 g

where 61 and 0, are real numbers with 0 < #; <1 and 0 <0y < 1. Since 1 < d < nlnz, we obtain

1 1
#{tez: 1§x0+dt§nlnx}§n;lm—i—ngn;lm.
Thus,
M1 1
No(d) < 7" < T Igmin{p, k}.
p

Inequality (5.22) is proved.
Substituting (5.22) into (5.21), we obtain

Sp < Z go(ld) 2n;n$Hmin{p,k}:2nlnx Z

1<d<nlnz pld 1<d<nlnz
deM deM

[1,q min{p, k}

do(d) =2nlnz S;.  (5.25)
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Let d be an integer such that 1 < d <nlnx and d € M. We have (see Lemmas 2.6 and 2.4)

d=]]pr.  e@=]]ew=]]0-D,

pld pld pld
IIMdnﬂn{pvk} __IIMdnﬁn{pvk}__ II 1 II k
de(d) Mpare =1 o P i P 1)
Hence,
1 k 1 k
ss= > 1T ,_, II 1) <[I(r+ _ )IT(1+ 1)) =AB (62
1Sg§}unx pld, p<k p pld, p>k pip p<k p p>k PP
€

We have (see Lemma 2.1)

A:pl;[k<1+pi1>g 11 <1+pi1>: 11 <1—;>_1§C5ln(k‘—|—1), (5.27)

p<k+1 p<k+1

where c5 > 0 is an absolute constant.
Now we estimate B. Since In(1 + u) < u and u > 0, we get

k k 1 1
lnB:Zln@er(p—1)) SZp(p—l) > p(p—1) Skn§ln(n—1)'

p>k p>k p>k+1
We define
m m
1 1 1 1
om Z n(n—1) Z <n—1 n> Em’ m= Rt
n=k+1 =k+1
Then,

We obtain In B < 1, i.e.,
B<e<3. (5.28)

It follows from (5.26)—(5.28) that S35 < ¢gIn(k + 1), where ¢g > 0 is an absolute constant. Substi-
tuting this estimate into (5.25), we obtain

S1 <emn(k+1)Inz, (5.29)
where ¢7 > 0 is an absolute constant. Therefore (see (5.14), (5.20), and (5.29)),
S <(cr+2)nn(k+1)Inz = csnln(k + 1) Inz,

where c¢g = ¢7 +2 > 0 is an absolute constant. We obtain (see (5.13) and Lemma 2.8)
a
p(a)
where ¢g > 0 is an absolute constant. We put C' = ¢1 + ¢g, where ¢; is the constant in (5.12). Then

C > 0 is an absolute constant and in both cases, 1 < k <Inlnx and k£ > Inlnz, we have

S <cg nln(k 4+ 1)Inz < cynlnln(a + 2)In(k + 1) Inz, (5.30)

A
> L < Cnlnln(a+2)In(k +1)Inz.
I<icrme PAL)
sosninx
L=an+b¢ L

Lemma 5.2 is proved. [
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Lemma 5.3. Let A=N, P =P, a=1/5 and 0 = 1/3, and let Cy = C(1/5,1/3) > 0 be
the absolute constant in Proposition 5.1. Let € be a real number with 0 < ¢ < 1. Then there is a
number co(e) > 0 such that the following holds. Let x € N, y € R, and q € N satisfy the conditions
x>cole), 1 <y<lInz, and 1 < q < y'=¢. Then there is a positive integer B such that

1< B<exp(WVnz), 1< oB) <2,  (B,q) =1 (5.31)
Furthermore, let ke N, pe R, £ € R, ReR, n € R, and a € Z, be such that
Co <k < (Inz)'/5, (5.32)
Hnnal® e L em, (5.33)
R=2"" 0<n< ; (5.34)
1<a<g, (a,q) = 1. (5.35)

Let £ = {Lq,...,Ly} be an admissible set of k linear functions, where L;(n) = qn + a + qb;,
1=1,...,k, by,..., by are positive integers with by < ... < by, and qb;, < ny. Then the hypothesis
of Proposition 5.1 holds and there exist nonnegative weights wy, = wy (L) with the properties stated
in Proposition 5.1; the implied constants in (5.1)—(5.5) are positive and absolute. In (5.31), ¥ > 0
s also an absolute constant.

Proof. We will choose ¢o(¢) later; this number is assumed to be large enough. We take § = 1/10
and let co(e) > c(g,0) = c(g,1/10), where c(e, d) is the quantity in Lemma 4.10. Let z € N, y € R,
and ¢ € N be such that z > cy(e), 1 <y < Inzx, and 1 < ¢ < y'~°. By Lemma 4.10, there is a
positive integer B such that

1< B < exp(c1Vnz), 1< <2, (B,q) =1
©(B)
and
li(u)
max max m(u; Q, W) — < cpzexp(—esVinz), (5.36)
1<Q<m2/5 2§u§x1+"//\/lnw WeZ: (W,Q)=1 o) Q
(@B)=1
where ¢1, v, ¢, and ¢3 are positive absolute constants. Let (5.32)—(5.35) hold. Let £ = {Lq,..., L}
be an admissible set of k linear functions L;(n) = gn+ a + gb;, i = 1,...,k, where by,..., by are

positive integers with by < ... < by and gbx, < ny. Let us show that the hypothesis of Proposition 5.1
holds. First we show that the set (A, £, P, B,x,1/3) satisfies Hypothesis 1.

