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Abstract—By constructing suitable nonnegative exponential sums, we give upper bounds on
the cardinality of any set Bq in cyclic groups Zq such that the difference set Bq − Bq avoids
cubic residues modulo q.
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1. INTRODUCTION

This paper is a follow-up to [3], where we described the general properties connecting positive ex-
ponential sums and difference sets. In this second part, we apply the techniques of [3] to investigate
the intersective properties of cubic residues in cyclic groups Zq. That is, by constructing suitable
nonnegative exponential sums, we obtain upper bounds on the cardinality of any set Bq ⊂ Zq such
that the difference set Bq −Bq avoids cubic residues modulo q. We will turn to the case of quadratic
residues in a later publication, but let us mention here that Gabdullin [2] has recently achieved a
non-trivial upper bound by a different method.

The ultimate aim of this research is to extend these results to the case of integers, i.e., give a
strong upper bound on the cardinality of a set B ⊂ {0, 1, . . . , N} such that B −B does not contain
any cubes or, more generally, kth powers for some fixed k.

In order to see the relation of the modular case to the integer case, we introduce the following
notions.

We use the standard notation e(x) = e2πix throughout the paper.
Definition 1.1. A nonnegative function

f (n)(x) = a0 +
n−1∑

j=1

aj
(
e(jkx) + e(−jkx)

)
≥ 0, x ∈ [0, 1], f (n)(0) = 1, (1.1)

is called a kth power witness function of order n. Similarly, a nonnegative function

g(q)(y) = b0 +

q−1∑

j=1

bj

(
e

(
jky

q

)
+ e

(
− jky

q

))
≥ 0, y = 0, 1, . . . , q − 1, g(q)(0) = 1, (1.2)

is called a kth power modular witness function, modulo q. (The dependence of aj on n and bj on q
will usually be suppressed in the notation.)

The normalization f (n)(0) = g(q)(0) = 1 is only for convenience, and will be used throughout
this note. We remark that the coefficients aj are automatically real as they are the Fourier (cosine)
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coefficients of the real-valued function f (n). Also, we can assume without loss of generality (after
averaging over j if necessary) that bj = bj′ whenever jk ≡ ±j′k mod q. This makes the coefficients bj
real (because g(q) is a real-valued even function, and bj are basically its Fourier coefficients, so they
must be conjugate symmetric bj = b−j, and they are also symmetric bj = b−j by the assumption
above, so they are in fact real).

Let us clarify here the connection of these definitions to the results of [3]. Consider the cyclic
group G = Zq of order q, and let R

(k)
0 denote the set of kth power residues mod q (including 0).

Let R
(k)
s denote the symmetrized set R

(k)
s = R

(k)
0 ∪ −R

(k)
0 . We can think of the coefficients bj

as a function h : G → R, supported on R
(k)
s , defined in the following way: for any r ∈ R

(k)
s let

h(r) =
∑

j3≡±r bj . The Fourier transform of h is then ĥ = g(q) ≥ 0. Therefore, the function h fits
into the class of functions used in the definition of λ

(
R

(k)
s

)
in [3].

We will restrict our attention to the case k = 3 in this paper, the treatment of other odd values
of k being similar. We will use the following notation in accordance with the one introduced in [3].

Definition 1.2. Let C(q) denote the set of non-zero cubic residues modulo q, and let C
(q)
0 =

C(q) ∪ {0}. Recall from [3] that δ
(
C

(q)
0

)
denotes the maximal density (i.e., |Bq|/q) of a set Bq ⊂ Zq

such that (Bq −Bq) ∩ C(q) = ∅. Also, λ
(
C

(q)
0

)
denotes the minimal possible value of the constant

term b0 in expression (1.2) for k = 3.

