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Abstract—A corridor Y for the motion of an object is given in the space X = R
N (N = 2, 3).

A finite number of emitters si with fixed convex radiation cones K(si) are located outside the
corridor. The intensity of radiation F (y), y > 0, satisfies the condition F (y) ≥ λF (λy) for
y > 0 and λ > 1. It is required to find a trajectory minimizing the value

J(T ) =
∑

i

1∫

0

F
(
‖si − t(τ)‖

)
dτ

in the class of uniform motion trajectories T =
{
t(τ) : 0 ≤ τ ≤ 1, t(0) = t∗, t(1) = t∗

}
⊂ Y ,

t∗, t
∗ ∈ ∂Y , t∗ �= t∗. We propose methods for the approximate construction of optimal trajec-

tories in the case where the multiplicity of covering the corridor Y with the cones K(si) is at
most 2.
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1. INTRODUCTION

We study the problem of constructing a route such that an object moving at a constant speed

along this route would be exposed to the lowest total dose of radiation from several emitters. The

problem is considered on the plane and in the space R
3. The route must connect fixed start and

end points and not go beyond a given corridor Y . The boundary ∂Y of the corridor is a closed

continuous line in R
2 or a closed continuous surface in R

3; more exactly, we analyze the case where

the boundary ∂Y is homeomorphic to a sphere. The emitters are located outside the corridor and

are directional; i.e., each of them radiates into its own convex cone (radiation cone) with a vertex

at the point where the emitter is located. We consider emitters whose radiation cones completely

cover the corridor Y . We assume that the emitters are “single-type” in the sense that they have

the same dependence of the decrease in radiation intensity on the distance to the emitter. Our

study is limited to the case where the multiplicity of covering the corridor Y by the radiation cones

of the emitters is at most 2.

The results of this paper can be used, for example, for planning optimal paths of autonomous

mobile robots in an environment with obstacles [1].
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An object t moves at a constant speed in the corridor Y ⊂ R
N (N = 2, 3) from an initial

point t∗ to a final point t∗ (t∗, t∗ ∈ ∂Y , t∗ �= t∗), and T is the family of trajectories

T =
{
t(τ) : 0 ≤ τ ≤ 1, t(0) = t∗, t(1) = t∗

}
⊂ Y.

The boundary ∂Y of the corridor Y is homeomorphic to a sphere. Fixed emitting sources si
(i = 1, . . . , n) are located outside the corridor. Radiation is emitted along rays l from a given fixed

convex open cone Ki = K(si) = {l} with vertex si such that t∗ �∈ Ki, t
∗ �∈ Ki. Each cone K(si)

satisfies the condition

K(si) ∩ T �= ∅ ∀ T ∈ T.

By KY (si), we denote the connected subset of K(si) ∩ Y nearest to si and satisfying the above

condition.

Two options are possible: radiation is either transmitted or not transmitted through the

boundary ∂Y of the corridor. For definiteness, we assume first that the boundary of the corridor

prevents the propagation of radiation. In this case, we denote by KV (s) the set of points of the set

KY (s) that are irradiated (visible) from the source s. The radiation intensity of each source s = si

is the same along all rays from K(si) and is characterized by a positive decreasing function F̃i(y)

of the real variable y > 0. Define

Fi(x) =

⎧
⎨

⎩
F̃i(‖si − x‖) for x ∈ l ∈ K(si),

0 for x �∈ K(si).

Let

J(T ) =

n∑

i=1

1∫

0

Fi(t(τ)) dτ

be the total radiation received by the object when it moves along the trajectory T , where n is the

number of emitters.

In this paper, we consider the problem of constructing a trajectory T̂ that provides the infimum

J = inf{J(T ) : T ∈ T}. (1)

It is assumed that the multiplicity of covering the corridor Y by the cones K(si) is at most two.

