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1. INTRODUCTION

Let pn denote the nth prime. We prove the following result.
Theorem 1.1. There are positive absolute constants c and C such that the following holds.

Let ε be a real number with 0 < ε < 1. Then there is a number c0(ε) > 0, depending only on ε,
such that if x ∈ R, y ∈ R, m ∈ Z, q ∈ Z, and a ∈ Z satisfy the conditions

c0(ε) ≤ y ≤ lnx, 1 ≤ m ≤ cε ln y, 1 ≤ q ≤ y1−ε, (a, q) = 1,

then

#
{x
2
< pn ≤ x : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ y

}
≥ π(x)

( y

2q lnx

)exp(Cm)
.

Theorem 1.1 extends a result of Maynard [5, Theorem 3.3], who established the same result but
with y = ε lnx.

From Theorem 1.1 we obtain
Corollary 1.1. There is an absolute constant C > 0 such that if m is a positive integer and

x and y are real numbers satisfying exp(Cm) ≤ y ≤ lnx, then

#
{x
2
< pn ≤ x : pn+m − pn ≤ y

}
≥ π(x)

( y

2 lnx

)exp(Cm)
.

Let us introduce necessary notation. The expression b | a means that b divides a. For a fixed a
the sum

∑
b|a and the product

∏
b|a should be interpreted as being over all positive divisors of a.

We will use I. M. Vinogradov’s notation: A � B means that |A| ≤ cB with a positive absolute
constant c.

We reserve the letter p for primes. In particular, the sum
∑

p≤K should be interpreted as being
over all prime numbers not exceeding K.

We will also use the following notation:
#A is the number of elements of a finite set A;
N, Z, R, and C are the sets of all positive integers, integers, real numbers, and complex numbers;
P is the set of all prime numbers;
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CONSECUTIVE PRIMES IN SHORT INTERVALS 145

[x] is the integer part of a number x; i.e., [x] is the largest integer n such that n ≤ x;
{x} is the fractional part of a number x; i.e., {x} = x− [x];
�x� is the smallest integer n such that n ≥ x;
Re s and Im s are the real and imaginary parts of a complex number s;
(a1, . . . , an) is the greatest common divisor of integers a1, . . . , an;
[a1, . . . , an] is the least common multiple of integers a1, . . . , an;
ϕ(n) is the Euler totient function: ϕ(n) = #{1 ≤ m ≤ n : (m,n) = 1};
μ(n) is the Möbius function, which is defined as follows:
(i) μ(1) = 1,
(ii) μ(n) = 0 if there is a prime p such that p2 | n, and
(iii) μ(n) = (−1)s if n = q1 . . . qs, where q1 < . . . < qs are primes;
Λ(n) is the von Mangoldt function:

Λ(n) =

{
ln p if n = pk,

0 if n 	= pk;

P−(n) is the least prime factor of n > 1 (by convention P−(1) = +∞);(
n
k

)
= n!/(k! (n − k)!) is the binomial coefficient.

For real numbers a and b we use (a, b) and [a, b] to denote, respectively, the open and closed
intervals with endpoints a and b. By (a1, . . . , an) we also denote a vector; the meaning of the
notation should be clear from the context.

By definition, we put ∑
∅

= 0 and
∏
∅

= 1.

We define
M = {n ∈ N : μ(n) 	= 0}.

We will use the following functions:

li(x) =

x∫

2

dt

ln t
, Φ(x, z) = #

{
1 ≤ n ≤ x : P−(n) > z

}
,

π(x) =
∑
p≤x

1, θ(x) =
∑
p≤x

ln p, ψ(x) =
∑
n≤x

Λ(n),

π(x; q, a) =
∑

p≤x, p≡a (mod q)

1, ψ(x; q, a) =
∑

n≤x, n≡a (mod q)

Λ(n).

Let m > 1 and a be integers. If (a,m) = 1, then aϕ(m) ≡ 1 (mod m) (the Fermat–Euler
theorem). Let d be the smallest positive value of γ for which aγ ≡ 1 (mod m). We call d the order
of a (mod m) and say that a belongs to d (mod m).

Let q be a positive integer. We recall that a Dirichlet character modulo q is a function χ : Z → C

such that
(1) χ(n+ q) = χ(n) for all n ∈ Z (i.e., χ is a periodic function with period q);
(2) χ(mn) = χ(m)χ(n) for all m,n ∈ Z (i.e., χ is a totally multiplicative function);
(3) χ(1) = 1;
(4) χ(n) = 0 for all n ∈ Z such that (n, q) > 1.
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146 A. O. RADOMSKII

By Xq we denote the set of all Dirichlet characters modulo q. We recall that #Xq = ϕ(q) and
that the principal character modulo q is

χ0(n) :=

{
1 if (n, q) = 1,

0 if (n, q) > 1.

Let χ ∈ Xq. We say that the character χ restricted by (n, q) = 1 has period q1 if it has the property
that χ(m) = χ(n) for all m,n ∈ Z such that (m, q) = 1, (n, q) = 1 and m ≡ n (mod q1). Let c(χ)
denote the conductor of χ, which is the least positive integer q1 such that χ restricted by (n, q) = 1
has period q1. We say that χ is primitive if c(χ) = q, and imprimitive if c(χ) < q. By X∗

q we denote
the set of all primitive characters modulo q. We observe that the principal character modulo 1
is primitive. On the other hand, any principal character modulo q > 1 is imprimitive, since its
conductor is clearly 1. For χ ∈ Xq we put

Eχ0
(χ) :=

{
1 if χ is the principal character modulo q,

0 otherwise,

ψ(x, χ) =
∑
n≤x

Λ(n)χ(n), ψ′(x, χ) = ψ(x, χ)− Eχ0
(χ)x.

A character χ is said to be real if χ(n) ∈ R for all n ∈ Z. A character χ is said to be complex if
there is an integer n such that Im(χ(n)) 	= 0.

We say that characters χ1 and χ2 (modulo q1 and modulo q2, respectively) are equal and write
χ1 = χ2 if χ1(n) = χ2(n) for any integer n. Otherwise, we say that characters χ1 and χ2 are not
equal and write χ1 	= χ2.

Let χ be a Dirichlet character modulo q. The corresponding L-function is defined by the series

L(s, χ) =

∞∑
n=1

χ(n)

ns

for s ∈ C with Re s > 1. It is well known that if χ is not the principal character modulo q, then
L(s, χ) can be analytically continued to C. If χ is the principal character modulo q, then L(s, χ)
can be analytically continued to C \ {1} with a simple pole at s = 1.

We say that two linear functions L1(n) = a1n+ b1 and L2(n) = a2n+ b2 with integer coefficients
are equal and write L1 = L2 if a1 = a2 and b1 = b2. Otherwise, we say that the linear functions L1

and L2 are not equal and write L1 	= L2.
Let L = {L1, . . . , Lk} be a set of k linear functions with integer coefficients:

Li(n) = ain+ bi, i = 1, . . . , k.

For L(n) = an+ b, a, b ∈ Z, we define

ΔL = |a|
k∏

i=1

|abi − bai|.

We say that L(n) = an + b belongs to L (L ∈ L) if there is an i, 1 ≤ i ≤ k, such that L = Li.
Otherwise, we say that L(n) = an+ b does not belong to L (L /∈ L).

This paper is organized as follows. In Sections 2–4 we give necessary lemmas. In Section 5 we
prove Theorem 1.1 and Corollary 1.1.
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2. PREPARATORY LEMMAS

In this section we present some well-known lemmas which will be used in the following sections.
Lemma 2.1 (see, for example, [6, Ch. 1]). Let x be a real number with x ≥ 2. Then

b1 lnx ≤
∏
p≤x

(
1− 1

p

)−1

≤ b2 lnx and b3 lnx ≤
∏
p≤x

(
1 +

1

p

)
≤ b4 lnx,

where bi, i = 1, . . . , 4, are positive absolute constants.
Lemma 2.2 (see, for example, [4, Chs. 1, 2]). The limits limx→+∞ ψ(x)/x, limx→+∞ θ(x)/x,

limx→+∞ π(x)/(x/ln x), and limn→+∞ pn/(n lnn) exist and

lim
x→+∞

ψ(x)

x
= lim

x→+∞
θ(x)

x
= lim

x→+∞
π(x)

x/lnx
= 1, lim

n→+∞
pn

n lnn
= 1.

From Lemma 2.2 we obtain
Lemma 2.3. It holds that

b5x ≤ ψ(x) ≤ b6x, b7x ≤ θ(x) ≤ b8x for x ≥ 2, (2.1)

b9
x

lnx
≤ π(x) ≤ b10

x

lnx
for x ≥ 2, (2.2)

b11n ln(n+ 2) ≤ pn ≤ b12n ln(n+ 2) for n ≥ 1,

where bi, i = 5, . . . , 12, are positive absolute constants.
Lemma 2.4 (see, for example, [7, Ch. 2]). Let n be an integer with n > 1. Then

ϕ(n) = n
∏
p|n

(
1− 1

p

)
.

From Lemma 2.4 we readily obtain the following two lemmas.
Lemma 2.5. Let m and n be integers with m ≥ 1 and n ≥ 1. Then

ϕ(mn) ≥ ϕ(m)ϕ(n).

Lemma 2.6. Let m and n be integers with m ≥ 1, n ≥ 1, and (m,n) = 1. Then

ϕ(mn) = ϕ(m)ϕ(n).

Lemma 2.7. Let n be an integer with n ≥ 1. Then

n

ϕ(n)
=
∑
d|n

μ2(d)

ϕ(d)
. (2.3)

Proof. For n = 1, equality (2.3) holds. Let n > 1. Let us express n in the standard form
n = qα1

1 . . . qαr
r , where q1 < . . . < qr are prime numbers. Applying Lemmas 2.4 and 2.6, we have

n

ϕ(n)
=
∏
p|n

(
1− 1

p

)−1

=
∏
p|n

(
1 +

1

p− 1

)
=

(
1 +

1

q1 − 1

)
. . .

(
1 +

1

qr − 1

)

=

(
1 +

1

ϕ(q1)

)
. . .

(
1 +

1

ϕ(qr)

)
= 1 +

r∑
s=1

∑
1≤i1<...<is≤r

1

ϕ(qi1) . . . ϕ(qis)

= 1 +

r∑
s=1

∑
1≤i1<...<is≤r

1

ϕ(qi1 . . . qis)
=

∑
d|n, d∈M

1

ϕ(d)
=
∑
d|n

μ2(d)

ϕ(d)
. �
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Lemma 2.8 (see, for example, [6, Ch. 1]). Let n be an integer with n ≥ 1. Then

ϕ(n) ≥ c
n

ln ln(n + 2)
,

where c > 0 is an absolute constant.
Lemma 2.9 (see, for example, [1, Ch. 28]). Let x be a real number with x ≥ 2. Then

∑
1≤n≤x

1

ϕ(n)
≤ c lnx,

where c > 0 is an absolute constant.
Lemma 2.10 (see, for example, [2, Ch. 5]). Let n be an integer with n ≥ 1. Then

∑
p|n

ln p

p
≤ c ln ln(3n),

where c > 0 is an absolute constant.
Lemma 2.11. Let a, b, and c be integers such that (a, b) | c. Then the equation

ax+ by = c (2.4)

has a solution in integers.
Proof. We put d = (a, b). Then c = dl for some l ∈ Z. It is well known (see, for example, [7,

Ch. 1, Exercise 1]) that the equation
ax+ by = d (2.5)

has a solution in integers. Let x0 ∈ Z and y0 ∈ Z be a solution of (2.5). Then the integers lx0
and ly0 satisfy (2.4). �

Lemma 2.12. Let n and k be integers such that 1 ≤ k ≤ n. Then
(
n

k

)
≥ k−k(n− k)k. (2.6)

Proof. For k = n inequality (2.6) holds. Let 1 ≤ k < n. Then
(
n

k

)
=

n!

k! (n − k)!
=

n(n− 1) . . . (n− k + 1)

k!
≥ (n− k)k

k!
≥ k−k(n− k)k. �

Lemma 2.13 (see [3, Ch. 0]). Let x and z be real numbers such that 2 ≤ z ≤ x/2. Then

Φ(x, z) ≥ c0
x

ln z
,

where c0 > 0 is an absolute constant.

3. LEMMAS ON DIRICHLET CHARACTERS

In this section we give some well-known lemmas on Dirichlet characters which will be used in
the following sections.

Lemma 3.1. Let a, b, and n be integers such that 1 ≤ a < b, a | b, and (n, a) = 1. Then there
is an integer t such that (n+ ta, b) = 1.

Proof. If (n, b) = 1, we take t = 0. Let (n, b) > 1. Then the set Ω = {p | b : p � a} is nonempty.
Let Ω = {q1, . . . , qr} with q1 < . . . < qr. Let 1 ≤ i ≤ r. Since (a, qi) = 1, the congruence

n+ ta ≡ 1 (mod qi)
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has a solution; i.e., there is an integer mi such that n+ ami ≡ 1 (mod qi). Consider the system
⎧⎨
⎩

t ≡ m1 (mod q1),
. . . . . . . . . . . . . . . . . .

t ≡ mr (mod qr).

(3.1)

Since the numbers q1, . . . , qr are coprime, the system has a solution. Let an integer t0 satisfy
system (3.1). We claim that t0 is a desired number, i.e., that (n + t0a, b) = 1. Assume the contrary:
(n+ t0a, b) > 1. Then there is a prime p such that p | b and p | (n + t0a). If p � a, then p ∈ Ω, i.e.,
p = qi for some 1 ≤ i ≤ r. However,

n+ t0a ≡ 1 (mod qi)

and hence p � (n + t0a). We arrive at a contradiction. Thus this case is impossible. Hence, p | a.
Since p | (n + t0a), we see that p | n. Hence, (n, a) > 1. This contradicts the hypothesis of the
lemma. Therefore, the assumption (n+ t0a, b) > 1 is false. Hence, (n+ t0a, b) = 1. �

Lemma 3.2. Let q ≥ 2 be an integer and χ ∈ Xq. Suppose that χ restricted by (n, q) = 1 has
period q1. Then χ restricted by (n, q) = 1 also has period (q, q1).

Proof. We put δ = (q, q1). Let m and n be integers such that (m, q) = 1, (n, q) = 1, and
m ≡ n (mod δ). We need to prove that χ(m) = χ(n). By Lemma 2.11, there are integers k and l
such that

m+ q1k = n+ ql.

We put A = m+ q1k = n + ql. Since (n, q) = 1, we have (n + ql, q) = 1. Hence, (A, q) = 1. Since
χ has period q, it follows that

χ(A) = χ(n+ ql) = χ(n).

Since (A, q) = 1, (m, q) = 1, and A ≡ m (mod q1), we have χ(A) = χ(m). Hence, χ(m) = χ(n). �
Lemma 3.3. Let q ≥ 1 and χ ∈ Xq. Then c(χ) divides q.
Proof. If q = 1, then c(χ) = 1 and the statement is obvious. Let q ≥ 2. By Lemma 3.2,

χ restricted by (n, q) = 1 has period δ = (c(χ), q). If c(χ) is not a divisor of q, then δ < c(χ), which
contradicts the definition of the conductor. �

Lemma 3.4. Let q ≥ 1 and χ ∈ Xq. Then there exists a unique Dirichlet character χ1 ∈ Xc(χ)

such that

χ(n) =

{
χ1(n) if (n, q) = 1,

0 if (n, q) > 1.
(3.2)

Furthermore, χ1 is primitive.
We say that χ1 induces χ.
Proof of Lemma 3.4. I. Let q = 1. Then c(χ) = 1, #X1 = 1, and χ1 = χ, so the statement

is obvious.
II. Let q ≥ 2 and χ be a primitive character modulo q. Then c(χ) = q and we can take

χ1 = χ. Let us prove the uniqueness. Suppose that there are two different characters χ1, χ2 ∈ Xq

satisfying (3.2). Then for any n such that (n, q) > 1 we have χ1(n) = 0 = χ2(n). For any n
such that (n, q) = 1, we have χ1(n) = χ(n) = χ2(n). Therefore, χ1(n) = χ2(n) for any integer n;
i.e., χ1 = χ2, a contradiction.

III. Let q ≥ 2 and χ be an imprimitive character modulo q. Then 1 ≤ c(χ) < q and by
Lemma 3.3 we have c(χ) | q. We define χ1. Let n ∈ Z. Consider several cases.

If (n, c(χ)) > 1, then we put χ1(n) = 0.
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If (n, c(χ)) = 1, then by Lemma 3.1 there is an integer t such that (n + tc(χ), q) = 1. We put

χ1(n) = χ(n+ tc(χ)).

The choice of t subject to the indicated condition is immaterial, since χ restricted by (n, q) = 1 has
period c(χ). Thus, χ1(n) is defined for any integer n. We claim that χ1 is a character modulo c(χ).
By construction,

χ1(n) = 0 for any n ∈ Z such that (n, c(χ)) > 1.

By Lemma 3.1, there is an integer t such that (1 + tc(χ), q) = 1. Since the choice of such a t is
immaterial, we take t = 0. We have χ1(1) = χ(1) = 1. Now we prove that

χ1(n+ c(χ)) = χ1(n) for all n ∈ Z. (3.3)

If (n, c(χ)) > 1, then we have (n+ c(χ), c(χ)) > 1. Hence,

χ1(n+ c(χ)) = 0 = χ1(n).

Let (n, c(χ)) = 1. Then we have (n + c(χ), c(χ)) = 1. By Lemma 3.1, there are integers t1 and t2
such that (n+ t1c(χ), q) = 1 and (n+ c(χ) + t2c(χ), q) = 1. By construction, we have

χ1(n) = χ(n+ t1c(χ)) and χ1(n+ c(χ)) = χ(n+ c(χ) + t2c(χ)).

Since χ restricted by (n, q) = 1 has period c(χ), we have χ(n + t1c(χ)) = χ(n + c(χ) + t2c(χ)).
Hence, χ1(n) = χ1(n+ c(χ)) and (3.3) is proved. Now we prove that

χ1(mn) = χ1(m)χ1(n) for all m,n ∈ Z. (3.4)

If (m, c(χ)) > 1, then we have (mn, c(χ)) > 1. Hence, χ1(mn) = 0 and χ1(m) = 0. Therefore,
relation (3.4) holds. Similarly, (3.4) holds if (n, c(χ)) > 1. Let (m, c(χ)) = 1 and (n, c(χ)) = 1.
Then (mn, c(χ)) = 1. By Lemma 3.1, there are integers t1, t2, and t3 such that (m+ t1c(χ), q) = 1,
(n + t2c(χ), q) = 1, and (mn + t3c(χ), q) = 1. We put m1 = m + t1c(χ), n1 = n + t2c(χ), and
u = mn+ t3c(χ). By construction,

χ1(mn) = χ(u), χ1(m) = χ(m1), and χ1(n) = χ(n1).

Since χ is a totally multiplicative function, it follows that

χ1(m)χ1(n) = χ(m1)χ(n1) = χ(m1n1).

Since (m1, q) = 1 and (n1, q) = 1, we have (m1n1, q) = 1. It is clear that m1n1 ≡ u (mod c(χ)).
Since χ restricted by (n, q) = 1 has period c(χ), we find that χ(u) = χ(m1n1). Therefore,
χ1(mn) = χ1(m)χ1(n) and (3.4) is proved. Thus, we have proved that χ1 is a character modulo c(χ),
i.e., χ1 ∈ Xc(χ).

Now we prove that χ1 satisfies (3.2). It suffices to show that

χ1(n) = χ(n) if (n, q) = 1. (3.5)

Since (n, q) = 1, we have (n, c(χ)) = 1 (see Lemma 3.3). By Lemma 3.1, there is an integer t such
that (n + tc(χ), q) = 1. By construction χ1(n) = χ(n+ tc(χ)). Since (n+ tc(χ), q) = 1, (n, q) = 1,
and n + tc(χ) ≡ n (mod c(χ)), we have χ(n + tc(χ)) = χ(n). Hence, χ1(n) = χ(n) and (3.5) is
proved.

Now we prove that χ1 is a primitive character. Suppose that there is a positive integer q2 such
that χ1 restricted by (n, c(χ)) = 1 has period q2. Let m and n be integers such that (m, q) = 1,
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(n, q) = 1, and m ≡ n (mod q2). By Lemma 3.3, we have (m, c(χ)) = 1 and (n, c(χ)) = 1. Then
(see (3.5))

χ(m) = χ1(m) = χ1(n) = χ(n).

Hence, χ restricted by (n, q) = 1 has period q2. From the definition of a conductor it follows that
q2 ≥ c(χ). Hence, χ1 is a primitive character.

Now we prove the uniqueness. Suppose that there are two different characters χ1, χ2 ∈ Xc(χ)

satisfying (3.2). If (n, c(χ)) > 1, then χ1(n) = 0 = χ2(n). Let (n, c(χ)) = 1. By Lemma 3.1, there
is an integer t such that (n+ tc(χ), q) = 1. Since χ1 and χ2 are periodic functions with period c(χ),
we have

χ1(n) = χ1(n+ tc(χ)) = χ(n+ tc(χ)) = χ2(n+ tc(χ)) = χ2(n).