In this note we will be interested in upper bounds on δ
(
C

(q)
0

)
, but let us also mention here what

is known about lower bounds. For a prime q = 3k + 1, it is clear by the Ramsey number estimate
R(s, s) ≤ 4s that one can find a set Bq ⊂ Zq of size at least 
log4 q� such that (Bq −Bq) ∩ C(q) = ∅.
(After applying the Ramsey estimate, one can find either a suitable set B or a set B′ ⊂ Zq,
|B′| ≥ 
log4 q�, such that B′ −B′ ⊂ C

(q)
0 . In the latter case, it suffices to consider B = tB′ for any

non-cubic residue t ∈ Zq.) Also, a construction of a set B′ such that B′ −B′ ⊂ C
(q)
0 , log6 q � |B′|,

not using the Ramsey theory, appears in [1, Theorem 3]. For a prime q = 3k + 2 the problem is
trivial as |B| ≤ 1. For a square-free integer q = s1s2 . . . sm, where si = 3ki + 1, a straightforward
direct product construction (see [3, Sect. 8]) gives a suitable set B with |B| ≥

∏m
i=1
log4 si�. We are

not aware of any stronger results, and numerical experiments seem to indicate that the logarithmic
size is not far from the truth for primes q = 3k + 1.

We will obtain upper bounds on λ
(
C

(q)
0

)
, and these will automatically imply upper bounds

on δ
(
C

(q)
0

)
. In particular, according to [3, Theorem 1.4], any modular witness function g(q) in

equation (1.2) testifies to an upper bound |Bq| ≤ b0q for the cardinality of a set Bq ⊂ Zq such that
Bq −Bq avoids the kth power residues modulo q. Similarly, a kth power witness function f (n) will
lead to an estimate |B0| � a0n

k for the cardinality of a set B0 ⊂ [1, . . . , nk] such that B0 − B0

avoids the kth powers. Our aim, therefore, is to minimize the values of a0 and b0 in equations (1.1)
and (1.2). We will only be concerned with the modular case in this note.

Notice that f (n)(x) automatically induces a modular witness function modulo q = n by defining
g(n)(y) = f (n)(y/n), and if n is square-free then f (n) and g(n) have the same constant terms
a0 = b0. Therefore, constructing modular kth power witness functions g(q) is formally easier than
constructing kth power witness functions f (n). Conversely, in later publications of this series of
papers we hope to construct a family of witness functions f (n) assuming that we already have a
family of self-compatible modular witness functions g(q) at our disposal. Self-compatibility is a
natural property defined here.

Definition 1.3. A family of kth power modular witness functions g(q) (q = 1, 2, . . . ) of the
form (1.2) is called self-compatible if g(q1)(y1) = g(q2)(y2) whenever y1/q1 = y2/q2.

This paper will be devoted entirely to constructing a self-compatible family of modular witness
functions for k = 3, which is a very interesting problem in itself.
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2. CUBIC RESIDUES

Somewhat surprisingly, the case of cubic residues is considerably easier to handle than that
of quadratic residues. This is due to the fact that k = 3 is an odd number and therefore −1 is
automatically a cubic residue modulo q for any q. This implies that the set of cubic residues modulo
q = pα1

1 . . . pαr
r is always symmetric to 0. Also, it is equal to the direct product of the sets of cubic

residues modulo pα1
1 , . . . , pαr

r . Therefore, the results on direct products in [3, Sect. 8] can be invoked,
and the problem reduces to forming nonnegative exponential sums with cubic residue frequencies
in cyclic groups Zpα of prime-power order. The self-compatibility property will be an automatic
consequence of the construction.

We first consider the case of square-free moduli q, which is of independent interest in itself.
Theorem 2.1. Let q = p1p2 . . . prs1s2 . . . sm be a square-free integer, where pi denote primes of

the form 3k+2, sl denote primes of the form 3k+1, and if 3 |q then we list the prime 3 among the pi.
There exists a cubic witness function modulo q, g(q)(y) = b0 +

∑q−1
j=1 bj(e(j

3y/q) + e(−j3y/q)) ≥ 0,

y = 0, 1, . . . , q − 1, g(q)(0) = 1, such that

b0 ≤
(

r∏

i=1

1

pi

)(
m∏

l=1

2√
sl

)
≤ 2m

√
q
. (2.1)