I. Let us show that condition (2) of Hypothesis 1 holds. Let L(n) = lin + Iy € L. Clearly,
we have

1<l <lnz and 1<y <Inz. (5.37)

Let us show that
#Pr.A(x) < #Pr.a(x)

Si= 3 mar |#PLalnd) - AP s
beZ ’ In 2)100k
1<r<azl/3 (L(b)e,r)zl or(r) (Inz)
(r,B)=1

It is not hard to see that
Pralz) = {llm +1lo <p<2lhz+ly: p=ly (mod ll)},
Pralz;r,b) = {lla: +lo<p<2lhxz+ly: p=1lib+ 1y (mod llr)}
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and hence
#Pra(r) =m(2hx + 1l — 1511, l2) — n(lhix + la — 1511, 12), (5.39)
#Pra(z;r,b) =7(2hx + 1o — 1; 111, L(b)) — n(lix + lp — 15117, L(D)).
We obtain
S= > max |m(2hz + 1l — Ll L) = w(lz + 1 = L hr, L(D))
1<r<z'/3 (L(b),r)=1
(r,B)=1
21 lo —1;1,1) —m(l lo —1;14,1
_ m(2ha + 1l = L) — w(ha + 1 — 150, l2) < S+ Syt S5+ Si. (5.40)
e(lir) /()
where
li -1
Sy = Z max |7(lyz + Iy — 15117, L(b)) — e+l —1)
 bez o(lir)
1<r<z'/3 (L(b),r)=1
(r,B)=1
w(lix + 1o — 1;1q,1 lilliz +1—1
LR D L P SR
L o(lir)/e(l o(ly
(r,B)=1
B . li(2ha + 15 — 1)
S3= > max (2 +I2 = 147, L(D)) o)
1<r<gl/3 (L(b),r)=1
(r,B)=1
(2l x4+ 1o — 1514, li2hx +1s —1
si= 3 e
L <r<al/3 elr)/ el (1
(r,B)=1
Let us show that
(L(b),l1) =1 (5.41)

for any b € Z. Assume the contrary: there is an integer b such that (L(b),l;) > 1. Then there is
a prime p such that p | [ and p | L(b). Hence p | I3, and we see that p | L(n) for any integer n.
Since L € L, we see that p | L1(n)... Li(n) for any integer n. But this contradicts the fact that
L ={Ly,...,L;} is an admissible set. Thus, (5.41) is proved. We also observe that since (B, q) =1
and [; = g, we have

(B, ) =1. (5.42)
Let 7 be an integer with 1 < r < 23 and (r, B) = 1. Applying (5.37), we have
11T§331/31H$§$2/5, hax+la—1>ha>x>2, llx+l2—1§2$ln$§xl+7/‘/lnx

provided that cy(e) is chosen large enough. Hence, we obtain (see (5.41), (5.42) and (5.36))

— . ll(lllL‘ + 1y — 1)
S = Z max ‘w(llx +1lo —1;0ir, L(b)) — o(lyr)
r: h<lir<liz'/3 (L(b),l1r)=1
(lir,B)=1
< Z max max m(u; QW) — tiCu) < cyrexp(—csVInz).  (5.43)
- <ol o<u<plt/Vine WEZ: (W,Q)=1 T Q)| —
(2275)21
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Applying Lemmas 2.5 and 2.9, we get

ll(lll’ + l2 — 1)

1
So = o(ly)|m(lhx + 1y — 1;11,12) —
= elin)wll = Lidy) = S KKZM ollir)
(_7",B_):1
I . :
< |z +1lo—1;0,1l) — i(hz +ll2 ) 5
o(l1) Py ©(r)
<chz|r(hz+1l2 —1;0,12) — li(hz +12 — 1) 7
e(h)

where ¢ > 0 is an absolute constant. Since 1z + Iy — 1 > ljx > x (see (5.37)), we obtain
1<l <Inz <In(lyjz+1y—1).
Hence (see, for example, |1, Ch. 22]),

li(lll‘ + l2 - 1)
o(l1)

where C' and ¢ are positive absolute constants. We have

m(lha + 1y — 1511, 1) — < O(lhiw + 1o — 1) exp(—cy/In(liz + 1o — 1) ),

exp(—c\/ln(llac +l—1)) < exp(—cVInz),

lhr+l—1<zlnz+Ilnz <2zlnz.

We can assume that

—cvVInz +2Inlnz < —g\/lna:
if cp(e) is chosen large enough. Hence,

Sy < émexp(—C\/lnx +21nlnm) < émexp(—;\/lnm),

where C' = 2¢C is a positive absolute constant. Similarly, it can be shown that

S3 < Czexp(—cVInz) and Sy < Czexp(—cVinz),

(5.48)

(5.49)

where C' and ¢ are positive absolute constants. Substituting (5.43), (5.48), and (5.49) into (5.40),

we obtain
Z max |#Pr a(x;r,b) — #PrAl) < 4T exp(—C5\/lnac),
beZ ’ or(r)
1<r<a/3 (L(b),r)=1
(r,B)=1

where ¢4 and c5 are positive absolute constants. Applying (5.44)—(5.47), we have

11(l1$ + l2 — 1)
o(l1)

where C' and c are positive absolute constants. Similarly, it can be shown that

r(lix 41y — 1511, 1p) = + Ry,  |Ry| < Czexp(—cVInz),

(202 + 1y — 1)
w(l1)
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where C' and c are positive absolute constants. Therefore (see (5.39)),

li(2l11‘ +ly— 1) — li(lliL‘ + 1y — 1)
o(l1)
|R| < cgx exp(—crVInm), (5.52)

#Pr,a(x) = +R, (5.51)

where cg and c¢7 are positive absolute constants. We have

200+ 1o — 1 <2xlnx+Inzx < 3xlnz,

In(2hz+la—1)<lnz+Inlhz+In3 <2z

provided that cy(e) is chosen large enough. Hence,

2l1z+1a—1
11(2[1$ + l2 — 1) — ll(lll’ + 12 — 1) . 1 dt > llfl’
e(l1) o(ly) Int = @(l) In(2lz + 1o — 1)
lhx+lo—1
lll‘
~ 2p(ly)Inz’ (5.53)
Let us show that
llx
R| < . 5.54
IRl < dp(l1) Inz (5.54)

Since I3 /¢(l1) > 1, we see from (5.52) that it is sufficient to show that
— 1 < .
cex exp(—crVInz) < Alng

This inequality holds if ¢g(¢) is chosen large enough. Thus, (5.54) is proved. From (5.51), (5.53),
and (5.54) we obtain

lll‘
#Pra@) 2 o (5.55)

Now we prove (5.38). Since l1/¢(l1) > 1, we see from (5.50) and (5.55) that it suffices to
establish the estimate

x
cyzexp(—csVinz) < 4(In ) 100K+

(5.56)
Taking logarithms, we obtain
Incg +Inx — 65\/1113; <Ilnz—In4—100k*Inlnz —Inlnx

or, which is equivalent,
100k%Inlnz < ¢sVInz — Inlnz — In(4cy).