Thus, χ1(n) = χ2(n) for any n ∈ Z, and so χ1 = χ2. We obtain a contradiction. The uniqueness is
proved. �

Lemma 3.5. Let q > 1 be an integer expressed in the standard form as q = qα1
1 . . . qαr

r , where
q1 < . . . < qr are primes and α1, . . . , αr are positive integers. Let χ be a Dirichlet character
modulo q. Then there exist unique characters χi modulo qαi

i , i = 1, . . . , r, such that

χ(n) = χ1(n) . . . χr(n) for all n. (3.6)

Furthermore, if the character χ is real, then all characters χi, i = 1, . . . , r, are real. If the charac-
ter χ is primitive, then all characters χi, i = 1, . . . , r, are primitive.

Proof. For any 1 ≤ i ≤ r we take Ai such that

Ai ≡ 1 (mod qαi
i ) and Ai ≡ 0 (mod q

αj

j ) for any j 	= i, 1 ≤ j ≤ r. (3.7)

Since the moduli of these congruences are coprime, the system has a solution (see, for example, [7,
Ch. 4]). Thus, integers A1, . . . , Ar are defined.

Let 1 ≤ i ≤ r and n ∈ Z. We put

χi(n) = χ

(
nAi +

∑
1≤j≤r, j 	=i

Aj

)
. (3.8)

It is easy to show that χi is a Dirichlet character modulo qαi
i .

Now we prove that (3.6) holds. Let n ∈ Z. Setting

ni = nAi +
∑

1≤j≤r, j 	=i

Aj , i = 1, . . . , r,

we have
χ1(n) . . . χr(n) = χ(n1) . . . χ(nr) = χ(n1 . . . nr).

From (3.7) we obtain

n1 . . . nr ≡ n (mod qαs
s ) for any 1 ≤ s ≤ r.

Hence, n1 . . . nr − n is divisible by q, i.e.,

n1 . . . nr ≡ n (mod q).

Hence, χ(n1 . . . nr) = χ(n) and (3.6) is proved.
Now we prove the uniqueness of the representation of χ in the form (3.6). Suppose that

χ(n) = χ̃1(n) . . . χ̃r(n), (3.9)
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where χ̃i is a Dirichlet character modulo qαi
i , i = 1, . . . , r. Let 1 ≤ i ≤ r and n ∈ Z. We have

(see (3.7))

nAi +
∑

1≤j≤r, j 	=i

Aj ≡ 1 (mod qαs
s ) for any 1 ≤ s ≤ r, s 	= i,

and
nAi +

∑
1≤j≤r, j 	=i

Aj ≡ n (mod qαi
i ).

Hence,

χ̃s

(
nAi +

∑
1≤j≤r, j 	=i

Aj

)
= 1 for any 1 ≤ s ≤ r, s 	= i,

and

χ̃i

(
nAi +

∑
1≤j≤r, j 	=i

Aj

)
= χ̃i(n).

From (3.9) we obtain

χ

(
nAi +

∑
1≤j≤r, j 	=i

Aj

)
= χ̃i(n).

Therefore (see (3.8)), χ̃i(n) = χi(n). Since this equation holds for any n ∈ Z, we have χ̃i = χi,
i = 1, . . . , r. Thus, the uniqueness of the representation of χ in the form (3.6) is proved.

We see from (3.8) that if the character χ is real, then all characters χi, i = 1, . . . , r, are real. We
claim that if the character χ is primitive, then all characters χi, i = 1, . . . , r, are primitive. Assume
the contrary: there is an i, 1 ≤ i ≤ r, such that the character χi is imprimitive. Then c(χi) < qαi

i .
Since c(χi) | q

αi
i (see Lemma 3.3), we have

c(χi) = qβi , β < αi.

We put

q̃ = qβi
∏

1≤j≤r, j 	=i

q
αj

j .

Let us show that the character χ restricted by (n, q) = 1 has period q̃. Take integers m and n such
that (m, q) = (n, q) = 1 and m ≡ n (mod q̃ ). Let 1 ≤ j ≤ r, j 	= i. Since

m ≡ n (mod q
αj

j ),

we have χj(m) = χj(n). Since (m, qαi
i ) = (n, qαi

i ) = 1,

m ≡ n (mod qβi ),

and χi restricted by (n, qαi
i ) = 1 has period qβi , we have χi(m) = χi(n). This implies

χ(m) = χi(m)
∏

1≤j≤r, j 	=i

χj(m) = χi(n)
∏

1≤j≤r, j 	=i

χj(n) = χ(n).

We have proved that χ restricted by (n, q) = 1 has period q̃. But then c(χ) ≤ q̃ < q. This
contradicts the fact that the character χ is primitive. Hence, all characters χi, i = 1, . . . , r, are
primitive. Lemma 3.5 is proved. �
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Lemma 3.6. Let q be a positive integer such that there exists a real primitive character χ
modulo q. Then the number q is of the form 2αk, where α ∈ {0, . . . , 3} and k ≥ 1 is an odd
square-free integer.

Proof. Modulo q = 1 there exists a real primitive character; namely, χ(n) = 1 for all n ∈ Z.
The number 1 is of the form 2αk; namely, α = 0 and k = 1.

Let q > 1 be an integer such that there exists a real primitive character χ modulo q. Suppose
that q = prs, where p ≥ 3 is a prime number, (p, s) = 1, and r ≥ 2. Let q̃ = pr−1s. We claim
that the character χ restricted by (n, q) = 1 has period q̃. Let m and n be integers such that
(m, q) = (n, q) = 1 and m ≡ n (mod q̃ ). We have m = n+ q̃ t, t ∈ Z, and

mpr−1
= (n + q̃ t)p

r−1
= npr−1

+

pr−1∑
i=1

(
pr−1

i

)
(q̃ t)inpr−1−i = npr−1

+

pr−1∑
i=1

Ait
inpr−1−i, (3.10)

where

Ai =

(
pr−1

i

)
(q̃ )i.

Let 2 ≤ i ≤ pr−1. Then

Ai =

(
pr−1

i

)
(pr−1s)i = prs

(
pr−1

i

)
p(i−1)r−isi−1.

It is clear that i− 1 ≥ 1. We claim that

(i− 1)r − i ≥ 0 (3.11)

or, which is equivalent, i(r − 1) ≥ r. Indeed, since i ≥ 2 and r ≥ 2, we have

i(r − 1) ≥ 2(r − 1) ≥ r.

Hence, Ai = prsN , where N ∈ N. Thus, for any 2 ≤ i ≤ pr−1,

Ai ≡ 0 (mod q).

We have A1 = pr−1(pr−1s) = prspr−2. Since r ≥ 2, we obtain

A1 ≡ 0 (mod q).

Hence (see (3.10)),

mpr−1 ≡ npr−1
(mod q).

Using the properties of a character, we obtain

(χ(m))p
r−1

= (χ(n))p
r−1

.

Since (m, q) = (n, q) = 1 and the character χ is real, we have χ(m), χ(n) ∈ {−1, 1}. Since p ≥ 3 is
a prime number and r ≥ 2 is an integer, it follows that pr−1 is an odd positive integer. Therefore,
if χ(m) = 1, then χ(n) = 1, while if χ(m) = −1, then χ(n) = −1 as well. Thus, χ(m) = χ(n). We
have proved that the character χ restricted by (n, q) = 1 has period q̃. Consequently,

c(χ) ≤ q̃ < q.

This contradicts the fact that χ is a primitive character. Hence, the number q is of the form 2αk,
where α ≥ 0 is an integer and k ≥ 1 is an odd square-free integer.
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We claim that α ≤ 3. Assume the contrary: α ≥ 4. Let k = q1 . . . qr, where q1 < . . . < qr are
odd primes. By Lemma 3.5, we have

χ(n) = χ1(n)χ2(n) . . . χr+1(n), (3.12)

where χ1 is a real primitive character modulo 2α and χi is a real primitive character modulo qi−1, i =
2, . . . , r + 1 (if k = 1, then χ2, . . . , χr+1 are omitted in (3.12)). It is well known (see, for example, [7,
Ch. 6]) that if numbers ν and γ run independently through the sets {0, 1} and {0, . . . , 2α−2 − 1}
respectively, then (−1)ν · 5γ runs (without repetitions) through a reduced residue system modulo 2α.
Hence, for any n with (n, 2) = 1 there are unique numbers ν(n)∈ {0, 1} and γ(n)∈ {0, . . . , 2α−2 − 1}
such that

n ≡ (−1)ν(n) · 5γ(n) (mod 2α). (3.13)

Since (−1)2 = 1, we have (χ1(−1))2 = 1. Thus,

χ1(−1) = (−1)a, a ∈ {0, 1}.

It is well known (see, for example, [7, Ch. 6]) that the number 5 belongs to 2α−2 (mod 2α); in
particular, 52α−2 ≡ 1 (mod 2α). Hence,

(χ1(5))
2α−2

= 1.

We obtain

χ1(5) = exp

(
2πi

b

2α−2

)
, b ∈ {0, . . . , 2α−2 − 1}.

We see from (3.13) that if n is such that (n, 2) = 1, then

χ1(n) = (−1)aν(n) exp

(
2πi

bγ(n)

2α−2

)
. (3.14)

We claim that (b, 2) = 1. Indeed, assume the contrary: (b, 2) > 1. We show that then χ1 restricted
by (n, 2α) = 1 has period 2α−1. Let m and n be integers such that (m, 2α) = (n, 2α) = 1 and
m ≡ n (mod 2α−1). We have

m ≡ (−1)ν(m) · 5γ(m) (mod 2α) and n ≡ (−1)ν(n) · 5γ(n) (mod 2α).

Since these congruences also hold modulo 2α−1, we have

(−1)ν(m) · 5γ(m) ≡ (−1)ν(n) · 5γ(n) (mod 2α−1). (3.15)

Since α ≥ 4, we obtain

(−1)ν(m) · 5γ(m) ≡ (−1)ν(n) · 5γ(n) (mod 4).

It is clear that

(−1)ν(m) · 5γ(m) ≡ (−1)ν(m) (mod 4) and (−1)ν(n) · 5γ(n) ≡ (−1)ν(n) (mod 4).

Hence,
(−1)ν(m) ≡ (−1)ν(n) (mod 4).

If ν(m) = 0, then ν(n) = 0; if ν(m) = 1, then ν(n) = 1. Thus,

ν(m) = ν(n). (3.16)

Therefore (see (3.15)),
5γ(m) ≡ 5γ(n) (mod 2α−1).
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Suppose, for definiteness, that γ(m) ≥ γ(n). We have

5γ(n)
(
5γ(m)−γ(n) − 1

)
≡ 0 (mod 2α−1).

Since (5γ(n), 2α−1) = 1, we obtain

5γ(m)−γ(n) − 1 ≡ 0 (mod 2α−1).

Hence,

5γ(m)−γ(n) ≡ 1 (mod 2α−1).

Since 5 belongs to 2α−3 (mod 2α−1), we have (see [7, Ch. 6])

γ(m)− γ(n) ≡ 0 (mod 2α−3).

Therefore,

γ(m) = γ(n) + 2α−3t, (3.17)

where t ≥ 0 is an integer. Since (b, 2) > 1, we have

b = 2b̃, (3.18)

where b̃ ≥ 0 is an integer. We obtain (see (3.14) and (3.16)–(3.18))

χ1(m) = (−1)aν(m) exp

(
2πi

b̃γ(m)

2α−3

)
= (−1)aν(n) exp

(
2πi

b̃(γ(n) + 2α−3t)

2α−3

)

= (−1)aν(n) exp

(
2πi

b̃γ(n)

2α−3

)
exp(2πĩbt) = (−1)aν(n) exp

(
2πi

b̃γ(n)

2α−3

)
= χ1(n).

Thus, we have proved that χ1 restricted by (n, 2α) = 1 has period 2α−1. Hence,

c(χ1) ≤ 2α−1 < 2α.

This contradicts the fact that χ1 is a primitive character. Hence, (b, 2) = 1.
For n = 5 we have ν(5) = 0 and γ(5) = 1. Therefore (see (3.14)),

χ1(5) = exp

(
2πi

b

2α−2

)
= exp

(
πi

b

2α−3

)
.

Since α ≥ 4 and (b, 2) = 1, we have Im(χ1(5)) 	= 0. This contradicts the fact that χ1 is a real
character. Hence, 0 ≤ α ≤ 3. Lemma 3.6 is proved. �

Lemma 3.7. Let q1 and q2 be positive integers with q1 	= q2, χ1 be a primitive character
modulo q1, and χ2 be a primitive character modulo q2. Then χ1 	= χ2.

Proof. Assume the contrary: χ1 = χ2. Let m and n be integers such that (m, q1) = (n, q1) = 1
and m ≡ n (mod q2). Then

χ1(m) = χ2(m) = χ2(n) = χ1(n).

Hence, χ1 restricted by (n, q1) = 1 has period q2. Hence, c(χ1) ≤ q2. Since χ1 is a primitive
character modulo q1, we have c(χ1) = q1. Thus, q1 ≤ q2. Similarly, it can be proved that q2 ≤ q1.
Hence, q1 = q2. We have arrived at a contradiction, which means that χ1 	= χ2. �
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4. LEMMAS ON ψ(x, χ)

In this section we present some lemmas on ψ(x, χ). Most of these lemmas are well known. The
proof of Lemma 4.6 is based on Maynard’s ideas (see the proof of Theorem 3.2 in [5]). The proof
of Lemma 4.9 follows a standard proof of the Bombieri–Vinogradov theorem (see, for example, [1,
Ch. 28]).

Lemma 4.1. Let u ≥ 2 be a real number, and let Q ≥ 2 and W be integers with (W,Q) = 1.
Then

ψ(u;Q,W )− u

ϕ(Q)
=

1

ϕ(Q)

∑
χ∈XQ

χ(W )ψ′(u, χ)

(the overbar denotes complex conjugation).
Proof. We define

IQ,W (n) =

{
1 if n ≡ W (mod Q),

0 otherwise.

Since (see, for example, [1, Ch. 4])

1

ϕ(Q)

∑
χ∈XQ

χ(W )χ(n) = IQ,W (n),

we have

ψ(u;Q,W ) =
∑
n≤u

n≡W (mod Q)

Λ(n) =
∑
n≤u

Λ(n)IQ,W (n) =
∑
n≤u

Λ(n)
1

ϕ(Q)

∑
χ∈XQ

χ(W )χ(n)

=
1

ϕ(Q)

∑
χ∈XQ

χ(W )

(∑
n≤u

Λ(n)χ(n)

)
=

1

ϕ(Q)

∑
χ∈XQ

χ(W )ψ(u, χ).

Let χ0 be the principal character modulo Q. Since (W,Q) = 1, it follows that χ0(W ) = 1. We have
∑

χ∈XQ

χ(W )Eχ0
(χ)u = χ0(W )u = u.

Hence,

ψ(u;Q,W ) − u

ϕ(Q)
=

1

ϕ(Q)

∑
χ∈XQ

χ(W )
(
ψ(u, χ)− Eχ0

(χ)u
)
=

1

ϕ(Q)

∑
χ∈XQ

χ(W )ψ′(u, χ).

Lemma 4.1 is proved. �
Lemma 4.2 (see, for example, [1, Ch. 14]). There is a positive absolute constant a > 0 such

that if χ is a complex character modulo q, then L(s, χ) has no zeros in the region

Ω: σ ≥

⎧
⎪⎨
⎪⎩

1− a

ln(q|t|) if |t| ≥ 1,

1− a

ln q
if |t| < 1

(here s = σ + it, σ = Re s, and t = Im s). If χ is a real nonprincipal character modulo q, the only
possible zero of L(s, χ) in this region is a single (simple) real zero. Furthermore, L(s, χ) can have
a zero in the region Ω for at most one of the real nonprincipal characters χ (mod q).

Remark. It is easy to see that the constant a can be replaced by any constant a∗ such that
0 < a∗ < a.
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Lemma 4.3 (see [1, Ch. 20]). Let χ be a nonprincipal character modulo q and 2 ≤ T ≤ u.
Then

ψ(u, χ) = −uβ1

β1
+R4(u, T ),

where

|R4(u, T )| ≤ C

(
u ln2(qu) exp

(
− a lnu

ln(qT )

)
+ uT−1 ln2(qu) + u1/4 lnu

)
.

Here C > 0 is an absolute constant and a > 0 is the absolute constant in Lemma 4.2. The term
−uβ1/β1 should be omitted unless χ is a real character for which L(s, χ) has a zero β1 (which is
necessarily unique, real, and simple) satisfying

β1 > 1− a

ln q
.

Lemma 4.4 (Page’s theorem; see, for example, [1, Ch. 14]). There are absolute constants
a1 > 0 and a′1 > 0 such that the following holds. Let z ≥ 3 be a real number. Then there is at most
one real primitive character χ to a modulus q0, 3 ≤ q0 ≤ z, for which L(s, χ) has a real zero β
satisfying

β > 1− a1
ln z

.

If such a character χ exists, then

q0 ≥
a′1(ln z)

2

(ln ln z)4
.

Such a modulus q0 is said to be an exceptional modulus in the interval [3, z].
Lemma 4.5. Let z ≥ 3 be a real number. If an exceptional modulus q0 in the interval [3, z]

exists, then the number q0 is of the form 2αk, where α ∈ {0, . . . , 3} and k ≥ 1 is an odd square-free
integer.

Proof. Suppose an exceptional modulus q0 in the interval [3, z] exists. In particular, this means
that there exists a real primitive character χ modulo q0. By Lemma 3.6, the number q0 is of the
form 2αk with α ∈ {0, . . . , 3} and an odd square-free integer k ≥ 1. �

Lemma 4.6. There are positive absolute constants c0, c1, γ0, and C such that the following
holds. Let x ≥ c0 be a real number, q0 be an exceptional modulus in the interval [3, exp(2c1

√
lnx)],

Q be an integer such that 3 ≤ Q ≤ exp(2c1
√
lnx) and Q 	= q0 (the last inequality should be

interpreted as follows: if q0 exists, then Q 	= q0; if q0 does not exist, then Q is any integer in the
indicated interval), and χ be a primitive character modulo Q. Then

max
2≤u≤x1+γ0/

√
lnx

|ψ(u, χ)| ≤ Cx exp(−3c1
√
lnx).

Proof. We will choose c1 and γ0 later. The number c0 depends on c1 and γ0 and is large
enough, and x ≥ c0(c1, γ0). We put

z = exp(2c1
√
lnx).

We have z ≥ 3 if the number c0(c1, γ0) is chosen large enough. By Lemma 4.4, there is at most one
real primitive χ to a modulus q0, 3 ≤ q0 ≤ z, for which L(s, χ) has a real zero β satisfying

β > 1− a1
ln z

= 1− a1

2c1
√
lnx

. (4.1)
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If such a character χ exists, then

q0 ≥
a′1(ln z)

2

(ln ln z)4
=

a′1(2c1
√
lnx)2

((1/2) ln lnx+ ln(2c1))4
≥ a′1c

2
1 lnx

(ln lnx)4
(4.2)

provided that c0(c1, γ0) is chosen large enough. Let Q be an integer such that 3 ≤ Q ≤ exp(2c1
√
lnx)

and Q 	= q0, and let χ be a primitive character modulo Q. Since Q > 1, we see that χ is a
nonprincipal character. By Lemma 4.3, if 2 ≤ T ≤ u, then

ψ(u, χ) = −uβ1

β1
+R4(u, T ), (4.3)

where

|R4(u, T )| ≤ C

(
u ln2(Qu) exp

(
− a lnu

ln(QT )

)
+ uT−1 ln2(Qu) + u1/4 lnu

)

= C(Δ1 +Δ2 +Δ3). (4.4)

The term −uβ1/β1 is to be omitted unless χ is a real character modulo Q for which L(s, χ) has a
zero β1 (which is necessarily unique, real, and simple) satisfying

β1 > 1− a

lnQ
.

Let
2 ≤ u ≤ x1+γ0/

√
lnx.

Let u ≥ c2(c1), where c2(c1) > 0 is a number depending only on c1. We choose

T = exp(4c1
√
lnu). (4.5)

Then 2 ≤ T ≤ u if c2(c1) is chosen large enough.
I. Now we estimate the quantity

Δ1 = u ln2(Qu) exp

(
− a lnu

ln(QT )

)
.

If c0(c1, γ0) is chosen large enough, then

1 +
γ0√
lnx

≤ 2. (4.6)

Hence,

lnu ≤
(
1 +

γ0√
lnx

)
lnx ≤ 2 ln x, (4.7)

QT ≤ exp
(
2c1

√
lnx+ 4c1

√
lnu
)
≤ exp

(
10c1

√
lnx
)
,

ln(QT ) ≤ 10c1
√
lnx, − a lnu

ln(QT )
≤ − a lnu

10c1
√
lnx

.

If c0(c1, γ0) is chosen large enough, then

lnQ ≤ 2c1
√
lnx ≤ lnx.