This is a problem in the calculus of variations with nonsmooth constraints (if the boundary ∂Y

is not smooth) complicated by the presence of several radiation sources. Obviously, it is possible

to formulate problem (1) as an optimal control problem of the motion of the object under state

constraints [2]. We propose geometric methods for finding an optimal or close to optimal trajectory

depending on the mutual arrangement of the cones K(si). The problem of the motion of an object

in a radioactive medium was considered in another formulation in [3, 4].

It is natural to assume that the function F̃ not only decreases but also has the following property:
∫

Cρ

F (x) dx >

∫

Cλρ

F (x) dx ∀ λ > 1 (2)

for any ρ > 0, where Cρ = {x ∈ K(s) : ‖s − x‖ = ρ}. This property, in particular, is possessed by

a function satisfying the condition

F̃ (ρ) > λF̃ (λρ) for ρ > 0, λ > 1. (3)
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Indeed, ∫

Cρ

F (x) dx = F̃ (ρ)|Cρ| > λF̃ (λρ)|Cρ| = F̃ (λρ)|Cλρ| =
∫

Cλρ

F (x) dx,

where |Cρ| is the area (arc length) of Cρ.

In the case of R2, we observe the following relations for the function F̃ satisfying condition (3):

• let [a, b] and [λa, λb] (λ > 1) be segments lying on a ray l ∈ K(s) with vertex s = 0; then

b∫

a

F (x) dx >

b∫

a

λF (λx) dx =

b∫

a

F (λx) dλx =

λb∫

λa

F (x) dx;

• suppose that Φ is the opening of the cone K = K(s), Φ < π, s = 0 is the origin of a

polar coordinate system, T ∈ T, the part of this trajectory TK = T ∩KY is given by the function

ρ = ρ(ϕ), and λTK ⊂ KY for λ > 1. Then

Φ∫

0

F̃ (ρ(ϕ)) dϕ >

Φ∫

0

λF̃ (λρ(ϕ)) dϕ >

Φ∫

0

F̃ (λρ(ϕ)) dϕ. (4)

Thus,

∫ Φ

0
F̃ (λρ(ϕ)) dϕ as a function of λ also monotonically decreases with the growth of λ.

An example of a function satisfying condition (3) is the function

F̃ (ρ) = ρ−α for α ≥ 1.

2. THE CASE OF A SINGLE RADIATION SOURCE s IN R
2

Consider the case of a single radiation source s on the plane. Then

J(T ) =

1∫

0

F (t(τ)) dτ.

Since t∗, t∗ ∈ ∂Y , the boundary ∂Y is decomposed by the points t∗ and t∗ into two parts. Let Γ be

the part of the boundary of Y opposite to s. Using the curve Γ, we define the function ρ = ρΓ(ϕ),

0 ≤ ϕ ≤ Φ, in a polar coordinate system with the origin s so that the value ρΓ(ϕ) is the distance

from s to Γ along the ray lϕ ⊂ K(s) outgoing from s at the angle ϕ. The function ρΓ(ϕ) may

have discontinuity points. Let us supplement the graph of the function ρΓ(ϕ) at each discontinuity

point ϕ with the segment [ρ′ϕ, ρ
′′
ϕ] (ρ

′
ϕ < ρ′′ϕ) of the ray lϕ so that we get a continuous curve, which

is denoted by gr ρ(·) (see Fig. 1). Note that, when the object moves along the half-open interval

(ρ′ϕ, ρ
′′
ϕ] ⊂ lϕ, it is not irradiated, since the point (ρ

′
ϕ, ϕ) belongs to the boundary Γ. At first glance,

it might be expected that gr ρ(·) would be an optimal trajectory. The following examples show

that the curve gr ρ(·) is not always optimal.

Example 1. Let Γ be the graph of the function ρ = ρ(ϕ) = 1+ ε sin kϕ (ε < 1/2) (see Fig. 2).