Since k < (Inz)/?, we have

100k? Inlnz < 100(In 2)*° InIn .

The inequality
100(Inz)>°Inlnz < ¢sVInz — Inlnz — In(4ey)

holds if ¢y(e) is chosen large enough. Inequality (5.56) is proved. Thus, (5.38) is proved.
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II. Let us show that condition (1) of Hypothesis 1 holds. We show that

S = 1<21/3 max #A(x;r,b) — #-/‘;(33) < (117;?&;)15330)’“2 ) (5.57)

Let 1 <r < z'/3 and b € Z. We have
A(z) = {z <n <2z} and A(z;7,b) = {z <n <2z: n=> (mod r)}.

Hence,

#A(x)=2x  and  #A(x;r,b) = jf +p, |pl <1 (5.58)
We obtain

#A(z57,b) — #é($) = |p| < 1. (5.59)
Hence, S < z!/3. Thus, to prove (5.57), it suffices to show that
! < (In ;10%2

2
100k <z

or, which is equivalent, (Inx) 2/3_ Taking logarithms, we obtain

2
100k% Inln z < 3 Inzx.

Since k£ < (In :1:)1/5, we have

100k? Inlnz < 100(In2)%*° InIn .
The inequality

2
100(In 2)?° Inlnz < 3 Inz

holds if ¢y(e) is chosen large enough. Thus, (5.57) is proved.

III. Let us show that condition (3) of Hypothesis 1 holds. To this end we show that for any

integer r with 1 < r < 2/3 we have

<9 #A(x)

max #A(z;7,b) .

(5.60)
Let 1 <7 < /3 and b € Z. We may assume that co(e) > 2. Hence, r < /3 < z. Applying (5.58),
we obtain

S Az b) < 1< 2 = oA
T T T

and (5.60) is proved. Thus, the set (A, L, P, B, x,1/3) satisfies Hypothesis 1.
We can assume that

exp(e1vinz) < '/ and Inz < a'/°

provided that cg(e) is chosen large enough. Since 1 < B < exp(cy VIn x), we obtain 1 < B < 21/,
Let L = lin+ 1y € L. Applying (5.37), we have 1 < [} < 215 and 1 < Iy < 2Y/5. Thus,
the hypothesis of Proposition 5.1 holds and there are nonnegative weights w,, = w,(£) with the
properties stated in Proposition 5.1. In that proposition, the implied constants in (5.1)—(5.5) depend
only on a, 6 and on the implied constants from Hypothesis 1, and in our case these constants are
absolute (a = 1/5, # = 1/3, and estimates (5.38), (5.57), and (5.60) hold). Therefore, in our
case the implied constants in (5.1)—(5.5) are positive and absolute. Finally, let us denote ¢; by 9.
Lemma 5.3 is proved. [
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Lemma 5.4. There are positive absolute constants ¢ and C such that the following holds. Let
e be a real number with 0 < & < 1. Then there is a number cy(e) > 0, depending only on €, such that
if teN;yeR, meZ, qeZ, and a € Z satisfy the conditions co(e) <y <Inz, 1 <m < celny,
1<q<y'~¢, and (a,q) =1, then

y exp(Cm)
#{qr <pn<2qx —5¢: pp=... = ppim =a (mod q), Ppim—pn <y} > 77(2(133)(2(] lnm) '

Proof. Let A =N, P =P, o =1/5, and § = 1/3, and let Cy = C(1/5,1/3) > 0 be the
absolute constant in Proposition 5.1. Let ¢o(e) be the quantity in Lemma 5.3. We will choose ¢(¢)
later; this number is large enough. Let ¢(e) > ¢o(g). Let x € N, y € R, and ¢ € Z be such that

cle) <y<lnuz, (5.61)
1<qg<y'™™. (5.62)

By Lemma 5.3, there is a positive integer B such that (5.31) holds. We assume that
Co < k < y/14, (5.63)

where 6’0 > (0 is an absoNIute constant. We will choose 50 later. For now, we assume that 6’0 is large
enough; in particular, Cy > Cy. It follows from (5.61) and (5.63) that k < (Inz)Y/®. Thus, (5.32)
holds. Let (5.33)—(5.35) hold. Let £ = {Li,...,Li} be an admissible set of k linear functions
Li(n) =gn+a+qb;, i =1,...,k, where by,..., b, are positive integers such that by < ... < by
and gby < ny. Then (see Lemma 5.3) the hypothesis of Proposition 5.1 holds and there are non-
negative weights w, = w, (L) with the properties stated in Proposition 5.1; the implied constants
in (5.1)—(5.5) are positive and absolute. We write £ = L(b) for such a set defined by by, ..., b.
Denote the class of admissible sets by AS.
Let m be a positive integer. We consider

k k
S= > D | X)) —m—kY Y 1k Y Lspm(Ln) [wa(l)

1<bi<...<by neA(z) \ i=1 i=1 p|Li(n) 1<b<2ny
qbi <ny p<zP, ptB L=qt+b¢ L
L=L(b)€AS

= > Y Adwa(L). (5.64)

1<b1<...<by, TLEA((E)
gbr<ny
L=L(b)EAS

Let £ ={Ly,..., L} and n be in the range of summation of S and A, (L) > 0. Then the following
statements hold:

(1) The number of primes among Li(n),..., Li(n) is at least m + 1.

(2) For any 1 <i <k, L;(n) has no prime factor p such that p < 2 and p{ B.

(3) For any linear function L = gt + b ¢ L, where b is an integer with 1 < b < 25y, L(n) has a
prime factor p such that p < xz” and p 1 B (we choose p so that z” is not an integer; therefore,
the conditions p < 2 and p < x” are equivalent). Since L(n) > n > z > xf, we see that
L(n) is not a prime number.

As a consequence we obtain the following statements:

(i) None of n € A(x) can make a positive contribution to S from two different admissible sets
(since if n makes a positive contribution for some admissible set £ = {Ly,..., Ly}, then the
numbers Li(n),..., Li(n) are uniquely determined as the integers in [gn + 1, gn + 2ny| with
no prime factors p such that p < 2 and p t B).
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(ii) If £ ={L4,..., L} and n are in the range of summation of S and A, (L) > 0, then there
can be no primes in the interval [gn + 1,gn + 2ny| apart from possibly Li(n),..., Lx(n),
and so the primes counted in this way must be consecutive.