That is, with the notation of Definition 1.2, we have

λ
(
C

(q)
0

)
≤ 2m

√
q
= Oε

(
q−1/2+ε

)
(2.2)

for every ε > 0.
Proof. For a prime p = 3k + 2, all elements of Zp are cubic residues. Therefore, we can take

the trivial witness function modulo p,

g(p)(y) =
1

p

p−1∑

j=0

e

(
j3y

p

)
, (2.3)

with the constant term being 1/p. That is, λ
(
C

(p)
0

)
≤ 1/p (in fact, the equality holds). The same

is true for p = 3, which is listed among the pi if 3 | q.
For a prime s = 3k + 1 the set C(s) ⊂ Zs of non-zero cubic residues modulo s is symmetric to

zero, and consists of (s − 1)/3 elements. Denoting the cubic multiplicative characters on Zs by χ0,
χ1, and χ2 (with χ0 being the principal character), we have

s−1∑

j=1

e

(
j3y

s

)
=

s−1∑

l=1

e

(
ly

s

)
χ0(l) +

s−1∑

l=1

e

(
ly

s

)
χ1(l) +

s−1∑

l=1

e

(
ly

s

)
χ2(l) ≥ −1− 2

√
s, (2.4)

because the last two sums have absolute value
√
s (see [4, Lemma 4.3]). Therefore, after normal-

ization, we may take

g(s)(y) =
2
√
s+ 1

2
√
s+ s

+
1

2
√
s+ s

s−1∑

j=1

e

(
j3y

s

)
≥ 0, y = 0, . . . , s− 1, g(s)(0) = 1, (2.5)

and the constant term satisfies (2
√
s+ 1)/(2

√
s+ s) ≤ 2/

√
s. That is, λ

(
C

(s)
0

)
≤ 2/

√
s.

Finally, the group Zq is the direct product of the groups Zpi and Zsl, and the set of cubic
residues C(q)

0 modulo q is symmetric to zero and equals the direct product of the sets C(pi)
0 and C

(sl)
0 .

Therefore, the direct product construction of [3, Theorem 8.1] can be applied, and equation (35)
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in [3] implies λ
(
C

(q)
0

)
=

(∏r
i=1 λ

(
C

(pi)
0

))(∏m
l=1 λ

(
C

(sl)
0

))
, and the bound given in (2.1) follows.

Finally, estimate (2.2) follows from the fact that 2m = O(qε). �
Remark 2.2. For primes of the form s = 3k + 1 the estimate λ

(
C

(s)
0

)
≤ 2/

√
s is asymptotically

optimal, and therefore the exponent in the bound λ
(
C

(q)
0

)
= O(q−1/2+ε) cannot be improved.

Via Theorem 1.4 in [3] the bound (2.2) above immediately implies the same upper bound for
the density of sets avoiding cubic residues.

Corollary 2.3. For any ε > 0 and any square-free positive integer q, the density δ(Bq) of
any set Bq ⊂ Zq such that the difference set Bq − Bq avoids cubic residues modulo q satisfies
δ(Bq) = Oε(q

−1/2+ε).

Now we turn to general (non-square-free) moduli q. The direct product construction can still
be applied in this case, but the construction of witness functions modulo prime powers is slightly
more technical.

Lemma 2.4. Using the notation of Definition 1.2, we have

λ
(
C

(pm)
0

)
= λ

(
C

(p)
0

)[(m+2)/3] (2.6)

for any prime p = 3 and any integer m ≥ 1 (the notation [x] stands for the integer part of any
number x). For p = 3 we have

λ
(
C

(33m)
0

)
= λ

(
C

(27)
0

)m
. (2.7)

Proof. Let p = 3. We prove the lemma by induction on m. For m = 1 the statement is trivial.
Let m ≥ 2, and let us identify the residue classes modulo pm with the numbers 0, 1, . . . , pm − 1.

The structure of the cubic residues modulo pm is the following: for 0 < t ≤ pm−1 − 1 and
0 ≤ l ≤ p − 1 we have t + lpm−1 ∈ C(pm) if and only if t ∈ C(pm−1). For t = 0, we have two
different cases. If 3 does not divide m− 1 then lpm−1 ∈ C(pm) if and only if l = 0. If 3 | m− 1 then
lpm−1 ∈ C(pm) if and only if l ∈ C

(p)
0 .