Then, for sufficiently large k, the function ρ has a large variation
∨Φ

0 ρ and, hence, a large value of

J(gr ρ(·)). In this case, the trajectory coinciding on K(s) with an arc of the circle of radius 1− ε

centered at s is more preferable.
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lϕ

s
K(s)

(ρ′ϕ, ϕ)

(ρ′′ϕ, ϕ)
Γ

s

1− ε
1
1 + ε

Fig. 1. Discontinuity of the function ρΓ(ϕ)). Fig. 2. Illustration of Example 1.

Example 2. For ρ1 < ρ2 and angles ϕ1 and ϕ2, 0 ≤ ϕ1 < ϕ2 ≤ Φ < π, we define a curve Γ

consisting of the two arcs (ρ1, ϕ), 0 ≤ ϕ ≤ ϕ1, and (ρ1, ϕ), ϕ2 ≤ ϕ ≤ Φ, and of the two segments

connecting the point (ρ2, (ϕ1 +ϕ2)/2) with the points (ρ1, ϕ1) and (ρ1, ϕ2). When ρ2 − ρ1 is large,

the arc of the circle Cρ1 is more preferable as a trajectory in comparison with Γ.

These examples and the monotonicity property of the function F̃ show that the optimal

trajectory must lie as far as possible from s and have a small length in small areas.

The original problem is the problem of the calculus of variations and consists in finding a

continuous function ρ(ϕ):

inf
ρ(ϕ)

{ Φ∫

0

F̃ (ρ(ϕ)) dϕ : ρ(ϕ) ≤ ρΓ(ϕ)

}
. (5)

The difficulty of this problem is specified by the properties of the function ρΓ(ϕ).

Suppose that the function ρΓ(ϕ) is piecewise monotone. Let x = (ρ, ϕ) be a local maximum

point of the function ρΓ(ϕ) (see Fig. 3); possibly, it belongs to an interval consisting of maximum

points; i.e., there exist ϕ′ ≤ ϕ′′ such that

ρΓ(ϕ) ≥ ρΓ(ϕ) for ϕ′ ≤ ϕ ≤ ϕ′′ and ρΓ(ϕ) > min{ρ(ϕ′), ρ(ϕ′′)}.

For ρ < ρ close to ρ, we denote by a = a(ρ) = a(ρ, ϕρ) and b = b(ρ) = b(ρ, ϕρ) with ϕρ < ϕρ

the points of Cρ ∩ gr ρ(·) nearest to lϕ and by ρ∗ = ρ∗x the largest of the numbers ρ for which one

of the points a or b is a one-sided local minimum of the function ρΓ(ϕ) over the cone K. Define

Δ = Δx = [ϕρ∗ , ϕ
ρ∗ ].

If the maximum point x is not a point of strict local maximum, then this interval Δ can also be

generated by other points y for which Δ = Δy. Let Cab
ρ be the arc of the circle Cρ between the

points a and b intersecting the segment [s, x], and let Gab
ρ be the part of the graph gr ρ(·) between

the points a and b containing x.

It is required to solve the following problem of finding a continuous function γ = γ(ϕ) on Δ

that provides the minimum

JΔx = min
γ

{∫

Δ

F̃ (γ(ϕ)) dϕ : γ(ϕ) ≤ ρΓ(ϕ) for ϕ ∈ Δ, γ(ϕρ∗) = γ(ϕρ∗) = ρ∗
}
. (6)
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s

Δx

a(ρ∗)
b(ρ∗)

ρ∗

ρ
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Cab
ρ

b(ρ)

Γ

x

Gab
ρ

s

lj−1

lj

T

Kj−1

Kj

Kj+1

lj+2

lj+1

Fig. 3. Neighborhood of a local maximum Fig. 4. Example of a trajectory close to optimal.

of the function ρΓ(ϕ)).