Let £L={Lq,...,L;} and n be in the range of summation of S and A, (L) > 0. Let 1 < i < k.
If p| Li(n) and p1 B, then p > x”. Setting

Q= {p: p| Li(n) and p{ B},

we have
2P < Hp < Li(n).
peEN
Since
¢<y" " <y<lhz and a+qb <2y <Inuz,
we obtain

Lin)=qgn+a+gb; <nlnzx+Inzx <2zlnz+lnz < 22

provided that c(e) is chosen large enough. Hence, p#Q < 2, i.e., # < 2/p. We have

k
H 4 — H 4 = 4#9 < 42/p — £(2/p)Ind < ed/p and H H 4 < e(4k)/p.
ptB ptB
Thus, if £ ={L1,..., L} and n are in the range of summation of S and A,,(£) > 0, then (see (5.1))
wy (L) < C(In R)?kek)/p, (5.65)

where C' > 0 is an absolute constant.
Let £ ={L1,...,Lx} be in the range of summation of S. We consider

k k
Sy= D | D 1pLin)—m—k>_ D> 1-k > lspp(Ln) |w.(L)

neA(z) \ =1 i=1 p|L;(n) 1<b<2ny
p<zP, ptB L=qt+b¢ L

=51 -5 — 53— 5.

Our aim is to obtain a lower bound for S(£). We write w, instead of w, (L) for brevity. Let
1 <i < k. Since #A(z) = z, we have (see (5.3))

k—1
> (i = 1+ oV) T €507 4P s R
neA(x)
k
+ O<90(B;)k G&p(L)r(In R)k_1[k>.
Hence,
k k
S1= Z 1p(Li(n))wy = Z 1p(Li(n))wy
neA(z) i=1 i=1 neA(z)
k— k k
> (14 0(1)) @é)kl_l S5(L) So(qq) (I R, S 4Py, ax) + O <I<: Soé)k &5 (L)z(In R)k‘1]k>
=1
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_ B #(B) ¢(q) B
_(1+o(l))@(B)kGB(E)(lnR)k“Jk B4 ;#PLZ.,A(x)+o<w(B)k63(£)m(lnR)ka>
=S+

0< K < (lnx)1/5 — 0 as I — 4o0.

InR =~ (1/9)Inx

We have shown (see (5.55)) that if z > ¢, where ¢y > 0 is an absolute constant, then for any L € £

qx
#Pr,a(z) > Jo(q)Inz

We may assume that c(e) > ¢g. Since p(B)/B > 1/2 (see (5.31)), we obtain

kx kx
Z#P L A(T) = 81113: T 72InR’

We have |o(1)] < 1/2in S| if z > ¢/, where ¢ > 0 is an absolute constant. We may assume that
c(e) > . Since (see (5.8))

Jp > hi:k I,
where ¢’ > 0 is an absolute constant, we get
1> 1014 905:)’“ Sp(L)z(In R)*I; Ink.

We have

187 < 26;8 gpgf) Sp(L)x(InR)*I;, < 26;8 5;) Sp(L)x(In R)*I, Ink
provided that c¢(e) is chosen large enough. Therefore,

d B Bk

S12 gee (B L G5(L)z(nR)* I Ink = € (B Sp(L)x(In R)*I; Ink, (5.66)

where ¢ > 0 is an absolute constant.
We have (see (5.2))
BF m BF

Sp=m Y w,=m(l+o(1)) Sp(L)z(In R)* I, > Sp(L)z(InR)*I,  (5.67)

k
neA(x) 2 ¢(B)

@(B)*

provided that ¢(g) is chosen large enough. Applying (5.5), we obtain

k
Ss=k »_ Z > wn_kzz > wy Y 1< ep’kS(Ink)? é)kGB(ﬁ)x(lnR)ka,

ne€A(z) =1 p|L;(n) i=1 ncA(z) plLi(n)
p<z?, ptB p<z’, ptB

where co > 0 is an absolute constant. Let c3 > 0 be an absolute constant such that

1 c 1
2 3 .
C2C3 < 19 and Blnj < 30 for any j > 2.
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We choose an arbitrary number p in the interval
C3 C3
2k3Ink’ k3 Ink
so that z” is not an integer. It is clear that p < 1/30. Let us show that the first inequality in (5.33)
holds. It suffices to show that

(5.68)

k(InIn z)? c3/2
< .
Inz ~ K3lnk
This inequality is equivalent to
E*lnk(nlnz)? < 023 Inx.

Since k£ < (In :1:)1/5, we have
E*lnk(lnlnz)? < 5(ln ) (Inlnz)® < 023 Inz

provided that ¢(e) is chosen large enough. Thus, the inequalities in (5.33) hold. We have (see (5.67))

62 k k
S3< e g (In )2 k%(In k)2 @é)k Sp(L)z(In R)*I;, < 112 @é) Sp(L)x(ln R)* I,
< 1”; @g)k Sp(L)z(InR)*I;, < é52. (5.69)

Now we estimate the quantity

Si=k > Y lsppEmwn=k > > lgpp(Ln)w,

n€A(z) 1<b<2ny 1<b<2ny neA(x)
L=qt+b¢ L L=qt+b¢ L

Let b be in the range of summation of Sy. Then L =qt +b ¢ L and
k
Ar = ¢ ] I(@+gb:) —b] #0.

Since 1 < B < z'/5, we have (see (5.4))

ca A B  BF
2 Tsom LN S AL o) (B

neA(x)

Sp(L)z(ln R)*11;,

where ¢4 > 0 is an absolute constant. Since B/¢(B) < 2 and p lies in the interval (5.68), we obtain

dey 4 Ap  BF k—1
1s,. 5 (L(n))w, < k°Ink Gp(L)x(In R I
Z S(p,B)( ( )) c3 (AL) QO(B)k B( ) ( ) k
neA(x)
A,  BF
= csk3Ink Sp(L)x(In R 11,
° P(AL) p(B)* s(L)an B) Iy
Hence,
BF A
< eskd k=1 Lo .
Sy < csk*Ink (B Sp(L)z(In R, 1%:2 o(A) (5.70)
<b<2ny
L=qt+b¢ L
We put
Ce = 36065, (5.71)
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where C' > 0 is the absolute constant in Lemma 5.2, and

1

= . 5.72
12¢6k*(In k)% Inln(q + 2) (5.72)

n
Let us show that
(Inz)~910 < 2p < 1. (5.73)
The second inequality in (5.73) is equivalent to the inequality
6cgk?(Ink)? Inln(g + 2) > 1.
We may assume that Co > 3; therefore, Ink > 1. We have
6cgk(Ink)?Inln(q 4 2) > 6¢6(Inln3)k* > 6¢6(Inln3)Ca > 1
provided that C~’0 is chosen large enough. The first inequality in (5.73) is equivalent to the inequality
6csk’ (In k)2 Inln(g 4 2) < (Inz)*/'°.