Therefore,
ln2(Qu) ≤ 2

(
ln2 Q+ ln2 u

)
≤ 10 ln2 x = 10 exp(2 ln lnx). (4.8)
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We have

Δ1 ≤ 10u exp

(
− a lnu

10c1
√
lnx

+ 2 ln lnx

)
.

Consider two cases.

(1) Let x1/4 ≤ u ≤ x1+γ0/
√
lnx. Then

lnx

4
≤ lnu ≤

(
1 +

γ0√
lnx

)
lnx ≤ 2 lnx.

Let

0 < c1 ≤
√

a

160
⇒ − a

40c1
≤ −4c1.

Hence,

− a lnu

10c1
√
lnx

≤ − (a/4) ln x

10c1
√
lnx

= −a
√
lnx

40c1
≤ −4c1

√
lnx

and

− a lnu

10c1
√
lnx

+ 2 ln lnx ≤ −4c1
√
lnx+ 2 ln lnx ≤ − 7

2
c1
√
lnx

provided that c0(c1, γ0) is chosen large enough. If 0 < γ0 ≤ c1/2, then

Δ1 ≤ 10x1+γ0/
√
lnx exp

(
− 7

2
c1
√
lnx

)
= 10x exp

(
− 7

2
c1
√
lnx+ γ0

√
lnx

)
≤ 10x exp(−3c1

√
lnx).

(2) Let c2(c1) ≤ u < x1/4 (we may assume that c0(c1, γ0) > (c2(c1))
4 and c2(c1) ≥ 10). We have

Δ1 ≤ 10u exp

(
− a lnu

10c1
√
lnx

+ 2 ln lnx

)
≤ 10u exp(2 ln lnx)

≤ 10x1/4 exp(2 ln lnx) ≤ 10x exp(−3c1
√
lnx)

provided that c0(c1, γ0) is chosen large enough.
Thus, if 0 < c1 <

√
a/160, 0 < γ0 ≤ c1/2, x ≥ c0(c1, γ0), and c2(c1) ≤ u ≤ x1+γ0/

√
lnx, then

Δ1 ≤ 10x exp(−3c1
√
lnx).

II. Now we estimate the quantity

Δ2 = uT−1 ln2(Qu).

From (4.5) and (4.8) we obtain

Δ2 ≤ 10u exp
(
−4c1

√
lnu+ 2 ln lnx

)
.

Consider two cases.

(1) Let x9/10 ≤ u ≤ x1+γ0/
√
lnx. Then

9

10
lnx ≤ lnu ≤

(
1 +

γ0√
lnx

)
lnx ≤ 2 lnx, −4c1

√
lnu ≤ −4c1

√
9

10
lnx < − 15

4
c1
√
lnx.
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Since 0 < γ0 ≤ c1/2, we have

Δ2 ≤ 10x1+γ0/
√
lnx exp

(
− 15

4
c1
√
lnx+ 2 ln lnx

)
= 10x exp

(
− 15

4
c1
√
lnx+ 2 ln lnx+ γ0

√
lnx

)

≤ 10x exp

(
− 13

4
c1
√
lnx+ 2 ln lnx

)
≤ 10x exp(−3c1

√
lnx)

provided that c0(c1, γ0) is chosen large enough.
(2) Let c2(c1) ≤ u < x9/10. Then

Δ2 ≤ 10u exp
(
−4c1

√
lnu+ 2 ln lnx

)
≤ 10u exp(2 ln lnx)

≤ 10x9/10 exp(2 ln lnx) ≤ 10x exp(−3c1
√
lnx)

provided that c0(c1, γ0) is chosen large enough.
Thus, if 0 < c1 <

√
a/160, 0 < γ0 ≤ c1/2, x ≥ c0(c1, γ0), and c2(c1) ≤ u ≤ x1+γ0/

√
lnx, then

Δ2 ≤ 10x exp(−3c1
√
lnx).

III. Now we estimate the quantity

Δ3 = u1/4 lnu.

Since (see (4.6) and (4.7))

lnu ≤ 2 ln x and u1/4 ≤ x(1+γ0/
√
lnx)/4 ≤ x1/2,

we have
Δ3 ≤ 2x1/2 lnx ≤ x exp(−3c1

√
lnx)

provided that c0(c1, γ0) is chosen large enough.
Finally, we obtain the following (see (4.4)): if 0 < c1 <

√
a/160, 0 < γ0 ≤ c1/2, x ≥ c0(c1, γ0),

and c2(c1) ≤ u ≤ x1+γ0/
√
lnx, then

|R4(u, T )| ≤ 21Cx exp(−3c1
√
lnx), (4.9)

where C > 0 is an absolute constant.
IV. Now we estimate the quantity (see (4.3))

Δ4 =

∣∣∣∣−
uβ1

β1

∣∣∣∣.

If χ is not a real character modulo Q for which L(s, χ) has a zero β1 (which is necessarily unique,
real, and simple) satisfying

β1 > 1− a

lnQ
,

then the term −uβ1/β1 in (4.3) is to be omitted, and there is nothing to estimate. Let χ be such a
character. Then χ is a real primitive character modulo Q. Since Q 	= q0, we have (see Lemma 3.7
and (4.1))

β1 ≤ 1− a1
ln z

= 1− a1

2c1
√
lnx

.

Hence,

|uβ1 | = uβ1 ≤ u1−a1/(2c1
√
lnx) = u exp

(
− a1 lnu

2c1
√
lnx

)
.
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By the remark made after Lemma 4.2, we may assume that 0 < a < 1/2. Since Q ≥ 3, we have

β1 > 1− a

lnQ
> 1− 1

2 ln 3
>

1

2
.

Hence, 0 < 1/β1 ≤ 2. Thus,

Δ4 ≤ 2u exp

(
− a1 lnu

2c1
√
lnx

)
. (4.10)

Consider two cases.
(1) Let x1/2 ≤ u ≤ x1+γ0/

√
lnx. We have (see (4.6))

lnx

2
≤ lnu ≤

(
1 +

γ0√
lnx

)
lnx ≤ 2 lnx.

We take

0 < c1 <

√
min{a, a1}

160
⇒ − a1

4c1
≤ − 7

2
c1.

Then,

− a1 lnu

2c1
√
lnx

≤ − (a1/2) ln x

2c1
√
lnx

= −a1
√
lnx

4c1
≤ − 7

2
c1
√
lnx.

Since 0 < γ0 ≤ c1/2, we obtain (see (4.10))

Δ4 ≤ 2x1+γ0/
√
lnx exp

(
− 7

2
c1
√
lnx

)
= 2x exp

(
− 7

2
c1
√
lnx+ γ0

√
lnx

)
≤ 2x exp(−3c1

√
lnx).

(2) Let c2(c1) ≤ u < x1/2. Then (see (4.10))

Δ4 ≤ 2u ≤ 2x1/2 ≤ 2x exp(−3c1
√
lnx)

provided that c0(c1, γ0) is chosen large enough. Combining the estimates found at steps I–IV
together, we obtain the following (see (4.3) and (4.9)): if 0 < c1 <

√
min{a, a1}/160, 0 < γ0 ≤ c1/2,

x ≥ c0(c1, γ0), and c2(c1) ≤ u ≤ x1+γ0/
√
lnx, then

|ψ(u, χ)| ≤ (21C + 2)x exp(−3c1
√
lnx),

where C > 0 is an absolute constant.
There is a number d(c1) > 0, depending only on c1, such that

t exp(−3c1
√
ln t) ≥ 1 if t ≥ d(c1).

We may assume that c0(c1, γ0) > d(c1). Hence, if 2 ≤ u < c2(c1), then (see (2.1))

|ψ(u, χ)| =
∣∣∣∣∣
∑
n≤u

Λ(n)χ(n)

∣∣∣∣∣ ≤
∑
n≤u

Λ(n) = ψ(u) ≤ b6u ≤ b6c2(c1) ≤ b6c2(c1)x exp(−3c1
√
lnx).

Thus, if 0 < c1 <
√

min{a, a1}/160, 0 < γ0 ≤ c1/2, and x ≥ c0(c1, γ0), then

max
2≤u≤x1+γ0/

√
lnx

|ψ(u, χ)| ≤
(
21C + 2 + b6c2(c1)

)
x exp(−3c1

√
lnx),

where C > 0 is an absolute constant. We take

c1 =

√
min{a, a1}

16
and γ0 =

c1
2

=

√
min{a, a1}

32
.
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Since a > 0 and a1 > 0 are absolute constants, we see that c1, γ0, c0(c1, γ0) and c2(c1) are positive
absolute constants. Lemma 4.6 is proved. �

Lemma 4.7 (see [1, Ch. 19]). Let u ≥ 2 be a real number, Q ≥ 2 be an integer, χ ∈ XQ, and
χ1 be a primitive character modulo q1 inducing χ. Then

|ψ′(u, χ) − ψ′(u, χ1)| ≤ ln2(Qu).

Lemma 4.8 (see [1, Ch. 28]). Let Q1, Q2, and t be real numbers such that 1 ≤ Q1 < Q2

and t ≥ 2. Then
∑

Q1<Q≤Q2

1

ϕ(Q)

∑
χ∈X∗

Q

max
2≤u≤t

|ψ(u, χ)| ≤ C ln4(tQ2)

(
t

Q1
+ t5/6 lnQ2 + t1/2Q2

)
,

where C > 0 is an absolute constant.
Lemma 4.9. Let ε and δ be real numbers such that 0 < ε < 1 and 0 < δ < 1/2. Then there

exists a number c(ε, δ) > 0, depending only on ε and δ, such that if x ∈ R and q ∈ Z satisfy
the conditions x ≥ c(ε, δ) and 1 ≤ q ≤ (lnx)1−ε, then there is a positive integer B for which the
following relations hold :

1 ≤ B ≤ exp(c1
√
lnx), 1 ≤ B

ϕ(B)
≤ 2, (B, q) = 1

and ∑

1≤Q≤x1/2−δ

(Q,B)=1

max
2≤u≤x1+γ/

√
lnx

max
W∈Z : (W,Q)=1

∣∣∣∣ψ(u;Q,W )− u

ϕ(Q)

∣∣∣∣ ≤ c2x exp(−c3
√
lnx).

Here c1, γ, c2, and c3 are positive absolute constants.
Proof. Let c0, c1, γ0 and C be the positive absolute constants in Lemma 4.6. We will choose γ

and c(ε, δ) = c(ε, δ, γ) later; they are assumed to be small and large enough, respectively; for now,
let 0 < γ ≤ γ0, c(ε, δ, γ) ≥ c0, and x ≥ c(ε, δ, γ). Let q0 be the exceptional modulus in the interval
[3, exp(2c1

√
lnx)]. If q0 does not exist, then we take B = 1. If q0 exists, then (see (4.2))

q0 ≥
a′1c

2
1 lnx

(ln lnx)4
=

c4 lnx

(ln lnx)4
,

where c4 > 0 is an absolute constant. We have q0 ≥ 24 if c(ε, δ, γ) is chosen large enough. By
Lemma 4.5, the number q0 is of the form 2αk, where α ∈ {0, . . . , 3} and k ≥ 3 is an odd square-free
integer. We put

M1 =
q0
2α

≥ q0
8

≥ c4 lnx

8(ln lnx)4
.

Let τ = (M1, q) and M2 = M1/τ . Then (M2, q) = 1. Since τ ≤ q ≤ (lnx)1−ε, we have

M2 =
M1

τ
≥ M1

(lnx)1−ε
≥ c4 lnx

8(ln lnx)4(lnx)1−ε
=

c4(lnx)
ε

8(ln lnx)4
.

If c(ε, δ, γ) is chosen large enough, then M2 ≥ 3. Hence, M2 ≥ 3 is an odd square-free integer.
Furthermore, we have (M2, q) = 1 and M2 divides q0. Let B be the largest prime divisor of M2.
Hence, B ≥ 3 is a prime number and B divides q0. We have (see Lemma 2.4)

B

ϕ(B)
=

B

B(1− 1/B)
=

1

1− 1/B
≤ 1

1− 1/3
=

3

2
.

Thus, 1 ≤ B ≤ exp(2c1
√
lnx) is an integer, (B, q) = 1, 1 ≤ B/ϕ(B) ≤ 2, and B ≥ 3 is a prime

divisor of q0 if q0 exists.
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Let u be a real number such that 2 ≤ u ≤ x1+γ/
√
lnx, and let Q and W be integers such that

2 ≤ Q ≤ x1/2−δ, (Q,B) = 1, and (W,Q) = 1. By Lemma 4.1, we have

ψ(u;Q,W )− u

ϕ(Q)
=

1

ϕ(Q)

∑
χ∈XQ

χ(W )ψ′(u, χ).

Therefore, ∣∣∣∣ψ(u;Q,W ) − u

ϕ(Q)

∣∣∣∣ ≤
1

ϕ(Q)

∑
χ∈XQ

|ψ′(u, χ)|.

Since the right-hand side of this inequality does not depend on W , we have

max
W∈Z : (W,Q)=1

∣∣∣∣ψ(u;Q,W ) − u

ϕ(Q)

∣∣∣∣ ≤
1

ϕ(Q)

∑
χ∈XQ

|ψ′(u, χ)|.

Let χ ∈ XQ, and let χ1 be a primitive character modulo q1 inducing χ. From Lemma 3.4 and
the definition of the inducing character (which is given below Lemma 3.4), we have q1 = c(χ), and
hence q1 | Q (see Lemma 3.3). Applying Lemma 4.7, we find

|ψ′(u, χ)| ≤ |ψ′(u, χ1)|+ ln2(Qu).

Since #XQ = ϕ(Q), we obtain

max
W∈Z : (W,Q)=1

∣∣∣∣ψ(u;Q,W ) − u

ϕ(Q)

∣∣∣∣ ≤
1

ϕ(Q)

∑
χ∈XQ

(
|ψ′(u, χ1)|+ ln2(Qu)

)

= ln2(Qu) +
1

ϕ(Q)

∑
χ∈XQ

|ψ′(u, χ1)|.

We can assume that
1 +

γ√
lnx

≤ 2 (4.11)

provided that c(ε, δ, γ) is chosen large enough. Hence,

0 < lnu ≤
(
1 +

γ√
lnx

)
lnx ≤ 2 lnx, ln2 u ≤ 4 ln2 x,

0 < lnQ ≤
(
1

2
− δ

)
lnx ≤ lnx, ln2 Q ≤ ln2 x,

ln2(Qu) ≤ 2
(
ln2Q+ ln2 u

)
≤ 10 ln2 x.

We obtain

max
2≤u≤x1+γ/

√
lnx

max
W∈Z : (W,Q)=1

∣∣∣∣ψ(u;Q,W )− u

ϕ(Q)

∣∣∣∣ ≤ 10 ln2 x+
1

ϕ(Q)

∑
χ∈XQ

max
2≤u≤x1+γ/

√
lnx

|ψ′(u, χ1)|.

Therefore,

S =
∑

1≤Q≤x1/2−δ

(Q,B)=1

AQ = A1 +
∑

2≤Q≤x1/2−δ

(Q,B)=1

AQ

≤ A1 +
∑

2≤Q≤x1/2−δ

(Q,B)=1

(
10 ln2 x+

1

ϕ(Q)

∑
χ∈XQ

max
2≤u≤x1+γ/

√
lnx

|ψ′(u, χ1)|
)
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≤ 10x1/2−δ ln2 x+A1 +
∑

2≤Q≤x1/2−δ

(Q,B)=1

∑
χ∈XQ

1

ϕ(Q)
max

2≤u≤x1+γ/
√

lnx
|ψ′(u, χ1)|

= 10x1/2−δ ln2 x+A1 + S′, (4.12)

where

AQ := max
2≤u≤x1+γ/

√
lnx

max
W∈Z : (W,Q)=1

∣∣∣∣ψ(u;Q,W )− u

ϕ(Q)

∣∣∣∣.

Let us estimate the sum S′. Let Q be an integer with 2 ≤ Q ≤ x1/2−δ and (Q,B) = 1, let χ ∈ XQ,
and let χ1 be the primitive character modulo q1 inducing χ. Since q1 | Q, we have 1 ≤ q1 ≤ x1/2−δ

and (q1, B) = 1. Hence,

S′ =
∑

2≤Q≤x1/2−δ

(Q,B)=1

∑
χ∈XQ

1

ϕ(Q)
max

2≤u≤x1+γ/
√

lnx
|ψ′(u, χ1)|

≤
∑

1≤q1≤x1/2−δ

(q1,B)=1

∑
χ1∈X∗

q1

max
2≤u≤x1+γ/

√
lnx

|ψ′(u, χ1)|
∑

1≤m≤x1/2−δ/q1

1

ϕ(mq1)
.

Applying Lemmas 2.5 and 2.9, we obtain
∑

1≤m≤x1/2−δ/q1

1

ϕ(mq1)
≤ 1

ϕ(q1)

∑

1≤m≤x1/2−δ/q1

1

ϕ(m)
≤ 1

ϕ(q1)

∑

1≤m≤x1/2

1

ϕ(m)
≤ 1

ϕ(q1)
C lnx,

where C > 0 is an absolute constant. We have

S′ ≤ C lnx
∑

1≤q1≤x1/2−δ

(q1,B)=1

1

ϕ(q1)

∑
χ1∈X∗

q1

max
2≤u≤x1+γ/

√
lnx

|ψ′(u, χ1)|.

Redenoting q1 by Q and χ1 by χ, we find

S′ ≤ C lnx
∑

1≤Q≤x1/2−δ

(Q,B)=1

1

ϕ(Q)

∑
χ∈X∗

Q

max
2≤u≤x1+γ/

√
lnx

|ψ′(u, χ)| = C lnx
(
S′
1 + S′

2 + S′
3

)
, (4.13)

where

S′
1 =

∑
1≤Q≤lnx
(Q,B)=1

RQ, S′
2 =

∑

lnx<Q≤exp(c1
√
lnx)

(Q,B)=1

RQ, S′
3 =

∑

exp(c1
√
lnx)<Q≤x1/2−δ

(Q,B)=1

RQ,

RQ :=
1

ϕ(Q)

∑
χ∈X∗

Q

max
2≤u≤x1+γ/

√
lnx

|ψ′(u, χ)|,

and c1 > 0 is the absolute constant in Lemma 4.6.
I. Now we estimate S′

1. We have

S′
1 =

∑
1≤Q≤lnx
(Q,B)=1

RQ ≤ R1 +
∑

2≤Q≤lnx

RQ = R1 + S′
4. (4.14)
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(1) Let us estimate R1. Since #X∗
1 = 1, we have

R1 = max
2≤u≤x1+γ/

√
lnx

|ψ′(u, χ)|,

where χ ∈ X∗
1 , i.e., χ(n) = 1 for any n ∈ Z. Since χ is the principal character modulo 1, it follows

that
ψ′(u, χ) = ψ(u, χ) − u.

We have
ψ(u, χ) =

∑
n≤u

Λ(n)χ(n) =
∑
n≤u

Λ(n) = ψ(u), ψ′(u, χ) = ψ(u)− u.

It is well known (see, for example, [1, Ch. 18]) that

|ψ(u) − u| ≤ Cu exp(−c
√
lnu), u ≥ 2, (4.15)

where C > 0 and c > 0 are absolute constants. Consider two cases.
(i) Let x1/4 ≤ u ≤ x1+γ/

√
lnx (we may assume that c(ε, δ, γ) > 16). Then (see (4.11))

1

4
lnx ≤ lnu ≤

(
1 +

γ√
lnx

)
lnx ≤ 2 lnx, −c

√
lnu ≤ − c

2

√
lnx.

Hence,

|ψ′(u, χ)| ≤ Cu exp(−c
√
lnu) ≤ Cx1+γ/

√
lnx exp

(
− c

2

√
lnx
)

= Cx exp
((

γ − c

2

)√
lnx
)
≤ Cx exp

(
− c

4

√
lnx
)

provided that 0 < γ ≤ c/4.
(ii) Let 2 ≤ u < x1/4. Then

|ψ′(u, χ)| ≤ Cu exp(−c
√
lnu) ≤ Cu ≤ Cx1/4 ≤ Cx exp

(
− c

4

√
lnx
)

provided that c(ε, δ, γ) is chosen large enough.
We obtain

R1 = max
2≤u≤x1+γ/

√
lnx

|ψ′(u, χ)| ≤ Cx exp
(
− c

4

√
lnx
)
. (4.16)

(2) Now we estimate

S′
4 =

∑
2≤Q≤lnx

1

ϕ(Q)

∑
χ∈X∗

Q

max
2≤u≤x1+γ/

√
lnx

|ψ′(u, χ)|. (4.17)

Let Q be an integer such that 2 ≤ Q ≤ lnx, and let χ ∈ X∗
Q. Then χ is a nonprincipal character

modulo Q, and hence ψ′(u, χ) = ψ(u, χ). Consider two cases.

(i) Let x1/4 ≤ u ≤ x1+γ/
√
lnx. Then (see (4.11))

1

4
lnx ≤ lnu ≤

(
1 +

γ√
lnx

)
lnx ≤ 2 lnx.