Consider the subgroup H = {0, pm−1, . . . , (p− 1)pm−1} ⊂ Zpm . Then H ≡ Zp, Zpm/H ≡ Zpm−1 ,
and we can apply the general result concerning subgroups and factor groups in [3, Theorem 7.2].
Namely, by formula (29) in [3] and the structure of the set C

(pm)
0 described above, we obtain

λ
(
C

(pm)
0

)
≥ λ

(
C

(pm−1)
0

)
if 3 does not divide m− 1, and λ

(
C

(pm)
0

)
≥ λ

(
C

(pm−1)
0

)
λ
(
C

(p)
0

)
if 3 | m− 1.

This proves the lower bound in the inductive step.
To prove the upper bound, we apply a simple construction. Let

g(p)(y) = b
(p)
0 +

∑

j∈C(p)

b
(p)
j e

(
jy

p

)
(2.8)

be a witness function modulo p such that b(p)0 is minimal, i.e., b(p)0 = λ
(
C

(p)
0

)
(a simple compactness

argument shows that the minimal value of b(p)0 can indeed be attained). Similarly, let

g(p
m−1)(y) = b

(pm−1)
0 +

∑

t∈C(pm−1)

b
(pm−1)
t e

(
ty

pm−1

)
(2.9)

be a witness function modulo pm−1 such that b
(pm−1)
0 = λ

(
C

(pm−1)
0

)
. Define

g(p
m)(z) =

∑

t∈C(pm−1)

b
(pm−1)
t

p

p−1∑

l=0

e

(
(t+ lpm−1)z

pm

)
+ h0(z), (2.10)
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where h0(z) = b
(pm−1)
0 if 3 does not divide m − 1, and h0(z) = b

(pm−1)
0

(
b
(p)
0 +

∑
j∈C(p) b

(p)
j e(jz/p)

)

if 3 | m− 1. Clearly, g(pm)(0) = 1 and the constant term of g(pm)(z) is equal to b
(pm−1)
0 = λ

(
C

(pm−1)
0

)

if 3 does not divide m− 1, while it is b
(pm−1)
0 b

(p)
0 = λ

(
C

(pm−1)
0

)
λ
(
C

(p)
0

)
if 3 | m− 1. We claim that

g(p
m)(z) is indeed a witness function modulo pm, i.e., g(pm)(z) ≥ 0 for z = 0, 1, . . . , pm − 1. If z = py

then a substitution into the definitions shows that

g(p
m)(z) = g(p

m)(py) = g(p
m−1)(y) ≥ 0. (2.11)

If z = py + j where j = 0, then for each t ∈ C(pm−1) we have

p−1∑

l=0

e

(
(t+ lpm−1)z

pm

)
= e

(
t(py + j)

pm

) p−1∑

l=0

e

(
lj

p

)
= 0;

therefore
g(p

m)(z) = g(p
m)(py + j) = h0(py + j) = b

(pm−1)
0 g(p)(j) ≥ 0. (2.12)

This proves the upper bound in the inductive step and completes the proof of the lemma for p = 3.
For p = 3 the proof is similar. The structure of the cubic residues modulo 33m is the following:

for 0 < t ≤ 33(m−1) − 1 and 0 ≤ l ≤ 26 we have t+ l · 33(m−1) ∈ C(33m) if and only if t ∈ C(33(m−1)).
For t = 0, we have l · 33(m−1) ∈ C(33m) if and only if l ∈ C

(27)
0 .

Consider the subgroup H = {0, 33(m−1), . . . , 26 · 33(m−1)} ⊂ Z33m . Then we have H ≡ Z27,
Z33m/H ≡ Z33(m−1) , and formula (29) in [3] implies λ

(
C

(33m)
0

)
≥ λ

(
C

(33(m−1))
0

)
λ
(
C

(27)
0

)
. This proves

the lower bound in the inductive step.
To prove the upper bound, we define

g(3
3m)(z) =

∑

t∈C(33(m−1))

b
(33(m−1))
t

27

26∑

l=0

e

(
(t+ l · 33(m−1))z

33m

)