Since ¢ < Inz and k < (Inz)'/%, we have
1
6cek* (In k)2 Inln(g + 2) < 6¢6(In 2)*/° 95 (nnz)?Inin(lnz + 2) < (Inz)*/1°

provided that ¢(e) is chosen large enough. Thus, (5.73) holds. We can assume that > ¢, where ¢ is
the absolute constant in Lemma 5.2, provided that ¢(¢) is chosen large enough. Applying Lemma 5.2
and taking into account that In(k + 1) < 2Ink, we have

Z Ar < Z AAL <4CInln(g+2)(Ink)nlnz = 36C Inln(g + 2)(In k)n In R.

1<b<2ny SO(AL) 1<b<2nlnx QD( L)
L=qt+b¢ L L=qt+b¢ L

Substituting this estimate into (5.70), we get (see also (5.71), (5.72), and (5.67))
k

p(B)*
Bk

p(B)*

Sy < 36Ccsk*(Ink)? Sp(L)x(In R)*InInin(q + 2)
1

= cgk*(In k) 12¢6k4(In k)2 Inln(q + 2)

GSp(L)x(In R)*I; Inln(q + 2)

1 B* X m BF
= <
12 o(B)F Sp(L)z(nR)* Ty < |, (B

From (5.69) and (5.74) we obtain

Sp(L)x(In R)F T, < (1352. (5.74)

~ 4
S(L) =51~ 8= 85— 812 51— , 5.

We have (see (5.2))

Bk 3 BF

Sp=m Y w,=m(l+o(1)) o(B) Sp(L)z(In R)FI, < 2™ (B Sp(L)z(In R)FI,
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where ¢; > 0 is an absolute constant. We put

= Co+ b, (5.75)
C1
k = [exp(cm)]. (5.76)

It is not hard to see that
k> 50 and 3ciInk —2m > m.
Since m is a positive integer, we see that 3c¢;Ink — 2m > 1. Hence,
~ Bk
S(L) > S(B)E

Since B¥/p(B)* > 1, mnR = (1/9)Inz, Sp(L) Z exp(—czk), and I, > c3(2kInk)~", where cy
and cz are positive absolute constants (see (5.6) and (5.7)), it follows that

Sp(L)z(ln R)* I,

1
S(L) > o c3(2k1n k)_k exp(—cok)z(In ac)k > exp(—k2)x(lnx)k

provided that 50 is chosen large enough. We obtain
S= Y S&) =exp(-k)z(nz)* > 1=exp(—k})z(lnz)kS. (5.77)

1<b1 <...<by, 1<b1 <...<by,
gbr<ny gbr<ny
L=L(b)EAS L=L(b)EAS

Now we derive a lower bound for S’. First let us show that

1| ny
< k< . .
2_k_2[q] (5.78)

The first inequality obviously holds, since we may assume that 6’0 > 2. To prove the second
inequality, it suffices to show that

% < "qy. (5.79)

We have (see (5.62) and (5.72))

oo o cay”
g =™ T p(nk)2nln(g+2)

where ¢4 > 0 is an absolute constant. Thus, to prove (5.79), it suffices to show that
2k°(In k)% Inln(q + 2) < cqyf®.

In particular, from (5.62) it follows that ¢ < y. Applying (5.63), we have

2
2k°(In k)% Inln(q + 2) < 2>/ 1696 (Iny)?Inln(y + 2) < cg9°

provided that ¢(g) is chosen large enough. Thus, (5.78) is proved.
We put

Q:{lgng ["qy}: (n,p) = 1 vpgk:}.

Applying Lemma 2.13, we have

#o=s([7] )20

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 314 2021



CONSECUTIVE PRIMES IN SHORT INTERVALS 193

where ¢p > 0 is an absolute constant. In particular, from (5.78) it follows that ny/q > 4, and so

[ny] SN Y

0 T2
We obtain
40> VY (5.80)
~ Pglnk’
where c5 > 0 is an absolute constant. Let us show that
ny
> 2k. .81
@ qlnk — (5.81)
Applying (5.62) and (5.72), we have
ny c6y*

% gink = k(nk)Inin(g+2)°
where cg > 0 is an absolute constant. Therefore, it suffices to show that
2k°(In k)% Inln(q + 2) < cy°.
Applying (5.63) and taking into account that ¢ <y, we have

€

2k°(In k) Inln(q + 2) < 2/ (14

3
) (Iny)Inln(y + 2) < cey°

provided that c¢(e) is chosen large enough. Thus, (5.81) is proved.

Let by < ... < by be positive integers from the set 2. Let us show that for any prime p with
p 1 ¢ there is an integer my, such that m, # b; (mod p) for all 1 <i < k. Let p be a prime with p 1 g.
If p > k, then the statement is obvious. If p < k, then we may put m, = 0; from the definition
of the set Q it follows that b; # 0 (mod p) for all 1 < i < k. Thus, the statement is proved. By
Lemma 5.1, £(b) is an admissible set. Hence (see also Lemma 2.12, (5.80), (5.81), and (5.72)),

5> (79 > kR0 — k) >k k(e —kk>k‘k LAY
“\ k)~ - qglnk - 2 qglnk

= (Cﬁ ¢Inln(g +y2)k4(ln k)3>k - (qln lng(Jq + 2)>k <’f5(l€§k)3>k7

where cg > 0 is an absolute constant. We have
Cg k
> —k?
() = exe#

provided that C~’0 is chosen large enough. Hence,

k
/ Y 1.2
¥z (qlnln(q+2)> *p(=H")-

Substituting this estimate into (5.77), we obtain

Y g Y g
S > exp(—2k?)z(Inz)k <qln In(g + 2)> > exp(—2k°)z(In z)* <qln In(g + 2)> . (5.82)
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Now we obtain an upper bound for S. Applying (5.64) and (5.65), we get