We may assume that c(ε, δ, γ) ≥ e16. Hence, lnu ≥ (ln x)/4 ≥ 4. We have

2 ≤ Q ≤ lnx ≤ 4 lnu ≤ ln2 u.
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Therefore (see, for example, [1, Ch. 22]),

|ψ(u, χ)| ≤ Cu exp
(
−c(2)

√
lnu
)
,

where C > 0 and c(2) > 0 are absolute constants. We have

−c(2)
√
lnu ≤ − c(2)

2

√
lnx

and

|ψ(u, χ)| ≤ Cu exp

(
− c(2)

2

√
lnx

)
≤ Cx1+γ/

√
lnx exp

(
− c(2)

2

√
lnx

)

= Cx exp

((
γ − c(2)

2

)√
lnx

)
≤ Cx exp

(
− c(2)

4

√
lnx

)

provided that 0 < γ ≤ c(2)/4.
(i) Let 2 ≤ u < x1/4. Then (see (2.1))

ψ(u, χ) =
∑
n≤u

Λ(n)χ(n)

and

|ψ(u, χ)| ≤
∑
n≤u

Λ(n) = ψ(u) ≤ b6u ≤ b6x
1/4 ≤ Cx exp

(
− c(2)

4

√
lnx

)

provided that c(ε, δ, γ) is chosen large enough. Hence,

max
2≤u≤x1+γ/

√
lnx

|ψ(u, χ)| ≤ Cx exp

(
− c(2)

4

√
lnx

)
.

Substituting this estimate into (4.17) and using the fact that #X∗
Q ≤ #XQ = ϕ(Q), we obtain

S′
4 ≤ Cx exp

(
− c(2)

4

√
lnx

)
lnx = Cx exp

(
− c(2)

4

√
lnx+ ln lnx

)

≤ Cx exp

(
− c(2)

8

√
lnx

)
(4.18)

provided that c(ε, δ, γ) is chosen large enough.
Substituting (4.16) and (4.18) into (4.14), we find

S′
1 ≤ Cx exp(−c

√
lnx), (4.19)

where C > 0 and c > 0 are absolute constants.
II. Now we estimate the quantity

S′
3 =

∑

exp(c1
√
lnx)<Q≤x1/2−δ

(Q,B)=1

1

ϕ(Q)

∑
χ∈X∗

Q

max
2≤u≤x1+γ/

√
lnx

|ψ′(u, χ)|.

Let Q be an integer with exp(c1
√
lnx) < Q ≤ x1/2−δ and (Q,B) = 1, and let χ ∈ X∗

Q. Since Q > 1,
we see that χ is a nonprincipal character modulo Q. Hence,

ψ′(u, χ) = ψ(u, χ).
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We have

S′
3 =

∑

exp(c1
√
lnx)<Q≤x1/2−δ

(Q,B)=1

1

ϕ(Q)

∑
χ∈X∗

Q

max
2≤u≤x1+γ/

√
lnx

|ψ(u, χ)|

≤
∑

exp(c1
√
lnx)<Q≤x1/2−δ

1

ϕ(Q)

∑
χ∈X∗

Q

max
2≤u≤x1+γ/

√
lnx

|ψ(u, χ)|.

Applying Lemma 4.8 with Q1 = exp(c1
√
lnx), Q2 = x1/2−δ , and t = x1+γ/

√
lnx, we obtain

S′
3 ≤ C ln4

(
x3/2−δ+γ/

√
lnx
)(

x exp
(
(γ − c1)

√
lnx
)
+ x(5/6)(1+γ/

√
lnx) ln(x1/2−δ) + x1−δ+γ/(2

√
lnx)
)
.

We can assume that
γ√
lnx

≤ δ and
5

6

(
1 +

γ√
lnx

)
≤ 9

10

if c(ε, δ, γ) is chosen large enough. Increasing C if necessary, we have

S′
3 ≤ C ln4 x

(
x exp

(
(γ − c1)

√
lnx
)
+ x9/10 lnx+ x1−δ/2

)
.

Then
(γ − c1)

√
lnx ≤ − c1

2

√
lnx

provided that 0 < γ ≤ c1/2. We obtain

x exp
(
(γ − c1)

√
lnx
)
ln4 x ≤ x exp

(
− c1

2

√
lnx+ 4 ln lnx

)
≤ x exp

(
− c1

4

√
lnx
)
,

x9/10 ln5 x ≤ x exp
(
− c1

4

√
lnx
)
, x1−δ/2 ln4 x ≤ x exp

(
− c1

4

√
lnx
)

provided that c(ε, δ, γ) is chosen large enough. Redenoting 3C by C and c1/4 by c, we arrive at

S′
3 ≤ Cx exp(−c

√
lnx), (4.20)

where C > 0 and c > 0 are absolute constants.
III. Now we estimate the quantity

S′
2 =

∑

lnx<Q≤exp(c1
√
lnx)

(Q,B)=1

1

ϕ(Q)

∑
χ∈X∗

Q

max
2≤u≤x1+γ/

√
lnx

|ψ′(u, χ)|.

Let Q be an integer with lnx < Q ≤ exp(c1
√
lnx) and (Q,B) = 1, and let χ ∈ X∗

Q. Since Q > 1,
we see that χ is a nonprincipal character modulo Q, and hence ψ′(u, χ) = ψ(u, χ). We recall that if
an exceptional modulus q0 in the interval [3, exp(2c1

√
lnx)] does not exist, then B = 1; if q0 exists,

then B ≥ 3 is a prime divisor of q0, and so Q 	= q0. Since 0 < γ ≤ γ0 and c(ε, δ, γ) ≥ c0, we see
from Lemma 4.6 that

max
2≤u≤x1+γ/

√
lnx

|ψ(u, χ)| ≤ Cx exp(−3c1
√
lnx).

Since #X∗
Q ≤ #XQ = ϕ(Q), we obtain

S′
2 ≤

∑

lnx<Q≤exp(c1
√
lnx)

(Q,B)=1

Cx exp(−3c1
√
lnx) ≤ Cx exp(−3c1

√
lnx) exp(c1

√
lnx)

= Cx exp(−2c1
√
lnx). (4.21)
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From (4.19)–(4.21) we find

S′
1 + S′

2 + S′
3 ≤ C̃x exp(−c̃

√
lnx), (4.22)

where C̃ > 0 and c̃ > 0 are absolute constants. Substituting (4.22) into (4.13), we obtain

S′ ≤ C ′x exp
(
−c̃

√
lnx+ ln lnx

)
≤ C ′x exp

(
− c̃

2

√
lnx
)

provided that c(ε, δ, γ) is chosen large enough. Redenoting C ′ by C and c̃/2 by c, we arrive at

S′ ≤ Cx exp(−c
√
lnx), (4.23)

where C > 0 and c > 0 are absolute constants.
IV. We have

x1/2−δ ln2 x ≤ x1/2 ln2 x ≤ x exp(−c
√
lnx) (4.24)

provided that c(ε, δ, γ) is chosen large enough (here c > 0 is the absolute constant in (4.23)).
V. Now we estimate the quantity

A1 = max
2≤u≤x1+γ/

√
lnx

max
W∈Z

|ψ(u; 1,W ) − u|.

Let W ∈ Z. We have

ψ(u; 1,W ) =
∑

n≤u, n≡W (mod 1)

Λ(n) =
∑
n≤u

Λ(n) = ψ(u).

Hence,
A1 = max

2≤u≤x1+γ/
√

lnx
|ψ(u) − u|.

Using (4.15) and arguing as in cases I(1), (i) and I(1), (ii), we obtain

A1 ≤ Cx exp(−c
√
lnx), (4.25)

where C > 0 and c > 0 are absolute constants.
Substituting (4.23)–(4.25) into (4.12), we find

S ≤ Cx exp(−c
√
lnx),

where C > 0 and c > 0 are absolute constants. Thus, if γ is a sufficiently small positive absolute
constant, x ≥ c(ε, δ, γ) is a real number, and q is an integer such that 1 ≤ q ≤ (lnx)1−ε, then there
is an integer B such that

1 ≤ B ≤ exp(2c1
√
lnx), 1 ≤ B

ϕ(B)
≤ 2, (B, q) = 1

and
∑

1≤Q≤x1/2−δ

(Q,B)=1

max
2≤u≤x1+γ/

√
lnx

max
W∈Z : (W,Q)=1

∣∣∣∣ψ(u;Q,W ) − u

ϕ(Q)

∣∣∣∣ ≤ Cx exp(−c
√
lnx),

where c1, C, and c are positive absolute constants. Let us redenote 2c1 by c1, C by c2, and c by c3.
Since γ is an absolute constant, we see that the positive number c(ε, δ, γ) = c(ε, δ) depends only on
ε and δ. Lemma 4.9 is proved. �
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Lemma 4.10. Let ε and δ be real numbers such that 0 < ε < 1 and 0 < δ < 1/2. Then
there is a number c(ε, δ) > 0, depending only on ε and δ, such that if x ∈ R and q ∈ Z satisfy
the conditions x ≥ c(ε, δ) and 1 ≤ q ≤ (lnx)1−ε, then there is a positive integer B for which the
following relations hold :

1 ≤ B ≤ exp(c1
√
lnx), 1 ≤ B

ϕ(B)
≤ 2, (B, q) = 1

and ∑

1≤Q≤x1/2−δ

(Q,B)=1

max
2≤u≤x1+γ/

√
lnx

max
W∈Z : (W,Q)=1

∣∣∣∣π(u;Q,W )− li(u)

ϕ(Q)

∣∣∣∣ ≤ c2x exp(−c3
√
lnx).

Here c1, γ, c2, and c3 are positive absolute constants.
Proof. We will choose the number c̃(ε, δ) later; it is assumed to be large enough. Let

c̃(ε, δ) ≥ c(ε, δ), where c(ε, δ) is the number in Lemma 4.9. Let x ∈ R and q ∈ Z be such that
x ≥ c̃(ε, δ) and 1 ≤ q ≤ (ln x)1−ε. Then, by Lemma 4.9, there is a positive integer B such that

1 ≤ B ≤ exp(c1
√
lnx), 1 ≤ B

ϕ(B)
≤ 2, (B, q) = 1 (4.26)

and ∑

1≤Q≤x1/2−δ

(Q,B)=1

max
2≤u≤x1+γ/

√
lnx

max
W∈Z : (W,Q)=1

|R(u;Q,W )| ≤ c2x exp(−c3
√
lnx), (4.27)

where
R(u;Q,W ) := ψ(u;Q,W ) − u

ϕ(Q)

and c1, γ, c2, and c3 are positive absolute constants.
We put

R1(u;Q,W ) := π(u;Q,W ) − li(u)

ϕ(Q)
. (4.28)

Let Q ∈ Z, W ∈ Z, and u ∈ Z be such that 1 ≤ Q ≤ x1/2−δ , (Q,B) = 1, (W,Q) = 1, and
3 ≤ u ≤ x1+γ/

√
lnx. We claim that

|R1(u;Q,W )| ≤ C1u
1/2 + |R(u;Q,W )|+

∑
2≤n≤u−1

|R(n;Q,W )|
n ln2 n

, (4.29)

where C1 > 0 is an absolute constant. We define

α(n) =

{
1 if n ≡ W (mod Q),

0 otherwise
and π1(u;Q,W ) =

∑
n≤u

Λ(n)α(n)

lnn
.

Let us show that

π(u;Q,W ) = π1(u;Q,W ) + R̃(u;Q,W ), |R̃(u;Q,W )| ≤ Cu1/2, (4.30)

where C > 0 is an absolute constant. Let u ≥ 8. Then

π1(u;Q,W ) =
∑
pm≤u

α(pm) ln p

m ln p
=

∑
1≤m≤lnu/ ln 2

∑

p≤u1/m

α(pm)

m

=
∑
p≤u

α(p) +
∑

2≤m≤lnu/ ln 2

1

m

∑

p≤u1/m

α(pm) = S1 + S2.
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We have
S1 =

∑
p≤u, p≡W (mod Q)

1 = π(u;Q,W )

and

S2 ≤
∑

2≤m≤lnu/ ln 2

u1/m

m
=

1

2
u1/2 +

∑
3≤m≤lnu/ ln 2

u1/m

m
≤ 1

2
u1/2 +

1

3
u1/3

lnu

ln 2

≤ u1/2 + u1/3 lnu ≤ C ′u1/2,

where C ′ > 0 is an absolute constant. If 3 ≤ u < 8, then
∣∣∣∣∣

∑
2≤m≤lnu/ ln 2

1

m

∑

p≤u1/m

α(pm)

∣∣∣∣∣ ≤
1

2

∑

p≤81/2

1 +
1

3

∑

p≤81/3

1 = C ′′ ≤ C ′′u1/2.

Thus, (4.30) is proved.
Since

ψ(x;Q,W ) =
∑
m≤x

Λ(m)α(m),

we have

π1(u;Q,W ) =
∑

2≤n≤u

ψ(n;Q,W )− ψ(n − 1;Q,W )

lnn

=
∑

2≤n≤u−1

ψ(n;Q,W )

(
1

lnn
− 1

ln(n+ 1)

)
+

ψ(u;Q,W )

lnu

=
∑

2≤n≤u−1

(
n

ϕ(Q)
+R(n;Q,W )

)(
1

lnn
− 1

ln(n+ 1)

)
+

u

ϕ(Q) ln u
+

R(u;Q,W )

lnu
.

Further,

∑
2≤n≤u−1

n

ϕ(Q)

(
1

lnn
− 1

ln(n+ 1)

)
=

∑
2≤n≤u−1

n

ϕ(Q)

n+1∫

n

dt

t ln2 t
=

1

ϕ(Q)

∑
2≤n≤u−1

n+1∫

n

t− {t}
t ln2 t

dt

=
1

ϕ(Q)

⎛
⎝

u∫

2

dt

ln2 t
−

u∫

2

{t} dt
t ln2 t

⎞
⎠ .

Since
u∫

2

dt

ln2 t
=

u∫

2

t d

(
− 1

ln t

)
= − t

ln t

∣∣∣∣
u

2

+

u∫

2

dt

ln t
= − u

lnu
+

2

ln 2
+ li(u),

we obtain

π1(u;Q,W ) =
u

ϕ(Q) ln u
+

R(u;Q,W )

lnu
− u

ϕ(Q) ln u
+

2

ϕ(Q) ln 2
+

li(u)

ϕ(Q)

− 1

ϕ(Q)

u∫

2

{t}
t ln2 t

dt+
∑

2≤n≤u−1

R(n;Q,W )

(
1

lnn
− 1

ln(n+ 1)

)
.
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We have (see (4.30))

π(u;Q,W ) =
li(u)

ϕ(Q)
+R1(u;Q,W ),

where

R1(u;Q,W ) =
2

ϕ(Q) ln 2
− 1

ϕ(Q)

u∫

2

{t}
t ln2 t

dt+ R̃(u;Q,W ) +
R(u;Q,W )

lnu

+
∑

2≤n≤u−1

R(n;Q,W )

(
1

lnn
− 1

ln(n + 1)

)
.

We can estimate this quantity as

|R1(u;Q,W )| ≤ 2

ln 2
+

∣∣∣∣∣∣

u∫

2

{t}
t ln2 t

dt

∣∣∣∣∣∣
+ |R̃(u;Q,W )|+ |R(u;Q,W )|

lnu

+
∑

2≤n≤u−1

|R(n;Q,W )|
(

1

lnn
− 1

ln(n + 1)

)
. (4.31)

Since u ≥ 3, we have
|R(u;Q,W )|

lnu
≤ |R(u;Q,W )|. (4.32)

Since ∣∣∣∣∣∣

u∫

2

{t}
t ln2 t

dt

∣∣∣∣∣∣
≤

u∫

2

dt

t ln2 t
= − 1

ln t

∣∣∣∣
u

2

=
1

ln 2
− 1

lnu
≤ 1

ln 2
,

it follows (see (4.30)) that

2

ln 2
+

∣∣∣∣∣∣

u∫

2

{t}
t ln2 t

dt

∣∣∣∣∣∣
+ |R̃(u;Q,W )| ≤ 3

ln 2
+ Cu1/2 ≤

(
C +

3

ln 2

)
u1/2. (4.33)

Let f(x) = − ln−1 x and n ≥ 2 be an integer. By the mean value theorem, there is a ξ ∈ (n, n+ 1)
such that

1

lnn
− 1

ln(n+ 1)
= f(n+ 1)− f(n) = f ′(ξ) =

1

ξ ln2 ξ
≤ 1

n ln2 n
. (4.34)

Substituting (4.32)–(4.34) into (4.31), we obtain (4.29). Hence,
∑

1≤Q≤x1/2−δ

(Q,B)=1

max
3≤u≤x1+γ/

√
lnx

u∈Z

max
W∈Z

(W,Q)=1

|R1(u;Q,W )|

≤
∑

1≤Q≤x1/2−δ

(Q,B)=1

max
3≤u≤x1+γ/

√
lnx

u∈Z

max
W∈Z

(W,Q)=1

|R(u;Q,W )|+
∑

1≤Q≤x1/2−δ

(Q,B)=1

max
3≤u≤x1+γ/

√
lnx

u∈Z

max
W∈Z

(W,Q)=1

∣∣C1u
1/2
∣∣

+
∑

1≤Q≤x1/2−δ

(Q,B)=1

max
3≤u≤x1+γ/

√
lnx

u∈Z

max
W∈Z

(W,Q)=1

∑
2≤n≤u−1

|R(n;Q,W )|
n ln2 n

= S1 + S2 + S3. (4.35)
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I. Now we estimate S1. We have (see (4.27))

S1 ≤
∑

1≤Q≤x1/2−δ

(Q,B)=1

max
2≤u≤x1+γ/

√
lnx

max
W∈Z

(W,Q)=1

|R(u;Q,W )| ≤ c2x exp(−c3
√
lnx). (4.36)

II. Let us estimate S2. We can assume that
γ√
lnx

≤ δ

provided that c̃(ε, δ) is chosen large enough. We have

S2 ≤ C1x
1−δ+γ/(2

√
lnx) ≤ C1x

1−δ/2 ≤ x exp(−c3
√
lnx) (4.37)

provided that c̃(ε, δ) is chosen large enough.
III. Now we estimate S3. Let Q, W , u, and n be integers such that 1 ≤ Q ≤ x1/2−δ, (Q,B) = 1,

(W,Q) = 1, 3 ≤ u ≤ x1+γ/
√
lnx, and 2 ≤ n ≤ u− 1. Then

|R(n;Q,W )| ≤ max
2≤m≤x1+γ/

√
lnx

max
V ∈Z

(V,Q)=1

|R(m;Q,V )|.

Hence,
∑

2≤n≤u−1

|R(n;Q,W )|
n ln2 n

≤ max
2≤m≤x1+γ/

√
lnx

max
V ∈Z

(V,Q)=1

|R(m;Q,V )|
∑

2≤n≤u−1

1

n ln2 n

≤ c0 max
2≤m≤x1+γ/

√
lnx

max
V ∈Z

(V,Q)=1

|R(m;Q,V )|, where c0 :=

∞∑
n=2

1

n ln2 n
< +∞.

We have

max
3≤u≤x1+γ/

√
lnx

u∈Z

max
W∈Z

(W,Q)=1

∑
2≤n≤u−1

|R(n;Q,W )|
n ln2 n

≤ c0 max
2≤m≤x1+γ/

√
lnx

max
V ∈Z

(V,Q)=1

|R(m;Q,V )|.

Therefore (see (4.27)),

S3 ≤ c0
∑

1≤Q≤x1/2−δ

(Q,B)=1

max
2≤m≤x1+γ/

√
lnx

max
V ∈Z

(V,Q)=1

|R(m;Q,V )| ≤ c0c2x exp(−c3
√
lnx). (4.38)

Substituting (4.36)–(4.38) into (4.35), we obtain (see (4.28))

∑

1≤Q≤x1/2−δ

(Q,B)=1

max
3≤u≤x1+γ/

√
lnx

u∈Z

max
W∈Z

(W,Q)=1

∣∣∣∣π(u;Q,W )− li(u)

ϕ(Q)

∣∣∣∣ ≤ c4x exp(−c3
√
lnx), (4.39)

where c4 = c2 + 1 + c0c2 > 0 is an absolute constant.
Let Q and W be integers such that 1 ≤ Q ≤ x1/2−δ, (Q,B) = 1, and (W,Q) = 1, and let u be

a real number with 2 ≤ u ≤ x1+γ/
√
lnx. Consider two cases.

(1) Let 2 ≤ u ≤ 3. Then

|π(u;Q,W )| ≤ π(u) ≤ 2,

∣∣∣∣
li(u)

ϕ(Q)

∣∣∣∣ ≤ li(u) ≤ li(3),
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and so ∣∣∣∣π(u;Q,W ) − li(u)

ϕ(Q)

∣∣∣∣ ≤ |π(u;Q,W )| +
∣∣∣∣
li(u)

ϕ(Q)

∣∣∣∣ ≤ 2 + li(3). (4.40)

(2) Let 3 < u ≤ x1+γ/
√
lnx. Then

∣∣∣∣
li(u)− li([u])

ϕ(Q)

∣∣∣∣ ≤
[u]+1∫

[u]

dt

ln t
≤

3∫

2

dt

ln t
= li(3).