+ b
(33(m−1))
0

(
b
(27)
0 +

∑

j∈C(27)

b
(27)
j e

(
jz

27

))
(2.13)

and note that g(3
3m)(0) = 1, the constant term is λ

(
C

(33(m−1))
0

)
λ
(
C

(27)
0

)
, for z = 27y we have

g(3
3m)(z) = g(3

3m)(27y) = g(3
3(m−1))(y) ≥ 0, (2.14)

and for z = 27y + j where j = 0 we have

g(3
3m)(z) = g(3

3m)(27y + j) = b
(33(m−1))
0 g(27)(j) ≥ 0. � (2.15)

This lemma enables us to prove our main result concerning cubic residues in cyclic groups.
Theorem 2.5. For

ε = − log

(
1− 2

2 + cos(π/13) + sin(3π/26)

)
1

3 log 13
≈ 0.1195 (2.16)

there exists a self-compatible family g(q)(y) of cubic modular witness functions of the form (1.2)
such that b0 ≤ q−ε. In particular,

λ
(
C

(q)
0

)
≤ q−ε (2.17)

for every q ≥ 1.
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Proof. If q = 3 is a prime of the form 3k + 2, we define the modular witness function g(q)(y)

by equation (2.3) and note that λ
(
C

(q)
0

)
= q−1. If q is a prime of the form 3k + 1, we define

g(q)(y) = b
(q)
0 + b(q)

∑q−1
j=1 e(j

3y/q) such that b
(q)
0 + (q − 1)b(q) = 1, g(q)(y) ≥ 0 for 0 ≤ y ≤ q − 1,

and b
(q)
0 is minimal possible, i.e., b(q)0 = λ

(
C

(q)
0

)
(it is easy to see that all the coefficients of e(j3y/q)

can be assumed to be equal by averaging; cf. [3, Proposition 5.2]). By equation (2.5) we note that
λ
(
C

(q)
0

)
≤ (2

√
q + 1)/(2

√
q + q) ≤ q−0.36 for q ≥ 31. For q = 7, 13, and 19 direct computation

shows that λ
(
C

(q)
0

)
≤ q−3ε with equality for q = 13.

If q = pm is a power of a prime p = 3, then we define g(q)(y) by induction on m as in
Lemma 2.4. Equation (2.6) shows that λ

(
C

(q)
0

)
≤ q−ε. The self-compatibility property follows

from equation (2.11).
For q = 27 we define g(27)(y) = b

(27)
0 + b(27)

∑
j∈C(27) e(jy/27) such that g(27)(0) = 1, g(27)(y) ≥ 0

for y = 0, 1, . . . , 26, and b
(27)
0 = λ

(
C

(27)
0

)
(again, the non-leading coefficients can be assumed to be

equal by averaging). For q = 33m we define g(q)(y) by induction on m as in Lemma 2.4. For
q = 33m−1 and q = 33m−2 we define g(q)(y) = g(3

m)(3y) and g(q)(y) = g(3
m)(9y), respectively.

Self-compatibility follows from this definition and equation (2.14). Direct computation of λ
(
C

(27)
0

)

and equation (2.7) show that for any q = 3α we have λ
(
C

(q)
0

)
≤ q−ε.

Finally, let q = pα0
0 pα1

1 . . . pαr
r be the prime factorization of q, where p0 = 3 if it appears in q.

The set of cubic residues C
(q)
0 modulo q is symmetric to zero and equals the direct product of the

sets C
(pα)
0 . Furthermore, as in the construction of [3, Theorem 8.1] we define the cubic witness

function g(q)(y) = b
(q)
0 +

∑
j∈C(q) b

(q)
j e(jy/q) as the direct product of the cubic modular witness

functions g(p
α). It is straightforward that the self-compatibility property is preserved under direct

products, and

λ
(
C

(q)
0

)
≤ b

(q)
0 = b

(3α0 )
0

(
r∏

i=1

λ
(
C

(pαr
i )

0

)
)

≤ q−ε. �

Again, via [3, Theorem 1.4] the bound (2.17) above immediately implies the same upper bound
for the density of sets avoiding cubic residues.

Corollary 2.6. For ε given by (2.16) and any positive integer q, the density δ(Bq) of any set
Bq ⊂ Zq such that the difference set Bq −Bq avoids cubic residues modulo q satisfies δ(Bq) ≤ q−ε.
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