S< > > Au(L)wn(L) < Ch(In RPN 1.
1<b1<...<bg neA(x): An(L£)>0 1<b1<...<bg neA(x): An(L£)>0
qbi <ny qbi <ny
L=L(b)EAS L=L(b)EAS

We have (see assertions (1)—(3), (i), and (ii) at the beginning of the proof)

2 >, 1

1<b1<...<bg, neA(z): An(L)>0
qbi<ny
L=L(b)EAS

< #{x <n<2zx: 3p;j,Pjt1,---,Pjtm € [gn+ 1,qn + 2ny], pj,pjt1, ..., Pjtm = a (mod q)}
< #{:1: <n<2zx: 3P, Pjtt,-- > Pitm € [qn+ 1,qn + Y], Dj,Pj+1,- -, Pjtm = a (mod q)} = Nj.
Hence,
S < Ck(ln R)*eR)/P Ny,
Since p lies in the interval (5.68), we have

4k _ 8k*lnk
<

p c3

= ek Ink,
where ¢4 > 0 is an absolute constant. Since In R = (1/9)In x, it follows that
k
Ck(In R)? e R)/r < 09% exp(cak* Ink)(In 2)?* < exp(k®)(In x)?*

provided that 50 is chosen large enough. Hence,

S < exp(k®)(Inz)%* Ny. (5.83)
From (5.82) and (5.83) we obtain
k
yo\* 1 5
Ny > — . .84
t= w(lnz) (qlnln(q + 2)> exp(=3k7) (5:84)

We define
Q= {x<n<2-1: Ipj,pjs1,. - Pjsm € [qn+ L qn+y], pj,Pjt1,- .-, Pjrm = a (mod q)},
Qo ={gr+1<p, <qx—1)4y: pp="... = Puym =0a (mod q), pnym —Pn <y}
and put Ny = #€)y. Since x is a positive integer, we have N1 = #£;. Let us show that
Ny < (Jy] + 1)No. (5.85)

Let n € Q1. Then there are at least m + 1 consecutive primes all congruent to a (mod ¢) in the
interval [gn + 1,gn + y]. Let p be the first of them. Then p € Qy. We put

A={jeZ: q¢j+1<p<qj+y}

and claim that
#A < [y] + 1 (5.86)
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Let I; =[qj + 1,95 +y], j € Z. Since p € I,,, we have A # &. Let [ be the minimal element in A.
We put t = [y] + 1. Then ¢t > y and

ql+t)+1>q(l+t)=ql+qg>q+t>ql+y>p.

Hence, p ¢ I for j > [+t and j <1 —1. We obtain #A < t. Thus, (5.86) is proved; (5.85) follows
from (5.86). We have [y]| + 1 <y + 2 < 2y provided that ¢(¢) is chosen large enough. Since

Ny < #{qz+1<p, <2qz+y: pn = ... = pngm = a (mod q), Prim —pn <y} =: Ns,
we obtain (see (5.84))

k
Ns 2 ; ; (lllya:)k <qln ln:(lq + 2)> exp(=3k7). (5.87)
We put
Ny = #{qx <pn<2qr —5q: pn = ... = pptm = a (mod q), Pptm — Pn < y}, (5.88)
N5 = #{2qz —5¢ < pp < 2qz +y: pp = ... = Ppam = a (mod q), Pptm — Pn < Y}
Then
Ng = Ny + No. (5.89)
Since ¢ < y, we have
N5 < 5¢ +[y] < 5q +y < 6y. (5.90)
Let us show that
1 x/ y\F 1 k ;
y= 24 y (lnaj) (qlnln(q + 2)) exp(—3k) := T1. (5.91)

Since ¢ < y'=¢ < y and k < 4/, we have

1z Y ; 5
T > —3yP/14).
L= 24y <lnxlnln(y+2)> exp( =3y )

Therefore, to prove (5.91), it suffices to show that

. k
ys 214 z <ln:rln lyn(y + 2)> exp(—3y55/14).

Taking logarithms, we obtain

Iny<-In24+Inz—Iny+k(elny —Inlnz — Inlnln(y + 2)) — 3yP/ 1
or, which is equivalent,

Ty :=2Iny+1n24 —cklny+klnlnz + klnlnln(y + 2) + 35>/ < Inz.
Since y < Inz and 0 < € < 1, we have k < (Inz)*/'* < (Inz)"/'*. Then

Ty <2Inlnz+mn24+ (Inz)/“Inlnz + (Inz)/*Innin(nz + 2) + 3(Inz)>* < Inz

provided that c¢(e) is chosen large enough. Thus, (5.91) is proved. From (5.90) and (5.91) it
follows that

lxz/ y \* 1 b 5
N5 < —3K°). .92
b=y Yy (ln:r) <qlnln(q—|—2)> exp(=3”) (5:92)
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Applying (5.87), (5.89), and (5.92), we obtain

la/ y\*k 1 F 5
Ny > —3k°) =:1T5.
4= 4y<lnm) (qlnln(q+2)> exp(=3K7) 3

We have (see (2.2))
2qx qx

q
m(2qz) < e In(2qx) — “ Inx €2 Inz’

where ¢; > 0 and ¢y = 2¢; > 0 are absolute constants. Therefore,
k
qr Inx 1x / y \* 1 5
T; = ( ) —3k
*7 Iz gr 4y \Inzx <qln In(q + 2) exp( )

y \E-1 1
> 2
= dey m(2qz) <ln a;) ¢"t1(Inln(qg + 2))*

exp(—3k°).

Using the inequality In(1 + x) < z, > 0, we obtain Inln(g + 2) <In(1 + ¢) < g. Hence,

1 1 1
> > .
qk+1(lnln(q+2))k = q2k+1 = q3k5

23k5

We can assume that 4cy < if 50 is chosen large enough. We have

y \k-1 1
Ty 2 m(2qz) (ln :1:) (2eq)3K” "

We can also assume that 3k5 < kS if 50 is chosen large enough. Hence,

Lo
(2¢)*** ~ (2eq)*°”

We have (26)k6 < 28" if Cp is chosen large enough. It is clear that ¢ < ¢"". Then

o1
(2eq)*° — (2q)F"°

_ 7
Inz =1 = (lnya;)k 1 = (lr?m)k '

ngw(qu)< Y >k7.