Hence,
∣∣∣∣π(u;Q,W ) − li(u)

ϕ(Q)

∣∣∣∣ =
∣∣∣∣π([u];Q,W )− li(u)

ϕ(Q)
− li([u])

ϕ(Q)
+

li([u])

ϕ(Q)

∣∣∣∣

≤
∣∣∣∣π([u];Q,W ) − li([u])

ϕ(Q)

∣∣∣∣+
∣∣∣∣
li(u)− li([u])

ϕ(Q)

∣∣∣∣ ≤ li(3) +

∣∣∣∣π([u];Q,W ) − li([u])

ϕ(Q)

∣∣∣∣. (4.41)

From (4.40) and (4.41) we obtain

max
2≤u≤x1+γ/

√
lnx

max
W∈Z

(W,Q)=1

∣∣∣∣π(u;Q,W )− li(u)

ϕ(Q)

∣∣∣∣ ≤ max
3≤u≤x1+γ/

√
lnx

u∈Z

max
W∈Z

(W,Q)=1

∣∣∣∣π(u;Q,W ) − li(u)

ϕ(Q)

∣∣∣∣

+ 2 li(3) + 2. (4.42)

We can assume that
x1/2 ≤ x exp(−c3

√
lnx) (4.43)

provided that c̃(ε, δ) is chosen large enough. From (4.39), (4.42), and (4.43) we obtain

∑

1≤Q≤x1/2−δ

(Q,B)=1

max
2≤u≤x1+γ/

√
lnx

max
W∈Z

(W,Q)=1

∣∣∣∣π(u;Q,W ) − li(u)

ϕ(Q)

∣∣∣∣

≤
∑

1≤Q≤x1/2−δ

(Q,B)=1

max
3≤u≤x1+γ/

√
lnx

u∈Z

max
W∈Z

(W,Q)=1

∣∣∣∣π(u;Q,W )− li(u)

ϕ(Q)

∣∣∣∣+ (2 li(3) + 2)x1/2

≤
(
c4 + 2 li(3) + 2

)
x exp(−c3

√
lnx). (4.44)

Thus, if x ≥ c̃(ε, δ) is a real number and q is an integer such that 1 ≤ q ≤ (ln x)1−ε, then there
is a positive integer B for which (4.26) and (4.44) hold. Let us redenote c̃(ε, δ) by c(ε, δ) and
c4 + 2 li(3) + 2 by c2. Lemma 4.10 is proved. �

5. PROOF OF THEOREM 1.1 AND COROLLARY 1.1

Let us introduce some additional notation. Let A be a set of integers, P a set of primes, and
L(n) = l1n+ l2 a linear function with integer coefficients. We define

A(x) =
{
n ∈ A : x ≤ n < 2x

}
, A(x; q, a) =

{
n ∈ A(x) : n ≡ a (mod q)

}
,

L(A) = {L(n) : n ∈ A}, PL,A(x) = L(A(x)) ∩ P, PL,A(x; q, a) = L(A(x; q, a)) ∩ P,

ϕL(q) =
ϕ(|l1|q)
ϕ(|l1|)

.
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Let L = {L1, . . . , Lk} be a set of distinct linear functions Li(n) = ain + bi, i = 1, . . . , k, with
positive integer coefficients. We say such a set is admissible if for every prime p there is an integer np

such that
(∏k

i=1 Li(np), p
)
= 1.

We focus on sets satisfying the following hypothesis, which is given in terms of (A,L,P, B, x, θ),
where L is an admissible set of linear functions, B ∈ N, x is a large real number, and 0 < θ < 1.

Hypothesis 1. For (A,L,P, B, x, θ) and k = #L, the following holds.
(1) A is well distributed in arithmetic progressions:

∑

1≤q≤xθ

max
a∈Z

∣∣∣∣#A(x; q, a)− #A(x)

q

∣∣∣∣�
#A(x)

(lnx)100k2
.

(2) The primes in L(A) ∩ P are well distributed in most arithmetic progressions: for any L ∈ L
we have ∑

1≤q≤xθ

(q,B)=1

max
a∈Z

(L(a),q)=1

∣∣∣∣#PL,A(x; q, a) −
#PL,A(x)

ϕL(q)

∣∣∣∣�
#PL,A(x)

(lnx)100k
2 .

(3) A is not too concentrated in any arithmetic progression: for any 1 ≤ q < xθ we have

max
a∈Z

#A(x; q, a) � #A(x)

q
.

Maynard proved the following result (see [5, Proposition 6.1]).
Proposition 5.1. Let α and θ be real numbers such that α > 0 and 0 < θ < 1. Let A be a

set of integers, P a set of primes, and L = {L1, . . . , Lk} an admissible set of k linear functions,
and let B and x be integers. Let the coefficients of Li(n) = ain+ bi ∈ L satisfy 1 ≤ ai, bi ≤ xα for
all 1 ≤ i ≤ k, and let k ≤ (lnx)1/5 and 1 ≤ B ≤ xα. Let xθ/10 ≤ R ≤ xθ/3. Let ρ and ξ satisfy
k(ln lnx)2/lnx ≤ ρ, ξ ≤ θ/10, and define

S(ξ;D) =
{
n ∈ N : p | n ⇒ (p > xξ or p | D)

}
.

Then there is a number C > 0 depending only on α and θ such that the following holds. If
k ≥ C and (A,L,P, B, x, θ) satisfy Hypothesis 1, then there exist nonnegative weights wn = wn(L)
satisfying

wn � (lnR)2k
k∏

i=1

∏
p|Li(n), p �B

4 (5.1)

such that the following statements hold.
(1) We have

∑
n∈A(x)

wn =

(
1 +O

(
1

(lnx)1/10

))
Bk

ϕ(B)k
SB(L)#A(x)(lnR)kIk. (5.2)

(2) For L(n) = aLn+ bL ∈ L we have

∑
n∈A(x)

1P(L(n))wn ≥
(
1 +O

(
1

(lnx)1/10

))
Bk−1

ϕ(B)k−1
SB(L)

ϕ(aL)

aL
#PL,A(x)(lnR)k+1Jk

+O

(
Bk

ϕ(B)k
SB(L)#A(x)(lnR)k−1Ik

)
. (5.3)
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(3) For L(n) = a0n+ b0 /∈ L and D ≤ xα, if ΔL 	= 0, we have

∑
n∈A(x)

1S(ξ;D)(L(n))wn � ξ−1 ΔL

ϕ(ΔL)

D

ϕ(D)

Bk

ϕ(B)k
SB(L)#A(x)(lnR)k−1Ik, (5.4)

where

ΔL = |a0|
k∏

i=1

|a0bi − b0ai|.

(4) For L ∈ L we have

∑
n∈A(x)

wn

∑
p|L(n), p<xρ, p �B

1 � ρ2k4(ln k)2
Bk

ϕ(B)k
SB(L)#A(x)(lnR)kIk. (5.5)

Here Ik and Jk are quantities depending only on k, and SB(L) is a quantity depending only
on L, and these satisfy

SB(L) =
∏
p �B

(
1− #{1 ≤ n ≤ p : p |

∏k
i=1 Li(n)}

p

)(
1− 1

p

)−k

≥ exp(−ck), (5.6)

Ik =

∞∫

0

. . .

∞∫

0

F 2(t1, . . . , tk) dt1 . . . dtk � (2k ln k)−k, (5.7)

Jk =

∞∫

0

. . .

∞∫

0

⎛
⎝

∞∫

0

F (t1, . . . , tk) dtk

⎞
⎠
2

dt1 . . . dtk−1 �
ln k

k
Ik (5.8)

for a smooth function F = Fk : R
k → R depending only on k. The implied constants here depend

only on α, θ, and the implied constants from Hypothesis 1. The constant c in inequality (5.6) is
positive and absolute.

Proof of Theorem 1.1. First we prove the following

Lemma 5.1. Let k be a positive integer. Let a, q, and b1, . . . , bk be positive integers such that
b1 < . . . < bk and (a, q) = 1. Let Li(n) = qn + a + qbi, i = 1, . . . , k. Then L = {L1, . . . , Lk}
is an admissible set if and only if for any prime p such that p � q there is an integer mp with
mp 	≡ bi (mod p) for all 1 ≤ i ≤ k.

Proof. (1) Let L = {L1, . . . , Lk} be an admissible set. Let p be a prime such that p � q. Since
L is an admissible set, there is an integer np such that

(∏k
i=1 Li(np), p

)
= 1. Since (q, p) = 1, there

is an integer q′ such that qq′ ≡ 1 (mod p). We put mp = −(np + q′a). Let i be an integer with
1 ≤ i ≤ k. Since (q′, p) = 1 and (Li(np), p) = 1, it follows that (q′Li(np), p) = 1. We have

q′Li(np) ≡ −mp + bi (mod p).

Hence, mp 	≡ bi (mod p).

(2) Suppose that for any prime p with p � q there is an integer mp such that mp 	≡ bi (mod p) for
all 1 ≤ i ≤ k. Let us show that then L is an admissible set. First we observe that L = {L1, . . . , Lk}
is a set of distinct linear functions Li(n) = qn + li, i = 1, . . . , k, with positive integer coefficients.
Thus, we need to prove that for any prime p there is an integer np such that

(∏k
i=1 Li(np), p

)
= 1.

Let p be a prime number. Consider two cases.
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(i) Let p | q. Since (a, q) = 1, we have (a, p) = 1. Let i be an integer with 1 ≤ i ≤ k. For any
integer n we have

Li(n) ≡ a (mod p),

and so Li(n) 	≡ 0 (mod p). Hence,
(∏k

i=1 Li(n), p
)
= 1. Therefore, in this case we may take any

integer as np.
(ii) Let p � q. Then (q, p) = 1, and so there is an integer c such that

qc ≡ a (mod p). (5.9)

By assumption, there is an integer mp such that mp 	≡ bi (mod p) for all 1 ≤ i ≤ k. We put
np = −mp − c. Let i be an integer with 1 ≤ i ≤ k. We have

np + c+ bi 	≡ 0 (mod p).

Since (q, p) = 1, we obtain
qnp + qc+ qbi 	≡ 0 (mod p).

In view of (5.9) this yields Li(np) 	≡ 0 (mod p). Hence, (Li(np), p) = 1. Since this holds for all
1 ≤ i ≤ k, we have

(∏k
i=1 Li(np), p

)
= 1. Lemma 5.1 is proved. �

The proof of the following lemma is based on Maynard’s ideas used in the proof of Lemma 8.1
in [5] (the notation L ∈ L was explained in the Introduction).

Lemma 5.2. There are positive absolute constants c and C such that the following holds. Let
x and η be real numbers with x ≥ c and (lnx)−9/10 ≤ η ≤ 1. Let k and a be positive integers. Let
b1, . . . , bk be integers with 1 ≤ bi ≤ lnx, i = 1, . . . , k. Let L = {L1, . . . , Lk} be a set of k linear
functions Li(n) = an+ bi, i = 1, . . . , k. For L(n) = an+ b, b ∈ Z, we define

ΔL = ak+1
k∏

i=1

|bi − b|.

Then ∑
1≤b≤η lnx
L=an+b/∈L

ΔL

ϕ(ΔL)
≤ Cη ln ln(a+ 2) ln(k + 1) ln x.

Proof. Consider two cases.
(1) Let k > ln lnx. We can assume that ln lnx ≥ 100 provided that c is chosen large enough.

Therefore, k ≥ 100. Let b be an integer such that 1 ≤ b ≤ η lnx and L = an + b /∈ L. Then
ΔL ∈ N. Applying Lemma 2.8, we see that

ΔL

ϕ(ΔL)
≤ c0 ln ln(ΔL + 2), (5.10)

where c0 > 0 is an absolute constant. Further,

lnΔL = (k + 1) ln a+
k∑

i=1

ln|bi − b|.

For any 1 ≤ i ≤ k we have |bi − b| ≤ lnx. Hence,

lnΔL ≤ (k + 1) ln a+ k ln lnx ≤ 2k ln a+ k2.

Since
2k ln a ≤ k2 ln(a+ 2) and k2 ≤ k2 ln(a+ 2),
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we have

lnΔL ≤ 2k2 ln(a+ 2).

We observe that if u ≥ 2 and v ≥ 2 are real numbers, then

u+ v ≤ uv. (5.11)

Applying (5.11), we obtain

ln(ΔL + 2) ≤ ln(3ΔL) = lnΔL + ln 3 ≤ 2k2 ln(a+ 2) + 3 ≤ 6k2 ln(a+ 2).

Applying (5.11) again, we have

ln ln(ΔL + 2) ≤ ln 6 + 2 ln k + ln ln(a+ 2) ≤ 2 + 2 ln k + 25 ln ln(a+ 2)

≤ 4 ln k + 25 ln ln(a+ 2) ≤ 100 ln k ln ln(a+ 2) ≤ 100 ln(k + 1) ln ln(a+ 2).

Substituting this estimate into (5.10), we obtain

ΔL

ϕ(ΔL)
≤ 100c0 ln ln(a+ 2) ln(k + 1) = c1 ln ln(a+ 2) ln(k + 1),

where c1 = 100c0 > 0 is an absolute constant. Thus,

∑
1≤b≤η lnx
L=an+b/∈L

ΔL

ϕ(ΔL)
≤ c1 ln ln(a+ 2) ln(k + 1)

∑
1≤b≤η lnx
L=an+b/∈L

1 ≤ c1 ln ln(a+ 2) ln(k + 1)[η lnx]

≤ c1η ln ln(a+ 2) ln(k + 1) ln x. (5.12)

(2) Let 1 ≤ k ≤ ln lnx. For an integer b we define

Δ(b) :=

k∏
i=1

|b− bi|.

Let b be an integer such that 1 ≤ b ≤ η lnx and L = an + b /∈ L. Applying Lemmas 2.5 and 2.4,
we obtain

ΔL

ϕ(ΔL)
=

ak+1Δ(b)

ϕ(ak+1Δ(b))
≤ ak+1

ϕ(ak+1)

Δ(b)

ϕ(Δ(b))
=

a

ϕ(a)

Δ(b)

ϕ(Δ(b))
.

Hence,

S =
∑

1≤b≤η lnx
L=an+b/∈L

ΔL

ϕ(ΔL)
≤ a

ϕ(a)

∑
1≤b≤η lnx
L=an+b/∈L

Δ(b)

ϕ(Δ(b))
=

a

ϕ(a)
S̃. (5.13)

Applying Lemma 2.7, we have

S̃ =
∑

1≤b≤η lnx
L=an+b/∈L

Δ(b)

ϕ(Δ(b))
=

∑
1≤b≤η lnx
L=an+b/∈L

∑
d|Δ(b)

μ2(d)

ϕ(d)

=
∑

1≤b≤η lnx
L=an+b/∈L

∑
1≤d≤η lnx

d|Δ(b)

μ2(d)

ϕ(d)
+

∑
1≤b≤η lnx
L=an+b/∈L

∑
d>η lnx
d|Δ(b)

μ2(d)

ϕ(d)
= S1 + S2. (5.14)
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First we estimate the sum S2. Let b and d be positive integers such that 1 ≤ b ≤ η lnx,
L = an+ b /∈ L, d > η lnx, and d | Δ(b). We claim that

μ2(d)

ϕ(d)
≤

μ2(d)
∑

p|d ln p

ϕ(d) ln(η lnx)
. (5.15)

We can assume that
d > η lnx ≥ (lnx)1/10 ≥ 100

provided that c is chosen large enough. If μ2(d) = 0, then inequality (5.15) holds. Let μ2(d) 	= 0.
Then d is square-free. Therefore,

∑
p|d ln p = ln d. Inequality (5.15) is equivalent to the inequality

ln(η lnx) ≤
∑
p|d

ln p = ln d,

which obviously holds. Thus, (5.15) is proved. We have

S2 =
∑

1≤b≤η lnx
L=an+b/∈L

∑
d>η lnx
d|Δ(b)

μ2(d)

ϕ(d)
≤

∑
1≤b≤η lnx
L=an+b/∈L

∑
d>η lnx
d|Δ(b)

μ2(d)
∑

p|d ln p

ϕ(d) ln(η lnx)

=
∑

1≤b≤η lnx
L=an+b/∈L

∑
p|Δ(b)

ln p

ln(η lnx)

∑
d>η lnx

p|d, d|Δ(b)

μ2(d)

ϕ(d)
.

Let b ∈ N, d ∈ N, and p ∈ P be such that 1 ≤ b ≤ η lnx, L = an+ b /∈ L, p | Δ(b), d > η lnx, d is a
multiple of p, and d | Δ(b). Then d = pt, where t ∈ N, t > (η lnx)/p, and t | Δ(b). We have (see
Lemmas 2.5 and 2.4)

ϕ(d) = ϕ(pt) ≥ ϕ(p)ϕ(t) = (p − 1)ϕ(t) ≥ p

2
ϕ(t).

Hence,
μ2(d)

ϕ(d)
=

μ2(pt)

ϕ(pt)
≤ 2μ2(pt)

pϕ(t)
≤ 2μ2(t)

pϕ(t)
.

We obtain (see Lemma 2.7)
∑

d>η lnx
p|d, d|Δ(b)

μ2(d)

ϕ(d)
≤ 2

p

∑
t>(η lnx)/p

t|Δ(b)

μ2(t)

ϕ(t)
≤ 2

p

∑
t|Δ(b)

μ2(t)

ϕ(t)
=

2

p

Δ(b)

ϕ(Δ(b))
.

Therefore,

S2 ≤
∑

1≤b≤η lnx
L=an+b/∈L

∑
p|Δ(b)

ln p

ln(η lnx)

2

p

Δ(b)

ϕ(Δ(b))
=

2

ln(η lnx)

∑
1≤b≤η lnx
L=an+b/∈L

Δ(b)

ϕ(Δ(b))

∑
p|Δ(b)

ln p

p
.

Since η ≥ (lnx)−9/10, we have

2

ln(η lnx)
≤ 2

ln((lnx)1/10)
=

20

ln lnx
.

Thus,

S2 ≤
20

ln lnx

∑
1≤b≤η lnx
L=an+b/∈L

Δ(b)

ϕ(Δ(b))

∑
p|Δ(b)

ln p

p
. (5.16)
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Let b be an integer such that 1 ≤ b ≤ η lnx and L = an + b /∈ L. Applying Lemmas 2.8
and 2.10, we obtain

Δ(b)

ϕ(Δ(b))
≤ c2 ln ln(Δ(b) + 2) ≤ c2 ln ln(3Δ(b)),

∑
p|Δ(b)

ln p

p
≤ c3 ln ln(3Δ(b)), (5.17)

where c2 > 0 and c3 > 0 are absolute constants. We have

lnΔ(b) =

k∑
i=1

ln|bi − b| ≤ k ln lnx ≤ (ln lnx)2. (5.18)

Hence,
ln ln(3Δ(b)) = ln(ln 3 + lnΔ(b)) ≤ ln(ln 3 + (ln lnx)2) ≤ 3 ln ln lnx (5.19)

provided that c is chosen large enough. It follows from (5.17) and (5.19) that

Δ(b)

ϕ(Δ(b))

∑
p|Δ(b)

ln p

p
≤ 9c2c3(ln ln lnx)

2 = c4(ln ln lnx)
2,

where c4 = 9c2c3 > 0 is an absolute constant. Substituting this estimate into (5.16), we obtain

S2 ≤
20c4(ln ln lnx)

2

ln lnx
η lnx.

We can assume that
20c4(ln ln lnx)

2

ln lnx
≤ 1

provided that c is chosen large enough. Hence,

S2 ≤ η lnx ≤ 1

ln 2
ln(k + 1)η lnx ≤ 2 ln(k + 1)η lnx. (5.20)

Now we estimate S1. We have

S1 =
∑

1≤b≤η lnx
L=an+b/∈L

∑
1≤d≤η lnx

d|Δ(b)

μ2(d)

ϕ(d)
=

∑
1≤d≤η lnx

∑
1≤b≤η lnx
L=an+b/∈L

d|Δ(b)

μ2(d)

ϕ(d)
=

∑
1≤d≤η lnx

μ2(d)

ϕ(d)

∑
1≤b≤η lnx
L=an+b/∈L

d|Δ(b)

1

=
∑

1≤d≤η lnx

μ2(d)

ϕ(d)
N0(d) =

∑
1≤d≤η lnx

d∈M

1

ϕ(d)
N0(d). (5.21)

Let d be an integer such that 1 ≤ d ≤ η lnx and d ∈ M. We claim that

N0(d) ≤
2η lnx

d

∏
p|d

min{p, k}. (5.22)

If d = 1, then the inequality is obvious. Let d > 1. We define

R(b) = (b− b1) . . . (b− bk).