2qInx

Further (see (5.61)),

0<

We obtain

From (5.75) and (5.76) we find

k = [exp(cm)]| < exp(em) + 1 < exp(2cm)

(5.93)

(5.94)

provided that 6’0 is chosen large enough. Therefore, k7 < exp(14¢m). Since 6’0 is a positive absolute

constant, we see from (5.75) that ¢ is a positive absolute constant. We have

>exp(14€m)

T > (2 =7(2
32 qx)<2qln$ m( qx)<2qln$

>exp(Cm)
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where C' = 14¢ > 0 is an absolute constant. Combining (5.88), (5.93), and (5.95) we obtain

#{qr <pn <2qx —5¢: pp= ... = Puym = a (mod q), ppim — P <Y}
y exp(Cm)
> (2 .
2 q$)<2qln$>

e/14

Applying (5.94), we see that the inequality k < y holds if exp(2¢m) < y/'. This inequality is

equivalent to

m < < Iny = celn
S 98z Yy = Y,

where ¢ = 1/(28¢) > 0 is an absolute constant. Let us redenote c(¢) by co(¢). Lemma 5.4 is
proved. [

Lemma 5.5. There are positive absolute constants ¢ and C' such that the following holds. Let
e be a real number with 0 < e < 1. Then there is a number cy(e) > 0, depending only on €, such that
ifreR,yeR, meZ, qe€Z, and a € Z satisfy the conditions co(e) <y <Inz, 1 <m < celny,
1<q<y'¢ and (a,q) =1, then

y exp(Cm)
#{qx <pn <2971 pp = ... = ppgm = a (mod q), Pnym —Pn < y} > m(2qz) <2qlnx> ’

Proof. Let ¢, C, and c¢y(e) be the quantities mentioned in Lemma 5.4. We will choose a
quantity ¢p(e) and an absolute constant C later; they will be large enough. In particular, let
co(e) > ¢o(e) and C>C.Letz €R,yeR, meZ, q€Z,and a € Z be such that c(e) <y <lnz,
1<m<celny,1<q<y'"¢ and (a,q) = 1. We put [ = [2]. Then, by Lemma 5.4, we have

le#{ql<pn§2ql_5q3 an---Epn+mEa(m0d Q)7 pn+m_pn§y}

y \oPEm
> m(2ql) <2q lnl> =:Ty. (5.96)
Since x <[ < z + 1, we have
ql > qx and 2ql — 5q < 2q(x + 1) — 5q = 2qx — 3q < 2qx.

Therefore,

Ny < #{qa; <pn<2qx: pp=... = Ppim = a (mod q), Ppim — Pn < y} =: Ns. (5.97)
We have = + 1 < 2 provided that ¢o(¢) is chosen large enough. Hence,

Inl <In(x+1) <2lnuz.

Since 7(2ql) > m(2qz), we have

exp(Cm) exp(Cm) exp(Cm)
T127r(2q:1:)< 4 > :7r(2q:r)< 4 > <1> .

qlnx 4

Then
2exp(Cm) < exp(2Cm)

provided that C is chosen large enough. Since C>C , we have

1 exp(Cm) 1 exp(Cm) 1 2exp(Cm) 1 exp(2Cm)
> = > .
W=l -6 =)
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exp(Cm) exp(2C'm)
Y Yy Y
< > .
glnx — ! - <qlnx> - (qlnm)

>exp(25m)

Further,
0<
Hence,

Ty > m(2qx) < (5.98)

2qInzx
From (5.96)—(5.98) we obtain

exp(25m)
#{qr <pn <2qx: pp=... = Pppm = a (mod q), Ppim —Pn <Y} > 7T(2q33)<2qlnm> '

Let us denote (&) by co(¢) and 2C by C. Lemma 5.5 is proved. [

Let us complete the proof of Theorem 1.1. Let cy(e), ¢, C be the quantities in Lemma 5.5.
We will choose a quantity ¢p(e) and an absolute constant C later; they will be large enough. Let
o(e) > cole) and C > C.

Let us prove the following statement.

Proposition 5.2. Let € be a real number with 0 < e < 1. Let t e R,y e R, m € Z, q € Z,
and a € Z be such that

~ t
t > 100, co(€)§y§1n21 " 1<m <celny, 1<qg<yts, (a,q) = 1.
n
Then
¢ y exp(C'm)
#{ o <PnStipp=...=poim = a (mod q), Potm — Pa < y} > 7r(t)<2qlnt> . (5.99)

Proof. Indeed, since t > 100, we have 2Int > 1. Hence,

<1 <Int.
Y n2 <In

We have g < y'~¢ < y < Int. Therefore,

t
y <ln <In_ .
2Int 2q

We put  =t/2q. Then x e R,y e R, m € Z, q € Z, and a € 7Z are such that
coe) <y<lhz, 1<m<celny, 1<¢<y'™5  (a,q)=1

By Lemma 5.5, we have

#{q:r <pn<2qx: pp=...=pprm =a (mod q), Prim — Pn < y}
y exp(Cm) y exp(Cm) y exp(Cm)
> (2 >7(2 > m(2
2 m(242) <2q lnx> 2 m(22) <2q lnx> = m(2z) <2qln(2qaz)>

Returning to the variable ¢, we obtain (5.99). O
Let us prove the following statement.

Proposition 5.3. Let € be a real number with 0 <e <1. Let t e R, m € Z, q € Z, and a € Z
be such that

~ (€ t c 1_
> < < < <qg< € = 1.
t > 100, co(2> _ln21nt’ 1<m< 4Elnlnt, 1<q¢g<(Int) ¢, (a,q) =1
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Then

1 >exp(5m)

t t
#{2 <pn§t: an---Epn+mEa(m0d Q)y pn+m_pn§1n2lnt} Zﬂ(t)<4q

Proof. We need the following
Lemma 5.6. Lett be a real number with t > 100. Then

t 1

2t < Vi 1 >
nt <Vt Yomt < 2

t 1
| Inl > Inl 1-—
nt, n n21nt Z nint,

The proof of lemma 5.6 is a simple exercise in calculus, and we omit it.
We put

Since t > 100, we have (see Lemma 5.6)

t 1
lny:lnln2 > 2lnlnt.

Int
Therefore,
€

1§m§c2lny.

We may assume that ¢y(e) > 21/¢. Since t > 100, we have ¢/(2Int) < t and

~ (€ t
co< )gln <lInt.
2 2Int

Hence,
- (€ 9
t> exp(co(2)) > exp(2 /5).
Therefore,

;(mt)l—f/? > (Int)t—=. (5.100)

From (5.100) and the last inequality in Lemma 5.6 we find

1—e/2 _ _ 1—e/2 _ > 1—e/2
Yy (ln 21nt> (Int) <1 It > > (Int) <2>

> ;(lnt)l_e/z > (Int)t=.

Since 1 < ¢ < (Int)!=%, we have 1 < ¢ < y'=¢/2. Applying Proposition 5.2 with €/2 and the second
inequality of Lemma 5.6, we have

t t
St:pn=...=Dnym = s Pntm — Pn <
#{2<pn_t P Prtm = a (mod q), pnym —p lnmnt}
ln(t/(21nt)) exp(Cm) 1 exp(Cm)
> > .
_W(t)< 2qInt =z (1) 4q

The statement is proved. [
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Proposition 5.4. Let € be a real number with 0 < e < 1. Let t e R,y e R, m € Z, q € Z,
and a € Z be such that

~ t
t>100,  &(;)<m,  <y<mt, 1<m< ey 1<¢<y (g =L
Then
¢ y exp(C'm)
#{2 <pn<t:pp=...=ppym =0 (mOd (]), Pn+m — Pn §y} Zw(t)(élqlnt) .
Proof. Since y <Int, we have
1<m< zslnlnt and 1§q§(lnt)1_5.
Applying Proposition 5.3, we obtain
t
# 9 <pn <t an---Epn+mEa(m0d Q)7 Pnt4m —Pn <Y
t t
2# 9 <pn <t Pn=...=DPn+m =0 (mOdQ)a pn+m_pn§1n2lnt

1 exp(C'm) y exp(C'm)
Z7T(t)<4q> Z7T(t)<4qmt> -

For 0 < ¢ < 1 we define the quantity ¢y(¢) as follows:

t ~ (€N ~
to(e) > 100, In olnt > max{co(2),co(s)} for any t > to(e).

Let us prove the following statement.

Proposition 5.5. Let € be a real number with 0 < e < 1. Let t e R,y e R, m € Z, q € Z,
and a € Z be such that

t > to(e), max{50<§),'50(€)} <y<Int, 1<m< Zelny, 1<qg<y'¢ (a9 =1

Then

¢ y exp(C'm)
#{2 <pn§t: an'”Epn—i-mEa(mOd Q)y pn+m_pn§y} Zﬂ-(t)<4qlnt> .

Proof. Consider two cases. If

| <y <lInt,

. 2Int
then t, y, m, ¢, and a satisfy the hypothesis of Proposition 5.4, which yields

¢ y exp(Cm)
n St pp=... = Ppgm = d q), Pntm —pPn < > m(t .
#{2<p <t:p Pntm = a (mod q), ppiym —p y} ﬂ()<4qlnt>

If

<In t
y= 2Int’
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then t, y, m, ¢, and a satisfy the hypothesis of Proposition 5.2, which yields

y exp(Cm)
2qInt

exp(C'm)
Y
. g
<4q In t>

t
#{2 <pn<t:pp=...=Pptm =a (mod q), pn+m—pn§y} Zw(t)<

> m(t)

For 0 < e <1 we put
p(e) = max{@ ;) @(e) } +tole).

Let us prove the following statement.

Proposition 5.6. Let € be a real number with 0 < e < 1. Let t e R,y e R, m € Z, q € Z,
and a € Z be such that

pe)<y<lnt,  1<m<ely  1<q<y'™ (a9 =1L
Then

y exp(2Cm)
2¢In t> '

t
#{2 <pn <t ppn=... = parm =a (mod q), Pnym — Pn Sy} Zﬂ(t)<
Proof. We have
~ (E\ ~
max{co(2>,co(s)} <y <Int and t > exp(p(e)) > ple) > to(e).

Applying Proposition 5.5, we obtain

¢ y exp(C'm)
n<t:phn=...=Pnem = y Pnim — Pn < > . (5.101
#{2<p <t p Prtm = a (mod q), Prym —p y} 7T(t)<4qlnt> (5.101)
We may assume that C > 2. Therefore, exp(Cm) > Cm > C > 2. Hence, 2exp(Cm) < exp(2Cm).
We have
1 exp(C'm) 1 2exp(Cm) 1 exp(2Cm)
= > .
W -G =)
Further,
exp(C'm) exp(2Cm)
o< Y <1 = Y > (7 .
qInt qInt glnt
We obtain

y exp(Cm) y exp(2Cm)
> . 102
<4qlnt> - <2qlnt> (5.102)

Relations (5.101) and (5.102) imply the required assertion. [J
Let us denote p(e) by co(€), ¢/4 by ¢, and 2C by C. Theorem 1.1 is proved. [
Proof of Corollary 1.1. Let ¢y(¢), ¢, and C be the quantities in Theorem 1.1. We put

Ci = max{2,co<1>,0}.
c 2
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Let m be a positive integer. Let x € R and y € R be such that exp(C1m) <y <Inz. Then

y = exp(Cim) = Cym = €1 2 CO<;> and y > exp(Cim) > exp(im).

The last inequality implies

<
m C ny.

Putting ¢ =1 and a = 1, we have
1 1
c0<2> <y<he,  1<m<c hy  1<q¢<y'’? (g =1
Applying Theorem 1.1 with € = 1/2, we see that

X
#{ <pp<a: pn+m—pn§y}

2
x
:#{2 <pp < T Pp=...= Ppym = a (mod q), pn+m—pn§y}
exp(Cm)
Y Y exp(Cm) Y exp(C1im)
> = > .
- 7T(m)<2qlnaz> 7T(m)<21na;> - 71-(x)(2lnx)

Let us redenote C7 by C. Corollary 1.1 is proved. [J
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