Then Δ(b) = |R(b)|. We have

N0(d) =
∑

1≤b≤η lnx
L=an+b/∈L

d|Δ(b)

1 =
∑

1≤b≤η lnx
L=an+b/∈L

R(b)≡0 (mod d)

1.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 314 2021



180 A. O. RADOMSKII

Let d be expressed in the standard form as d = q1 . . . qr, where q1 < . . . < qr are prime numbers. It
is well known (see, for example, [7, Ch. 4]) that the congruence R(b) ≡ 0 (mod d) is equivalent to
the system of congruences ⎧

⎨
⎩

R(b) ≡ 0 (mod q1),
. . . . . . . . . . . . . . . . . .

R(b) ≡ 0 (mod qr).

(5.23)

Let 1 ≤ j ≤ r. Let Ωj be the set of numbers of a complete system of residues modulo qj satisfying
the congruence R(b) ≡ 0 (mod qj). Since R(b1) = 0, we see that Ωj 	= ∅. Since the leading
coefficient of the polynomial R(b) is 1 and the degree of the polynomial R(b) is k, we have #Ωj ≤ k
(see, for example, [7, Ch. 4]). It is also clear that #Ωj ≤ qj. Thus,

#Ωj ≤ min{qj , k}.

System (5.23) is equivalent to the union of T = #Ω1 . . .#Ωr systems
⎧
⎨
⎩

b ≡ τ1 (mod q1),
. . . . . . . . . . . . . . . . . .

b ≡ τr (mod qr),

(5.24)

where τ1 ∈ Ω1, . . . , τr ∈ Ωr. It is well known (see, for example, [7, Ch. 4]) that the system of
congruences (5.24) is equivalent to the congruence

b ≡ x0 (mod d),

where x0 = x0(τ1, . . . , τr). It is also known that the numbers x0(τ1, . . . , τr), τ1 ∈ Ω1, . . . , τr ∈ Ωr,
are incongruent modulo d. Thus,

{
b ∈ Z : R(b) ≡ 0 (mod d)

}
=

⊔
τ1∈Ω1,...,τr∈Ωr

{
x0(τ1, . . . , τr) + dt : t ∈ Z

}
.

Let τ1 ∈ Ω1, . . . , τr ∈ Ωr and x0 = x0(τ1, . . . , τr). We have

#
{
t ∈ Z : 1 ≤ x0 + dt ≤ η lnx

}
=

[
η lnx− x0

d

]
−
⌈
1− x0

d

⌉
+ 1

=
η lnx− x0

d
− θ1 −

(
1− x0

d
+ θ2

)
+ 1 =

η lnx

d
+ 1− θ1 − θ2 −

1

d
,

where θ1 and θ2 are real numbers with 0 ≤ θ1 < 1 and 0 ≤ θ2 < 1. Since 1 ≤ d ≤ η lnx, we obtain

#
{
t ∈ Z : 1 ≤ x0 + dt ≤ η lnx

}
≤ η lnx

d
+ 1 ≤ 2

η lnx

d
.

Thus,

N0(d) ≤
2η lnx

d
T ≤ 2η lnx

d

∏
p|d

min{p, k}.

Inequality (5.22) is proved.
Substituting (5.22) into (5.21), we obtain

S1 ≤
∑

1≤d≤η lnx
d∈M

1

ϕ(d)

2η lnx

d

∏
p|d

min{p, k} = 2η lnx
∑

1≤d≤η lnx
d∈M

∏
p|dmin{p, k}
dϕ(d)

= 2η lnxS3. (5.25)
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Let d be an integer such that 1 ≤ d ≤ η lnx and d ∈ M. We have (see Lemmas 2.6 and 2.4)

d =
∏
p|d

p, ϕ(d) =
∏
p|d

ϕ(p) =
∏
p|d

(p− 1),

∏
p|dmin{p, k}
dϕ(d)

=

∏
p|dmin{p, k}∏
p|d p(p− 1)

=
∏

p|d, p≤k

1

p− 1

∏
p|d, p>k

k

p(p− 1)
.

Hence,

S3 =
∑

1≤d≤η lnx
d∈M

∏
p|d, p≤k

1

p− 1

∏
p|d, p>k

k

p(p− 1)
≤
∏
p≤k

(
1 +

1

p− 1

)∏
p>k

(
1 +

k

p(p− 1)

)
= AB. (5.26)

We have (see Lemma 2.1)

A =
∏
p≤k

(
1 +

1

p− 1

)
≤
∏

p≤k+1

(
1 +

1

p− 1

)
=
∏

p≤k+1

(
1− 1

p

)−1

≤ c5 ln(k + 1), (5.27)

where c5 > 0 is an absolute constant.
Now we estimate B. Since ln(1 + u) ≤ u and u > 0, we get

lnB =
∑
p>k

ln

(
1 +

k

p(p− 1)

)
≤
∑
p>k

k

p(p− 1)
= k

∑
p≥k+1

1

p(p − 1)
≤ k

∑
n≥k+1

1

n(n− 1)
.

We define

sm =
m∑

n=k+1

1

n(n− 1)
=

m∑
n=k+1

(
1

n− 1
− 1

n

)
=

1

k
− 1

m
, m ≥ k + 1.

Then,
∑

n≥k+1

1

n(n− 1)
= lim

m→+∞
sm =

1

k
.

We obtain lnB ≤ 1, i.e.,
B ≤ e < 3. (5.28)

It follows from (5.26)–(5.28) that S3 ≤ c6 ln(k + 1), where c6 > 0 is an absolute constant. Substi-
tuting this estimate into (5.25), we obtain

S1 ≤ c7η ln(k + 1) ln x, (5.29)

where c7 > 0 is an absolute constant. Therefore (see (5.14), (5.20), and (5.29)),

S̃ ≤ (c7 + 2)η ln(k + 1) ln x = c8η ln(k + 1) ln x,

where c8 = c7 + 2 > 0 is an absolute constant. We obtain (see (5.13) and Lemma 2.8)

S ≤ c8
a

ϕ(a)
η ln(k + 1) lnx ≤ c9η ln ln(a+ 2) ln(k + 1) ln x, (5.30)

where c9 > 0 is an absolute constant. We put C = c1 + c9, where c1 is the constant in (5.12). Then
C > 0 is an absolute constant and in both cases, 1 ≤ k ≤ ln lnx and k > ln lnx, we have

∑
1≤b≤η lnx
L=an+b/∈L

ΔL

ϕ(ΔL)
≤ Cη ln ln(a+ 2) ln(k + 1) ln x.

Lemma 5.2 is proved. �
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Lemma 5.3. Let A = N, P = P, α = 1/5, and θ = 1/3, and let C0 = C(1/5, 1/3) > 0 be
the absolute constant in Proposition 5.1. Let ε be a real number with 0 < ε < 1. Then there is a
number c0(ε) > 0 such that the following holds. Let x ∈ N, y ∈ R, and q ∈ N satisfy the conditions
x ≥ c0(ε), 1 ≤ y ≤ lnx, and 1 ≤ q ≤ y1−ε. Then there is a positive integer B such that

1 ≤ B ≤ exp(ϑ
√
lnx), 1 ≤ B

ϕ(B)
≤ 2, (B, q) = 1. (5.31)

Furthermore, let k ∈ N, ρ ∈ R, ξ ∈ R, R ∈ R, η ∈ R, and a ∈ Z, be such that

C0 ≤ k ≤ (lnx)1/5, (5.32)

k(ln lnx)2

lnx
≤ ρ ≤ 1

30
, ξ = ρ, (5.33)

R = x1/9, 0 < η ≤ 1

2
, (5.34)

1 ≤ a ≤ q, (a, q) = 1. (5.35)

Let L = {L1, . . . , Lk} be an admissible set of k linear functions, where Li(n) = qn + a + qbi,
i = 1, . . . , k, b1, . . . , bk are positive integers with b1 < . . . < bk, and qbk ≤ ηy. Then the hypothesis
of Proposition 5.1 holds and there exist nonnegative weights wn = wn(L) with the properties stated
in Proposition 5.1; the implied constants in (5.1)–(5.5) are positive and absolute. In (5.31), ϑ > 0
is also an absolute constant.

Proof. We will choose c0(ε) later; this number is assumed to be large enough. We take δ = 1/10
and let c0(ε) ≥ c(ε, δ) = c(ε, 1/10), where c(ε, δ) is the quantity in Lemma 4.10. Let x ∈ N, y ∈ R,
and q ∈ N be such that x ≥ c0(ε), 1 ≤ y ≤ lnx, and 1 ≤ q ≤ y1−ε. By Lemma 4.10, there is a
positive integer B such that

1 ≤ B ≤ exp(c1
√
lnx), 1 ≤ B

ϕ(B)
≤ 2, (B, q) = 1

and
∑

1≤Q≤x2/5

(Q,B)=1

max
2≤u≤x1+γ/

√
lnx

max
W∈Z : (W,Q)=1

∣∣∣∣π(u;Q,W )− li(u)

ϕ(Q)

∣∣∣∣ ≤ c2x exp(−c3
√
lnx), (5.36)

where c1, γ, c2, and c3 are positive absolute constants. Let (5.32)–(5.35) hold. Let L = {L1, . . . , Lk}
be an admissible set of k linear functions Li(n) = qn + a + qbi, i = 1, . . . , k, where b1, . . . , bk are
positive integers with b1 < . . . < bk and qbk ≤ ηy. Let us show that the hypothesis of Proposition 5.1
holds. First we show that the set (A,L,P, B, x, 1/3) satisfies Hypothesis 1.

I. Let us show that condition (2) of Hypothesis 1 holds. Let L(n) = l1n + l2 ∈ L. Clearly,
we have

1 ≤ l1 ≤ lnx and 1 ≤ l2 ≤ lnx. (5.37)

Let us show that

S :=
∑

1≤r≤x1/3

(r,B)=1

max
b∈Z

(L(b),r)=1

∣∣∣∣#PL,A(x; r, b) −
#PL,A(x)

ϕL(r)

∣∣∣∣ ≤
#PL,A(x)

(lnx)100k
2 . (5.38)

It is not hard to see that
PL,A(x) =

{
l1x+ l2 ≤ p < 2l1x+ l2 : p ≡ l2 (mod l1)

}
,

PL,A(x; r, b) =
{
l1x+ l2 ≤ p < 2l1x+ l2 : p ≡ l1b+ l2 (mod l1r)

}
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and hence
#PL,A(x) = π(2l1x+ l2 − 1; l1, l2)− π(l1x+ l2 − 1; l1, l2), (5.39)

#PL,A(x; r, b) = π(2l1x+ l2 − 1; l1r, L(b)) − π(l1x+ l2 − 1; l1r, L(b)).

We obtain

S =
∑

1≤r≤x1/3

(r,B)=1

max
b∈Z

(L(b),r)=1

∣∣∣∣π(2l1x+ l2 − 1; l1r, L(b)) − π(l1x+ l2 − 1; l1r, L(b))

− π(2l1x+ l2 − 1; l1, l2)− π(l1x+ l2 − 1; l1, l2)

ϕ(l1r)/ϕ(l1)

∣∣∣∣ ≤ S1 + S2 + S3 + S4, (5.40)

where

S1 =
∑

1≤r≤x1/3

(r,B)=1

max
b∈Z

(L(b),r)=1

∣∣∣∣π(l1x+ l2 − 1; l1r, L(b)) −
li(l1x+ l2 − 1)

ϕ(l1r)

∣∣∣∣,

S2 =
∑

1≤r≤x1/3

(r,B)=1

∣∣∣∣
π(l1x+ l2 − 1; l1, l2)

ϕ(l1r)/ϕ(l1)
− li(l1x+ l2 − 1)

ϕ(l1r)

∣∣∣∣,

S3 =
∑

1≤r≤x1/3

(r,B)=1

max
b∈Z

(L(b),r)=1

∣∣∣∣π(2l1x+ l2 − 1; l1r, L(b)) −
li(2l1x+ l2 − 1)

ϕ(l1r)

∣∣∣∣,

S4 =
∑

1≤r≤x1/3

(r,B)=1

∣∣∣∣
π(2l1x+ l2 − 1; l1, l2)

ϕ(l1r)/ϕ(l1)
− li(2l1x+ l2 − 1)

ϕ(l1r)

∣∣∣∣.

Let us show that
(L(b), l1) = 1 (5.41)

for any b ∈ Z. Assume the contrary: there is an integer b such that (L(b), l1) > 1. Then there is
a prime p such that p | l1 and p | L(b). Hence p | l2, and we see that p | L(n) for any integer n.
Since L ∈ L, we see that p | L1(n) . . . Lk(n) for any integer n. But this contradicts the fact that
L = {L1, . . . , Lk} is an admissible set. Thus, (5.41) is proved. We also observe that since (B, q) = 1
and l1 = q, we have

(B, l1) = 1. (5.42)

Let r be an integer with 1 ≤ r ≤ x1/3 and (r,B) = 1. Applying (5.37), we have

l1r ≤ x1/3 lnx ≤ x2/5, l1x+ l2 − 1 ≥ l1x ≥ x ≥ 2, l1x+ l2 − 1 ≤ 2x lnx ≤ x1+γ/
√
lnx

provided that c0(ε) is chosen large enough. Hence, we obtain (see (5.41), (5.42) and (5.36))

S1 =
∑

r : l1≤l1r≤l1x1/3

(l1r,B)=1

max
b∈Z

(L(b),l1r)=1

∣∣∣∣π(l1x+ l2 − 1; l1r, L(b)) −
li(l1x+ l2 − 1)

ϕ(l1r)

∣∣∣∣

≤
∑

1≤Q≤x2/5

(Q,B)=1

max
2≤u≤x1+γ/

√
lnx

max
W∈Z : (W,Q)=1

∣∣∣∣π(u;Q,W ) − li(u)

ϕ(Q)

∣∣∣∣ ≤ c2x exp(−c3
√
lnx). (5.43)
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Applying Lemmas 2.5 and 2.9, we get

S2 = ϕ(l1)

∣∣∣∣π(l1x+ l2 − 1; l1, l2)−
li(l1x+ l2 − 1)

ϕ(l1)

∣∣∣∣
∑

1≤r≤x1/3

(r,B)=1

1

ϕ(l1r)

≤
∣∣∣∣π(l1x+ l2 − 1; l1, l2)−

li(l1x+ l2 − 1)

ϕ(l1)

∣∣∣∣
∑

1≤r≤x1/3

1

ϕ(r)

≤ c̃ lnx

∣∣∣∣π(l1x+ l2 − 1; l1, l2)−
li(l1x+ l2 − 1)

ϕ(l1)

∣∣∣∣,

where c̃ > 0 is an absolute constant. Since l1x+ l2 − 1 ≥ l1x ≥ x (see (5.37)), we obtain

1 ≤ l1 ≤ lnx ≤ ln(l1x+ l2 − 1).

Hence (see, for example, [1, Ch. 22]),
∣∣∣∣π(l1x+ l2 − 1; l1, l2)−

li(l1x+ l2 − 1)

ϕ(l1)

∣∣∣∣ ≤ C(l1x+ l2 − 1) exp
(
−c
√

ln(l1x+ l2 − 1)
)
, (5.44)

where C and c are positive absolute constants. We have

exp
(
−c
√

ln(l1x+ l2 − 1)
)
≤ exp(−c

√
lnx), (5.45)

l1x+ l2 − 1 ≤ x lnx+ lnx ≤ 2x ln x. (5.46)

We can assume that

−c
√
lnx+ 2 ln lnx ≤ − c

2

√
lnx (5.47)

if c0(ε) is chosen large enough. Hence,

S2 ≤ C̃x exp
(
−c

√
lnx+ 2 ln lnx

)
≤ C̃x exp

(
− c

2

√
lnx
)
, (5.48)

where C̃ = 2c̃C is a positive absolute constant. Similarly, it can be shown that

S3 ≤ Cx exp(−c
√
lnx) and S4 ≤ Cx exp(−c

√
lnx), (5.49)

where C and c are positive absolute constants. Substituting (5.43), (5.48), and (5.49) into (5.40),
we obtain

∑

1≤r≤x1/3

(r,B)=1

max
b∈Z

(L(b),r)=1

∣∣∣∣#PL,A(x; r, b) −
#PL,A(x)

ϕL(r)

∣∣∣∣ ≤ c4x exp(−c5
√
lnx), (5.50)

where c4 and c5 are positive absolute constants. Applying (5.44)–(5.47), we have

π(l1x+ l2 − 1; l1, l2) =
li(l1x+ l2 − 1)

ϕ(l1)
+R1, |R1| ≤ Cx exp(−c

√
lnx),

where C and c are positive absolute constants. Similarly, it can be shown that

π(2l1x+ l2 − 1; l1, l2) =
li(2l1x+ l2 − 1)

ϕ(l1)
+R2, |R2| ≤ Cx exp(−c

√
lnx),
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where C and c are positive absolute constants. Therefore (see (5.39)),

#PL,A(x) =
li(2l1x+ l2 − 1)− li(l1x+ l2 − 1)

ϕ(l1)
+R, (5.51)

|R| ≤ c6x exp(−c7
√
lnx), (5.52)

where c6 and c7 are positive absolute constants. We have

2l1x+ l2 − 1 ≤ 2x ln x+ lnx ≤ 3x ln x,

ln(2l1x+ l2 − 1) ≤ lnx+ ln lnx+ ln 3 ≤ 2 lnx

provided that c0(ε) is chosen large enough. Hence,

li(2l1x+ l2 − 1)− li(l1x+ l2 − 1)

ϕ(l1)
=

1

ϕ(l1)

2l1x+l2−1∫

l1x+l2−1

dt

ln t
≥ l1x

ϕ(l1) ln(2l1x+ l2 − 1)

≥ l1x

2ϕ(l1) ln x
. (5.53)

Let us show that

|R| ≤ l1x

4ϕ(l1) lnx
. (5.54)

Since l1/ϕ(l1) ≥ 1, we see from (5.52) that it is sufficient to show that

c6x exp(−c7
√
lnx) ≤ x

4 lnx
.

This inequality holds if c0(ε) is chosen large enough. Thus, (5.54) is proved. From (5.51), (5.53),
and (5.54) we obtain

#PL,A(x) ≥
l1x

4ϕ(l1) ln x
. (5.55)

Now we prove (5.38). Since l1/ϕ(l1) ≥ 1, we see from (5.50) and (5.55) that it suffices to
establish the estimate

c4x exp(−c5
√
lnx) ≤ x

4(ln x)100k2+1
. (5.56)

Taking logarithms, we obtain

ln c4 + lnx− c5
√
lnx ≤ lnx− ln 4− 100k2 ln lnx− ln lnx

or, which is equivalent,

100k2 ln lnx ≤ c5
√
lnx− ln lnx− ln(4c4).

Since k ≤ (ln x)1/5, we have

100k2 ln lnx ≤ 100(ln x)2/5 ln lnx.

The inequality

100(ln x)2/5 ln lnx ≤ c5
√
lnx− ln lnx− ln(4c4)

holds if c0(ε) is chosen large enough. Inequality (5.56) is proved. Thus, (5.38) is proved.
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II. Let us show that condition (1) of Hypothesis 1 holds. We show that

S :=
∑

1≤r≤x1/3

max
b∈Z

∣∣∣∣#A(x; r, b)− #A(x)

r

∣∣∣∣ ≤
#A(x)

(lnx)100k2
. (5.57)

Let 1 ≤ r ≤ x1/3 and b ∈ Z. We have

A(x) = {x ≤ n < 2x} and A(x; r, b) =
{
x ≤ n < 2x : n ≡ b (mod r)

}
.

Hence,

#A(x) = x and #A(x; r, b) =
x

r
+ ρ, |ρ| ≤ 1. (5.58)

We obtain ∣∣∣∣#A(x; r, b)− #A(x)

r

∣∣∣∣ = |ρ| ≤ 1. (5.59)

Hence, S ≤ x1/3. Thus, to prove (5.57), it suffices to show that

x1/3 ≤ x

(lnx)100k2

or, which is equivalent, (lnx)100k2 ≤ x2/3. Taking logarithms, we obtain

100k2 ln lnx ≤ 2

3
lnx.

Since k ≤ (ln x)1/5, we have
100k2 ln lnx ≤ 100(ln x)2/5 ln lnx.

The inequality

100(ln x)2/5 ln lnx ≤ 2

3
lnx

holds if c0(ε) is chosen large enough. Thus, (5.57) is proved.
III. Let us show that condition (3) of Hypothesis 1 holds. To this end we show that for any

integer r with 1 ≤ r < x1/3 we have

max
b∈Z

#A(x; r, b) ≤ 2
#A(x)

r
. (5.60)

Let 1 ≤ r < x1/3 and b ∈ Z. We may assume that c0(ε) ≥ 2. Hence, r ≤ x1/3 ≤ x. Applying (5.58),
we obtain

#A(x; r, b) ≤ x

r
+ 1 ≤ 2

x

r
= 2

#A(x)

r
,

and (5.60) is proved. Thus, the set (A,L,P, B, x, 1/3) satisfies Hypothesis 1.
We can assume that

exp(c1
√
lnx) ≤ x1/5 and lnx ≤ x1/5

provided that c0(ε) is chosen large enough. Since 1 ≤ B ≤ exp(c1
√
lnx), we obtain 1 ≤ B ≤ x1/5.

Let L = l1n + l2 ∈ L. Applying (5.37), we have 1 ≤ l1 ≤ x1/5 and 1 ≤ l2 ≤ x1/5. Thus,
the hypothesis of Proposition 5.1 holds and there are nonnegative weights wn = wn(L) with the
properties stated in Proposition 5.1. In that proposition, the implied constants in (5.1)–(5.5) depend
only on α, θ and on the implied constants from Hypothesis 1, and in our case these constants are
absolute (α = 1/5, θ = 1/3, and estimates (5.38), (5.57), and (5.60) hold). Therefore, in our
case the implied constants in (5.1)–(5.5) are positive and absolute. Finally, let us denote c1 by ϑ.
Lemma 5.3 is proved. �
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Lemma 5.4. There are positive absolute constants c and C such that the following holds. Let
ε be a real number with 0 < ε < 1. Then there is a number c0(ε) > 0, depending only on ε, such that
if x ∈ N, y ∈ R, m ∈ Z, q ∈ Z, and a ∈ Z satisfy the conditions c0(ε) ≤ y ≤ lnx, 1 ≤ m ≤ cε ln y,
1 ≤ q ≤ y1−ε, and (a, q) = 1, then

#
{
qx< pn ≤ 2qx− 5q : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m−pn ≤ y

}
≥ π(2qx)

(
y

2q lnx

)exp(Cm)

.

Proof. Let A = N, P = P, α = 1/5, and θ = 1/3, and let C0 = C(1/5, 1/3) > 0 be the
absolute constant in Proposition 5.1. Let c0(ε) be the quantity in Lemma 5.3. We will choose c(ε)
later; this number is large enough. Let c(ε) ≥ c0(ε). Let x ∈ N, y ∈ R, and q ∈ Z be such that

c(ε) ≤ y ≤ lnx, (5.61)

1 ≤ q ≤ y1−ε. (5.62)

By Lemma 5.3, there is a positive integer B such that (5.31) holds. We assume that

C̃0 ≤ k ≤ yε/14, (5.63)

where C̃0 > 0 is an absolute constant. We will choose C̃0 later. For now, we assume that C̃0 is large
enough; in particular, C̃0 ≥ C0. It follows from (5.61) and (5.63) that k ≤ (lnx)1/5. Thus, (5.32)
holds. Let (5.33)–(5.35) hold. Let L = {L1, . . . , Lk} be an admissible set of k linear functions
Li(n) = qn + a + qbi, i = 1, . . . , k, where b1, . . . , bk are positive integers such that b1 < . . . < bk
and qbk ≤ ηy. Then (see Lemma 5.3) the hypothesis of Proposition 5.1 holds and there are non-
negative weights wn = wn(L) with the properties stated in Proposition 5.1; the implied constants
in (5.1)–(5.5) are positive and absolute. We write L = L(b) for such a set defined by b1, . . . , bk.
Denote the class of admissible sets by AS.

Let m be a positive integer. We consider

S =
∑

1≤b1<...<bk
qbk≤ηy

L=L(b)∈AS

∑
n∈A(x)

⎛
⎜⎝

k∑
i=1

1P(Li(n))−m− k

k∑
i=1

∑
p|Li(n)

p<xρ, p �B

1− k
∑

1≤b≤2ηy
L=qt+b/∈L

1S(ρ;B)(L(n))

⎞
⎟⎠wn(L)

=
∑

1≤b1<...<bk
qbk≤ηy

L=L(b)∈AS

∑
n∈A(x)

An(L)wn(L). (5.64)

Let L = {L1, . . . , Lk} and n be in the range of summation of S and An(L) > 0. Then the following
statements hold:

(1) The number of primes among L1(n), . . . , Lk(n) is at least m+ 1.
(2) For any 1 ≤ i ≤ k, Li(n) has no prime factor p such that p < xρ and p � B.
(3) For any linear function L = qt+ b /∈ L, where b is an integer with 1 ≤ b ≤ 2ηy, L(n) has a

prime factor p such that p < xρ and p � B (we choose ρ so that xρ is not an integer; therefore,
the conditions p ≤ xρ and p < xρ are equivalent). Since L(n) > n ≥ x > xρ, we see that
L(n) is not a prime number.

As a consequence we obtain the following statements:
(i) None of n ∈ A(x) can make a positive contribution to S from two different admissible sets

(since if n makes a positive contribution for some admissible set L = {L1, . . . , Lk}, then the
numbers L1(n), . . . , Lk(n) are uniquely determined as the integers in [qn+ 1, qn + 2ηy] with
no prime factors p such that p < xρ and p � B).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 314 2021



188 A. O. RADOMSKII

(ii) If L = {L1, . . . , Lk} and n are in the range of summation of S and An(L) > 0, then there
can be no primes in the interval [qn + 1, qn + 2ηy] apart from possibly L1(n), . . . , Lk(n),
and so the primes counted in this way must be consecutive.

Let L = {L1, . . . , Lk} and n be in the range of summation of S and An(L) > 0. Let 1 ≤ i ≤ k.
If p | Li(n) and p � B, then p ≥ xρ. Setting

Ω =
{
p : p | Li(n) and p � B

}
,

we have
xρ#Ω ≤

∏
p∈Ω

p ≤ Li(n).

Since
q ≤ y1−ε ≤ y ≤ lnx and a+ qbi ≤ 2ηy ≤ lnx,

we obtain
Li(n) = qn+ a+ qbi ≤ n lnx+ lnx ≤ 2x ln x+ lnx ≤ x2

provided that c(ε) is chosen large enough. Hence, ρ#Ω ≤ 2, i.e., #Ω ≤ 2/ρ. We have

∏
p|Li(n)
p �B

4 =
∏
p∈Ω

4 = 4#Ω ≤ 42/ρ = e(2/ρ) ln 4 ≤ e4/ρ and
k∏

i=1

∏
p|Li(n)
p �B

4 ≤ e(4k)/ρ.

Thus, if L = {L1, . . . , Lk} and n are in the range of summation of S and An(L) > 0, then (see (5.1))

wn(L) ≤ C(lnR)2ke(4k)/ρ, (5.65)

where C > 0 is an absolute constant.
Let L = {L1, . . . , Lk} be in the range of summation of S. We consider

S̃(L) =
∑

n∈A(x)

⎛
⎜⎝

k∑
i=1

1P(Li(n))−m− k

k∑
i=1

∑
p|Li(n)

p<xρ, p �B

1− k
∑

1≤b≤2ηy
L=qt+b/∈L

1S(ρ;B)(L(n))

⎞
⎟⎠wn(L)

= S1 − S2 − S3 − S4.

Our aim is to obtain a lower bound for S̃(L). We write wn instead of wn(L) for brevity. Let
1 ≤ i ≤ k. Since #A(x) = x, we have (see (5.3))

∑
n∈A(x)

1P(Li(n))wn ≥ (1 + o(1))
Bk−1

ϕ(B)k−1
SB(L)

ϕ(q)

q
#PLi,A(x)(lnR)k+1Jk

+O

(
Bk

ϕ(B)k
SB(L)x(lnR)k−1Ik

)
.

Hence,

S1 =
∑

n∈A(x)

k∑
i=1

1P(Li(n))wn =

k∑
i=1

∑
n∈A(x)

1P(Li(n))wn

≥ (1 + o(1))
Bk−1

ϕ(B)k−1
SB(L)

ϕ(q)

q
(lnR)k+1Jk

k∑
i=1

#PLi,A(x) +O

(
k

Bk

ϕ(B)k
SB(L)x(lnR)k−1Ik

)
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= (1 + o(1))
Bk

ϕ(B)k
SB(L)(lnR)k+1Jk

ϕ(B)

B

ϕ(q)

q

k∑
i=1

#PLi,A(x) + o

(
Bk

ϕ(B)k
SB(L)x(lnR)kIk

)

= S′
1 + S′′

1 ,

since

0 <
k

lnR
≤ (lnx)1/5

(1/9) ln x
→ 0 as x → +∞.

We have shown (see (5.55)) that if x ≥ c0, where c0 > 0 is an absolute constant, then for any L ∈ L

#PL,A(x) ≥
qx

4ϕ(q) ln x
.

We may assume that c(ε) ≥ c0. Since ϕ(B)/B ≥ 1/2 (see (5.31)), we obtain

ϕ(B)

B

ϕ(q)

q

k∑
i=1

#PLi,A(x) ≥
kx

8 lnx
=

kx

72 lnR
.

We have |o(1)| ≤ 1/2 in S′
1 if x ≥ c′, where c′ > 0 is an absolute constant. We may assume that

c(ε) ≥ c′. Since (see (5.8))

Jk ≥ c′′
ln k

k
Ik,

where c′′ > 0 is an absolute constant, we get

S′
1 ≥

c′′

144

Bk

ϕ(B)k
SB(L)x(lnR)kIk ln k.

We have

|S′′
1 | ≤

c′′

288

Bk

ϕ(B)k
SB(L)x(lnR)kIk ≤ c′′

288

Bk

ϕ(B)k
SB(L)x(lnR)kIk ln k

provided that c(ε) is chosen large enough. Therefore,

S1 ≥
c′′

288

Bk

ϕ(B)k
SB(L)x(lnR)kIk ln k = c

Bk

ϕ(B)k
SB(L)x(lnR)kIk ln k, (5.66)

where c > 0 is an absolute constant.
We have (see (5.2))

S2 = m
∑

n∈A(x)

wn = m(1 + o(1))
Bk

ϕ(B)k
SB(L)x(lnR)kIk ≥ m

2

Bk

ϕ(B)k
SB(L)x(lnR)kIk (5.67)

provided that c(ε) is chosen large enough. Applying (5.5), we obtain

S3 = k
∑

n∈A(x)

k∑
i=1

∑
p|Li(n)

p<xρ, p �B

wn = k
k∑

i=1

∑
n∈A(x)

wn

∑
p|Li(n)

p<xρ, p �B

1 ≤ c2ρ
2k6(ln k)2

Bk

ϕ(B)k
SB(L)x(lnR)kIk,

where c2 > 0 is an absolute constant. Let c3 > 0 be an absolute constant such that

c2c
2
3 ≤

1

12
and

c3
j3 ln j

≤ 1

30
for any j ≥ 2.
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We choose an arbitrary number ρ in the interval
[ c3
2k3 ln k

,
c3

k3 ln k

]
(5.68)

so that xρ is not an integer. It is clear that ρ ≤ 1/30. Let us show that the first inequality in (5.33)
holds. It suffices to show that

k(ln lnx)2

lnx
≤ c3/2

k3 ln k
.

This inequality is equivalent to

k4 ln k(ln lnx)2 ≤ c3
2

lnx.

Since k ≤ (ln x)1/5, we have

k4 ln k(ln lnx)2 ≤ 1

5
(ln x)4/5(ln lnx)3 ≤ c3

2
lnx

provided that c(ε) is chosen large enough. Thus, the inequalities in (5.33) hold. We have (see (5.67))

S3 ≤ c2
c23

k6(ln k)2
k6(ln k)2

Bk

ϕ(B)k
SB(L)x(lnR)kIk ≤ 1

12

Bk

ϕ(B)k
SB(L)x(lnR)kIk

≤ m

12

Bk

ϕ(B)k
SB(L)x(lnR)kIk ≤ 1

6
S2. (5.69)

Now we estimate the quantity

S4 = k
∑

n∈A(x)

∑
1≤b≤2ηy
L=qt+b/∈L

1S(ρ;B)(L(n))wn = k
∑

1≤b≤2ηy
L=qt+b/∈L

∑
n∈A(x)

1S(ρ;B)(L(n))wn.

Let b be in the range of summation of S4. Then L = qt+ b /∈ L and

ΔL = qk+1
k∏

i=1

|(a+ qbi)− b| 	= 0.

Since 1 ≤ B ≤ x1/5, we have (see (5.4))

∑
n∈A(x)

1S(ρ;B)(L(n))wn ≤ c4
ρ

ΔL

ϕ(ΔL)

B

ϕ(B)

Bk

ϕ(B)k
SB(L)x(lnR)k−1Ik,

where c4 > 0 is an absolute constant. Since B/ϕ(B) ≤ 2 and ρ lies in the interval (5.68), we obtain

∑
n∈A(x)

1S(ρ;B)(L(n))wn ≤ 4c4
c3

k3 ln k
ΔL

ϕ(ΔL)

Bk

ϕ(B)k
SB(L)x(lnR)k−1Ik

= c5k
3 ln k

ΔL

ϕ(ΔL)

Bk

ϕ(B)k
SB(L)x(lnR)k−1Ik.

Hence,

S4 ≤ c5k
4 ln k

Bk

ϕ(B)k
SB(L)x(lnR)k−1Ik

∑
1≤b≤2ηy
L=qt+b/∈L

ΔL

ϕ(ΔL)
. (5.70)

We put
c6 = 36Cc5, (5.71)
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where C > 0 is the absolute constant in Lemma 5.2, and

η =
1

12c6k4(ln k)2 ln ln(q + 2)
. (5.72)

Let us show that
(ln x)−9/10 ≤ 2η ≤ 1. (5.73)

The second inequality in (5.73) is equivalent to the inequality

6c6k
4(ln k)2 ln ln(q + 2) ≥ 1.

We may assume that C̃0 ≥ 3; therefore, ln k ≥ 1. We have

6c6k
4(ln k)2 ln ln(q + 2) ≥ 6c6(ln ln 3)k

4 ≥ 6c6(ln ln 3)C̃
4
0 ≥ 1

provided that C̃0 is chosen large enough. The first inequality in (5.73) is equivalent to the inequality

6c6k
4(ln k)2 ln ln(q + 2) ≤ (ln x)9/10.

Since q ≤ lnx and k ≤ (ln x)1/5, we have

6c6k
4(ln k)2 ln ln(q + 2) ≤ 6c6(lnx)

4/5 1

25
(ln lnx)2 ln ln(lnx+ 2) ≤ (lnx)9/10

provided that c(ε) is chosen large enough. Thus, (5.73) holds. We can assume that x ≥ c, where c is
the absolute constant in Lemma 5.2, provided that c(ε) is chosen large enough. Applying Lemma 5.2
and taking into account that ln(k + 1) ≤ 2 ln k, we have

∑
1≤b≤2ηy
L=qt+b/∈L

ΔL

ϕ(ΔL)
≤

∑
1≤b≤2η lnx
L=qt+b/∈L

ΔL

ϕ(ΔL)
≤ 4C ln ln(q + 2)(ln k)η lnx = 36C ln ln(q + 2)(ln k)η lnR.

Substituting this estimate into (5.70), we get (see also (5.71), (5.72), and (5.67))

S4 ≤ 36Cc5k
4(ln k)2

Bk

ϕ(B)k
SB(L)x(lnR)kIkη ln ln(q + 2)

= c6k
4(ln k)2

Bk

ϕ(B)k
SB(L)x(lnR)kIk ln ln(q + 2)

1

12c6k4(ln k)2 ln ln(q + 2)

=
1

12

Bk

ϕ(B)k
SB(L)x(lnR)kIk ≤ m

12

Bk

ϕ(B)k
SB(L)x(lnR)kIk ≤ 1

6
S2. (5.74)

From (5.69) and (5.74) we obtain

S̃(L) = S1 − S2 − S3 − S4 ≥ S1 −
4

3
S2.

We have (see (5.2))

S2 = m
∑

n∈A(x)

wn = m(1 + o(1))
Bk

ϕ(B)k
SB(L)x(lnR)kIk ≤ 3

2
m

Bk

ϕ(B)k
SB(L)x(lnR)kIk

provided that c(ε) is chosen large enough. Applying (5.66) with c replaced by 3c1, we obtain

S̃(L) ≥ Bk

ϕ(B)k
SB(L)x(lnR)kIk(3c1 ln k − 2m),
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where c1 > 0 is an absolute constant. We put

c̃ = C̃0 +
1

c1
, (5.75)

k = �exp(c̃m)�. (5.76)

It is not hard to see that
k ≥ C̃0 and 3c1 ln k − 2m ≥ m.

Since m is a positive integer, we see that 3c1 ln k − 2m ≥ 1. Hence,

S̃(L) ≥ Bk

ϕ(B)k
SB(L)x(lnR)kIk.

Since Bk/ϕ(B)k ≥ 1, lnR = (1/9) ln x, SB(L) ≥ exp(−c2k), and Ik ≥ c3(2k ln k)
−k, where c2

and c3 are positive absolute constants (see (5.6) and (5.7)), it follows that

S̃(L) ≥ 1

9k
c3(2k ln k)

−k exp(−c2k)x(ln x)
k ≥ exp(−k2)x(lnx)k

provided that C̃0 is chosen large enough. We obtain

S =
∑

1≤b1<...<bk
qbk≤ηy

L=L(b)∈AS

S̃(L) ≥ exp(−k2)x(ln x)k
∑

1≤b1<...<bk
qbk≤ηy

L=L(b)∈AS

1 = exp(−k2)x(ln x)kS′. (5.77)

Now we derive a lower bound for S′. First let us show that

2 ≤ k ≤ 1

2

[
ηy

q

]
. (5.78)

The first inequality obviously holds, since we may assume that C̃0 ≥ 2. To prove the second
inequality, it suffices to show that

2k ≤ ηy

q
. (5.79)

We have (see (5.62) and (5.72))

ηy

q
≥ ηyε =

c4y
ε

k4(ln k)2 ln ln(q + 2)
,

where c4 > 0 is an absolute constant. Thus, to prove (5.79), it suffices to show that

2k5(ln k)2 ln ln(q + 2) ≤ c4y
ε.

In particular, from (5.62) it follows that q ≤ y. Applying (5.63), we have

2k5(ln k)2 ln ln(q + 2) ≤ 2y5ε/14
ε2

196
(ln y)2 ln ln(y + 2) ≤ c4y

ε

provided that c(ε) is chosen large enough. Thus, (5.78) is proved.
We put

Ω =

{
1 ≤ n ≤

[
ηy

q

]
: (n, p) = 1 ∀p ≤ k

}
.

Applying Lemma 2.13, we have

#Ω = Φ

([
ηy

q

]
, k

)
≥ c0

[ηy/q]

ln k
,
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where c0 > 0 is an absolute constant. In particular, from (5.78) it follows that ηy/q ≥ 4, and so
[
ηy

q

]
≥ ηy

q
− 1 ≥ ηy

2q
.

We obtain

#Ω ≥ c5
ηy

q ln k
, (5.80)

where c5 > 0 is an absolute constant. Let us show that

c5
ηy

q ln k
≥ 2k. (5.81)

Applying (5.62) and (5.72), we have

c5
ηy

q ln k
≥ c6y

ε

k4(ln k)3 ln ln(q + 2)
,

where c6 > 0 is an absolute constant. Therefore, it suffices to show that

2k5(ln k)3 ln ln(q + 2) ≤ c6y
ε.

Applying (5.63) and taking into account that q ≤ y, we have

2k5(ln k)3 ln ln(q + 2) ≤ 2y5ε/14
( ε

14

)3
(ln y)3 ln ln(y + 2) ≤ c6y

ε

provided that c(ε) is chosen large enough. Thus, (5.81) is proved.
Let b1 < . . . < bk be positive integers from the set Ω. Let us show that for any prime p with

p � q there is an integer mp such that mp 	≡ bi (mod p) for all 1 ≤ i ≤ k. Let p be a prime with p � q.
If p > k, then the statement is obvious. If p ≤ k, then we may put mp = 0; from the definition
of the set Ω it follows that bi 	≡ 0 (mod p) for all 1 ≤ i ≤ k. Thus, the statement is proved. By
Lemma 5.1, L(b) is an admissible set. Hence (see also Lemma 2.12, (5.80), (5.81), and (5.72)),

S′ ≥
(
#Ω

k

)
≥ k−k(#Ω− k)k ≥ k−k

(
c5

ηy

q ln k
− k

)k
≥ k−k

(
c5
2

ηy

q ln k

)k

= k−k

(
c6

y

q ln ln(q + 2)k4(ln k)3

)k
=

(
y

q ln ln(q + 2)

)k( c6
k5(ln k)3

)k
,

where c6 > 0 is an absolute constant. We have
(

c6
k5(ln k)3

)k
≥ exp(−k2)

provided that C̃0 is chosen large enough. Hence,

S′ ≥
(

y

q ln ln(q + 2)

)k
exp(−k2).

Substituting this estimate into (5.77), we obtain

S ≥ exp(−2k2)x(ln x)k
(

y

q ln ln(q + 2)

)k
≥ exp(−2k5)x(ln x)k

(
y

q ln ln(q + 2)

)k
. (5.82)
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Now we obtain an upper bound for S. Applying (5.64) and (5.65), we get

S ≤
∑

1≤b1<...<bk
qbk≤ηy

L=L(b)∈AS

∑
n∈A(x) : An(L)>0

An(L)wn(L) ≤ Ck(lnR)2ke(4k)/ρ
∑

1≤b1<...<bk
qbk≤ηy

L=L(b)∈AS

∑
n∈A(x) : An(L)>0

1.

We have (see assertions (1)–(3), (i), and (ii) at the beginning of the proof)
∑

1≤b1<...<bk
qbk≤ηy

L=L(b)∈AS

∑
n∈A(x) : An(L)>0

1

≤ #
{
x ≤ n < 2x : ∃pj, pj+1, . . . , pj+m ∈ [qn+ 1, qn + 2ηy], pj, pj+1, . . . , pj+m ≡ a (mod q)

}

≤ #
{
x ≤ n < 2x : ∃pj, pj+1, . . . , pj+m ∈ [qn+ 1, qn + y], pj, pj+1, . . . , pj+m ≡ a (mod q)

}
:= N1.

Hence,

S ≤ Ck(lnR)2ke(4k)/ρN1.

Since ρ lies in the interval (5.68), we have

4k

ρ
≤ 8k4 ln k

c3
= c4k

4 ln k,

where c4 > 0 is an absolute constant. Since lnR = (1/9) ln x, it follows that

Ck(lnR)2ke(4k)/ρ ≤ C
k

92k
exp(c4k

4 ln k)(ln x)2k ≤ exp(k5)(ln x)2k

provided that C̃0 is chosen large enough. Hence,

S ≤ exp(k5)(lnx)2kN1. (5.83)

From (5.82) and (5.83) we obtain

N1 ≥ x
( y

lnx

)k( 1

q ln ln(q + 2)

)k
exp(−3k5). (5.84)

We define

Ω1 =
{
x ≤ n ≤ 2x− 1: ∃pj, pj+1, . . . , pj+m ∈ [qn+ 1, qn+ y], pj, pj+1, . . . , pj+m ≡ a (mod q)

}
,

Ω2 =
{
qx+ 1 ≤ pn ≤ q(2x− 1) + y : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ y

}

and put N2 = #Ω2. Since x is a positive integer, we have N1 = #Ω1. Let us show that

N1 ≤ (�y�+ 1)N2. (5.85)

Let n ∈ Ω1. Then there are at least m + 1 consecutive primes all congruent to a (mod q) in the
interval [qn+ 1, qn + y]. Let p be the first of them. Then p ∈ Ω2. We put

Λ =
{
j ∈ Z : qj + 1 ≤ p ≤ qj + y

}

and claim that

#Λ ≤ �y�+ 1. (5.86)
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Let Ij = [qj + 1, qj + y], j ∈ Z. Since p ∈ In, we have Λ 	= ∅. Let l be the minimal element in Λ.
We put t = �y�+ 1. Then t > y and

q(l + t) + 1 > q(l + t) = ql + qt ≥ ql + t > ql + y ≥ p.

Hence, p /∈ Ij for j ≥ l + t and j ≤ l − 1. We obtain #Λ ≤ t. Thus, (5.86) is proved; (5.85) follows
from (5.86). We have �y�+ 1 ≤ y + 2 ≤ 2y provided that c(ε) is chosen large enough. Since

N2 ≤ #
{
qx+ 1 ≤ pn ≤ 2qx+ y : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ y

}
=: N3,

we obtain (see (5.84))

N3 ≥
1

2

x

y

( y

lnx

)k( 1

q ln ln(q + 2)

)k
exp(−3k5). (5.87)

We put

N4 = #
{
qx < pn ≤ 2qx− 5q : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ y

}
, (5.88)

N5 = #
{
2qx− 5q < pn ≤ 2qx+ y : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ y

}
.

Then
N3 = N4 +N5. (5.89)

Since q ≤ y, we have
N5 ≤ 5q + [y] ≤ 5q + y ≤ 6y. (5.90)

Let us show that

y ≤ 1

24

x

y

( y

lnx

)k( 1

q ln ln(q + 2)

)k
exp(−3k5) := T1. (5.91)

Since q ≤ y1−ε ≤ y and k ≤ yε/14, we have

T1 ≥
1

24

x

y

(
yε

lnx ln ln(y + 2)

)k
exp
(
−3y5ε/14

)
.

Therefore, to prove (5.91), it suffices to show that

y ≤ 1

24

x

y

(
yε

lnx ln ln(y + 2)

)k
exp
(
−3y5ε/14

)
.

Taking logarithms, we obtain

ln y ≤ − ln 24 + lnx− ln y + k
(
ε ln y − ln lnx− ln ln ln(y + 2)

)
− 3y5ε/14

or, which is equivalent,

T2 := 2 ln y + ln 24− εk ln y + k ln lnx+ k ln ln ln(y + 2) + 3y5ε/14 ≤ lnx.

Since y ≤ lnx and 0 < ε < 1, we have k ≤ (lnx)ε/14 ≤ (lnx)1/14. Then

T2 ≤ 2 ln lnx+ ln 24 + (ln x)1/14 ln lnx+ (lnx)1/14 ln ln ln(ln x+ 2) + 3(ln x)5/14 ≤ lnx

provided that c(ε) is chosen large enough. Thus, (5.91) is proved. From (5.90) and (5.91) it
follows that

N5 ≤
1

4

x

y

( y

lnx

)k( 1

q ln ln(q + 2)

)k
exp(−3k5). (5.92)
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Applying (5.87), (5.89), and (5.92), we obtain

N4 ≥
1

4

x

y

( y

lnx

)k( 1

q ln ln(q + 2)

)k
exp(−3k5) =: T3. (5.93)

We have (see (2.2))

π(2qx) ≤ c1
2qx

ln(2qx)
≤ c1

2qx

lnx
= c2

qx

lnx
,

where c1 > 0 and c2 = 2c1 > 0 are absolute constants. Therefore,

T3 =
qx

lnx

lnx

qx

1

4

x

y

( y

lnx

)k( 1

q ln ln(q + 2)

)k
exp(−3k5)

≥ 1

4c2
π(2qx)

( y

lnx

)k−1 1

qk+1(ln ln(q + 2))k
exp(−3k5).

Using the inequality ln(1 + x) ≤ x, x > 0, we obtain ln ln(q + 2) ≤ ln(1 + q) ≤ q. Hence,

1

qk+1(ln ln(q + 2))k
≥ 1

q2k+1
≥ 1

q3k
5 .

We can assume that 4c2 ≤ 23k
5 if C̃0 is chosen large enough. We have

T3 ≥ π(2qx)
( y

lnx

)k−1 1

(2eq)3k5
.

We can also assume that 3k5 ≤ k6 if C̃0 is chosen large enough. Hence,

1

(2eq)3k5
≥ 1

(2eq)k6
.

We have (2e)k
6 ≤ 2k

7 if C̃0 is chosen large enough. It is clear that qk
6 ≤ qk

7 . Then

1

(2eq)k6
≥ 1

(2q)k7
.

Further (see (5.61)),

0 <
y

lnx
≤ 1 ⇒

( y

lnx

)k−1
≥
( y

lnx

)k7
.

We obtain

T3 ≥ π(2qx)

(
y

2q lnx

)k7

.

From (5.75) and (5.76) we find

k = �exp(c̃m)� ≤ exp(c̃m) + 1 ≤ exp(2c̃m) (5.94)

provided that C̃0 is chosen large enough. Therefore, k7 ≤ exp(14c̃m). Since C̃0 is a positive absolute
constant, we see from (5.75) that c̃ is a positive absolute constant. We have

T3 ≥ π(2qx)

(
y

2q lnx

)exp(14c̃m)

= π(2qx)

(
y

2q lnx

)exp(Cm)

, (5.95)
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where C = 14c̃ > 0 is an absolute constant. Combining (5.88), (5.93), and (5.95) we obtain

#
{
qx < pn ≤ 2qx− 5q : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ y

}

≥ π(2qx)

(
y

2q lnx

)exp(Cm)

.

Applying (5.94), we see that the inequality k ≤ yε/14 holds if exp(2c̃m) ≤ yε/14. This inequality is
equivalent to

m ≤ ε

28 c̃
ln y = cε ln y,

where c = 1/(28c̃ ) > 0 is an absolute constant. Let us redenote c(ε) by c0(ε). Lemma 5.4 is
proved. �

Lemma 5.5. There are positive absolute constants c and C such that the following holds. Let
ε be a real number with 0 < ε < 1. Then there is a number c0(ε) > 0, depending only on ε, such that
if x ∈ R, y ∈ R, m ∈ Z, q ∈ Z, and a ∈ Z satisfy the conditions c0(ε) ≤ y ≤ lnx, 1 ≤ m ≤ cε ln y,
1 ≤ q ≤ y1−ε, and (a, q) = 1, then

#
{
qx < pn ≤ 2qx : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ y

}
≥ π(2qx)

(
y

2q lnx

)exp(Cm)

.

Proof. Let c, C, and c0(ε) be the quantities mentioned in Lemma 5.4. We will choose a
quantity c̃0(ε) and an absolute constant C̃ later; they will be large enough. In particular, let
c̃0(ε) ≥ c0(ε) and C̃ ≥ C. Let x ∈ R, y ∈ R, m ∈ Z, q ∈ Z, and a ∈ Z be such that c̃0(ε) ≤ y ≤ lnx,
1 ≤ m ≤ cε ln y, 1 ≤ q ≤ y1−ε, and (a, q) = 1. We put l = �x�. Then, by Lemma 5.4, we have

N1 = #
{
ql < pn ≤ 2ql − 5q : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ y

}

≥ π(2ql)

(
y

2q ln l

)exp(Cm)

=: T1. (5.96)

Since x ≤ l < x+ 1, we have

ql ≥ qx and 2ql − 5q ≤ 2q(x+ 1)− 5q = 2qx− 3q < 2qx.

Therefore,

N1 ≤ #
{
qx < pn ≤ 2qx : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ y

}
=: N2. (5.97)

We have x+ 1 ≤ x2 provided that c̃0(ε) is chosen large enough. Hence,

ln l ≤ ln(x+ 1) ≤ 2 ln x.

Since π(2ql) ≥ π(2qx), we have

T1 ≥ π(2qx)

(
y

4q lnx

)exp(Cm)

= π(2qx)

(
y

q lnx

)exp(Cm)(1
4

)exp(Cm)

.

Then
2 exp(C̃m) ≤ exp(2C̃m)

provided that C̃ is chosen large enough. Since C̃ ≥ C, we have
(
1

4

)exp(Cm)

≥
(
1

4

)exp( ˜Cm)

=

(
1

2

)2 exp( ˜Cm)

≥
(
1

2

)exp(2 ˜Cm)

.
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Further,

0 <
y

q lnx
≤ 1 ⇒

(
y

q lnx

)exp(Cm)

≥
(

y

q lnx

)exp(2 ˜Cm)

.

Hence,

T1 ≥ π(2qx)

(
y

2q lnx

)exp(2 ˜Cm)

. (5.98)

From (5.96)–(5.98) we obtain

#
{
qx < pn ≤ 2qx : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ y

}
≥ π(2qx)

(
y

2q lnx

)exp(2 ˜Cm)

.

Let us denote c̃0(ε) by c0(ε) and 2C̃ by C. Lemma 5.5 is proved. �
Let us complete the proof of Theorem 1.1. Let c0(ε), c, C be the quantities in Lemma 5.5.

We will choose a quantity c̃0(ε) and an absolute constant C̃ later; they will be large enough. Let
c̃0(ε) ≥ c0(ε) and C̃ ≥ C.

Let us prove the following statement.
Proposition 5.2. Let ε be a real number with 0 < ε < 1. Let t ∈ R, y ∈ R, m ∈ Z, q ∈ Z,

and a ∈ Z be such that

t ≥ 100, c̃0(ε) ≤ y ≤ ln
t

2 ln t
, 1 ≤ m ≤ cε ln y, 1 ≤ q ≤ y1−ε, (a, q) = 1.

Then

#

{
t

2
< pn ≤ t : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ y

}
≥ π(t)

(
y

2q ln t

)exp( ˜Cm)

. (5.99)

Proof. Indeed, since t ≥ 100, we have 2 ln t ≥ 1. Hence,

y ≤ ln
t

2 ln t
≤ ln t.

We have q ≤ y1−ε ≤ y ≤ ln t. Therefore,

y ≤ ln
t

2 ln t
≤ ln

t

2q
.

We put x = t/2q. Then x ∈ R, y ∈ R, m ∈ Z, q ∈ Z, and a ∈ Z are such that

c0(ε) ≤ y ≤ lnx, 1 ≤ m ≤ cε ln y, 1 ≤ q ≤ y1−ε, (a, q) = 1.

By Lemma 5.5, we have

#
{
qx < pn ≤ 2qx : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ y

}

≥ π(2qx)

(
y

2q lnx

)exp(Cm)

≥ π(2qx)

(
y

2q lnx

)exp( ˜Cm)

≥ π(2qx)

(
y

2q ln(2qx)

)exp( ˜Cm)

.

Returning to the variable t, we obtain (5.99). �
Let us prove the following statement.
Proposition 5.3. Let ε be a real number with 0 < ε < 1. Let t ∈ R, m ∈ Z, q ∈ Z, and a ∈ Z

be such that

t ≥ 100, c̃0

(ε
2

)
≤ ln

t

2 ln t
, 1 ≤ m ≤ c

4
ε ln ln t, 1 ≤ q ≤ (ln t)1−ε, (a, q) = 1.
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Then

#

{
t

2
< pn ≤ t : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ ln

t

2 ln t

}
≥ π(t)

(
1

4q

)exp( ˜Cm)

.

Proof. We need the following
Lemma 5.6. Let t be a real number with t ≥ 100. Then

2 ln t ≤
√
t, ln

t

2 ln t
≥ 1

2
ln t, ln ln

t

2 ln t
≥ 1

2
ln ln t, 1− ln(2 ln t)

ln t
≥ 1

2
.

The proof of lemma 5.6 is a simple exercise in calculus, and we omit it.
We put

y = ln
t

2 ln t
.

Since t ≥ 100, we have (see Lemma 5.6)

ln y = ln ln
t

2 ln t
≥ 1

2
ln ln t.

Therefore,

1 ≤ m ≤ c
ε

2
ln y.

We may assume that c̃0(ε) ≥ 21/ε. Since t ≥ 100, we have t/(2 ln t) ≤ t and

c̃0

(ε
2

)
≤ ln

t

2 ln t
≤ ln t.

Hence,

t ≥ exp
(
c̃0

(ε
2

))
≥ exp

(
22/ε
)
.

Therefore,
1

2
(ln t)1−ε/2 ≥ (ln t)1−ε. (5.100)

From (5.100) and the last inequality in Lemma 5.6 we find

y1−ε/2 =

(
ln

t

2 ln t

)1−ε/2

= (ln t)1−ε/2

(
1− ln(2 ln t)

ln t

)1−ε/2

≥ (ln t)1−ε/2

(
1

2

)1−ε/2

≥ 1

2
(ln t)1−ε/2 ≥ (ln t)1−ε.

Since 1 ≤ q ≤ (ln t)1−ε, we have 1 ≤ q ≤ y1−ε/2. Applying Proposition 5.2 with ε/2 and the second
inequality of Lemma 5.6, we have

#

{
t

2
< pn ≤ t : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ ln

t

2 ln t

}

≥ π(t)

(
ln(t/(2 ln t))

2q ln t

)exp( ˜Cm)

≥ π(t)

(
1

4q

)exp( ˜Cm)

.

The statement is proved. �
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Proposition 5.4. Let ε be a real number with 0 < ε < 1. Let t ∈ R, y ∈ R, m ∈ Z, q ∈ Z,
and a ∈ Z be such that

t ≥ 100, c̃0

(ε
2

)
≤ ln

t

2 ln t
≤ y ≤ ln t, 1 ≤ m ≤ c

4
ε ln y, 1 ≤ q ≤ y1−ε, (a, q) = 1.

Then

#

{
t

2
< pn ≤ t : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ y

}
≥ π(t)

(
y

4q ln t

)exp( ˜Cm)

.

Proof. Since y ≤ ln t, we have

1 ≤ m ≤ c

4
ε ln ln t and 1 ≤ q ≤ (ln t)1−ε.

Applying Proposition 5.3, we obtain

#

{
t

2
< pn ≤ t : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ y

}

≥ #

{
t

2
< pn ≤ t : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ ln

t

2 ln t

}

≥ π(t)

(
1

4q

)exp( ˜Cm)

≥ π(t)

(
y

4q ln t

)exp( ˜Cm)

. �

For 0 < ε < 1 we define the quantity t0(ε) as follows:

t0(ε) ≥ 100, ln
t

2 ln t
≥ max

{
c̃0

(ε
2

)
, c̃0(ε)

}
for any t ≥ t0(ε).

Let us prove the following statement.

Proposition 5.5. Let ε be a real number with 0 < ε < 1. Let t ∈ R, y ∈ R, m ∈ Z, q ∈ Z,
and a ∈ Z be such that

t ≥ t0(ε), max
{
c̃0

(ε
2

)
, c̃0(ε)

}
≤ y ≤ ln t, 1 ≤ m ≤ c

4
ε ln y, 1 ≤ q ≤ y1−ε, (a, q) = 1.

Then

#

{
t

2
< pn ≤ t : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ y

}
≥ π(t)

(
y

4q ln t

)exp( ˜Cm)

.

Proof. Consider two cases. If

ln
t

2 ln t
< y ≤ ln t,

then t, y, m, q, and a satisfy the hypothesis of Proposition 5.4, which yields

#

{
t

2
< pn ≤ t : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ y

}
≥ π(t)

(
y

4q ln t

)exp( ˜Cm)

.

If

y ≤ ln
t

2 ln t
,
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then t, y, m, q, and a satisfy the hypothesis of Proposition 5.2, which yields

#

{
t

2
< pn ≤ t : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ y

}
≥ π(t)

(
y

2q ln t

)exp( ˜Cm)

≥ π(t)

(
y

4q ln t

)exp( ˜Cm)

. �

For 0 < ε < 1 we put

ρ(ε) = max
{
c̃0

(ε
2

)
, c̃0(ε)

}
+ t0(ε).

Let us prove the following statement.
Proposition 5.6. Let ε be a real number with 0 < ε < 1. Let t ∈ R, y ∈ R, m ∈ Z, q ∈ Z,

and a ∈ Z be such that

ρ(ε) ≤ y ≤ ln t, 1 ≤ m ≤ c

4
ε ln y, 1 ≤ q ≤ y1−ε, (a, q) = 1.

Then

#

{
t

2
< pn ≤ t : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ y

}
≥ π(t)

(
y

2q ln t

)exp(2 ˜Cm)

.

Proof. We have

max
{
c̃0

(ε
2

)
, c̃0(ε)

}
≤ y ≤ ln t and t ≥ exp(ρ(ε)) ≥ ρ(ε) ≥ t0(ε).

Applying Proposition 5.5, we obtain

#

{
t

2
< pn ≤ t : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ y

}
≥ π(t)

(
y

4q ln t

)exp( ˜Cm)

. (5.101)

We may assume that C̃ ≥ 2. Therefore, exp(C̃m) ≥ C̃m ≥ C̃ ≥ 2. Hence, 2 exp(C̃m) ≤ exp(2C̃m).
We have

(
1

4

)exp( ˜Cm)

=

(
1

2

)2 exp( ˜Cm)

≥
(
1

2

)exp(2 ˜Cm)

.

Further,

0 <
y

q ln t
≤ 1 ⇒

(
y

q ln t

)exp( ˜Cm)

≥
(

y

q ln t

)exp(2 ˜Cm)

.

We obtain
(

y

4q ln t

)exp( ˜Cm)

≥
(

y

2q ln t

)exp(2 ˜Cm)

. (5.102)

Relations (5.101) and (5.102) imply the required assertion. �
Let us denote ρ(ε) by c0(ε), c/4 by c, and 2C̃ by C. Theorem 1.1 is proved. �
Proof of Corollary 1.1. Let c0(ε), c, and C be the quantities in Theorem 1.1. We put

C1 = max

{
2

c
, c0

(
1

2

)
, C

}
.
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Let m be a positive integer. Let x ∈ R and y ∈ R be such that exp(C1m) ≤ y ≤ lnx. Then

y ≥ exp(C1m) ≥ C1m ≥ C1 ≥ c0

(
1

2

)
and y ≥ exp(C1m) ≥ exp

(
2

c
m

)
.

The last inequality implies

m ≤ c
1

2
ln y.

Putting q = 1 and a = 1, we have

c0

(
1

2

)
≤ y ≤ lnx, 1 ≤ m ≤ c

1

2
ln y, 1 ≤ q ≤ y1/2, (a, q) = 1.

Applying Theorem 1.1 with ε = 1/2, we see that

#
{x
2
< pn ≤ x : pn+m − pn ≤ y

}

= #
{x
2
< pn ≤ x : pn ≡ . . . ≡ pn+m ≡ a (mod q), pn+m − pn ≤ y

}

≥ π(x)

(
y

2q lnx

)exp(Cm)

= π(x)
( y

2 lnx

)exp(Cm)
≥ π(x)

( y

2 lnx

)exp(C1m)
.

Let us redenote C1 by C. Corollary 1.1 is proved. �
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