It is clear that the graph of the function γ̂ = γ̂(ϕ), which is a solution of problem (6), lies between the

curves Cab
ρ∗ and Gab

ρ∗ . Note that the function γ̂ is downward convex on those intervals [ϕ1, ϕ2] ⊂ Δ,

ϕ1 < ϕ2, where γ̂(ϕ) < ρΓ(ϕ). Indeed, if this is not so, then there exist angles ϕ′ and ϕ′′,

ϕ1 ≤ ϕ′ < ϕ′′ < ϕ2, such that the graph of the function γ̂(ϕ), ϕ′ < ϕ < ϕ′′, lies between s and

the straight line segment connecting the points (γ̂(ϕ′), ϕ′) and (γ̂(ϕ′′), ϕ′′). By reflecting the graph

with respect to this segment and using property (2), one can easily construct a trajectory with a

lower irradiation rate in comparison with (γ̂(ϕ), ϕ).

For each local maximum point x (specifically, for each interval consisting of local maximum

points), we solve problem (6) on Δx.

Theorem. Let the function ρΓ(ϕ) be piecewise monotone. An extremal trajectory of problem (5)

is given by a function ρ̂(ϕ) = ρ̂(ϕ, s) (0 ≤ ϕ ≤ Φ) that coincides with the function γ̂(ϕ) (ϕ ∈ Δ)

on each interval Δ = Δx and with ρΓ(ϕ) on the set Φ\
⋃

xΔx.

Proof. To prove the theorem, it suffices to observe that, due to the monotonicity of the

functions F , the extremal trajectory coincides with ρΓ(ϕ) on the set Φ\
⋃

xΔx, whereas outside

this set it is constructed optimally and coincides with γ̂(ϕ). �
Thus, the original problem (5) reduces to a series of extremal problems of form (6).

For a number ρ, ρ∗ ≤ ρ ≤ ρ, we define the function

δρ(ϕ) = min{ρΓ(ϕ), ρ} for ϕ ∈ Δx.

It is of interest to consider the simpler (in comparison with (6)) problem of finding the minimum

on a narrower class of functions:

JΔ = min
ρ∗≤ρ≤ρ

∫

Δ

F̃ (δρ(ϕ)) dϕ; (7)

the solution of this problem approximates the function γ̂(·).
Let us mention one more method of constructing a trajectory T close to optimal. We divide

the cone K(s) into partial cones Ki bounded by rays lj and lj+1, where lj = lϕj (0 = ϕ0 < ϕ1 <

· · · < ϕm = Φ) and Δj = Δjϕ = [ϕj , ϕj+1). In the simplest case, the partition is either uniform
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s1

s2

L

Γ1

Fs1

Fs2

K(s2)

K(s1)

Γ2

D

Fig. 5. The case of two sources at opposite parts of the boundary.

or is determined by the properties of Γ. We construct the trajectory T based on the function t(ϕ),

which is constant on some partial intervals Δj with a large variation of the function ρΓ(ϕ). Without

violating the constraint ρ(ϕ) ≤ ρΓ(ϕ), due to the mentioned (see (4)) property of monotonicity of

the quantity

∫
F̃ (λρ(ϕ)) dϕ with respect to λ, it is natural to take a piecewise constant function

on these intervals:

t(ϕ) = ρj = min{ρΓ(α) : α ∈ Δjϕ} for ϕ ∈ Δjϕ.

The trajectory T ⊂ Y of the object on the chosen intervals is constructed by completing the graph

of the function t(ϕ) at each discontinuity point ϕj with the segment [aj , bj ] of the ray lj , where

aj = (ρj , ϕj) and bj = (ρj−1, ϕj). On the remaining partial intervals, the trajectory coincides with

ρΓ(ϕ) (Fig. 4).

3. THE CASE OF TWO SOURCES IN R
2

The points t∗ and t∗ split the boundary ∂Y into two parts Γ1 and Γ2. In what follows, we

assume that si ∈ Γi (i = 1, 2); i.e., the sources are located on opposite parts of ∂Y . Let

F1 = F2
def
= F, [s1, s2] ∩

(
(
◦
KY (s1) ∪

◦
KY (s2)

)
= ∅

(see Fig. 5). Define KY (s1) ∩ KY (s2) = D. By li and l′i, we denote the “left” and “right” rays

bounding the cone K(si), i = 1, 2. We consider possible options for the location of the sources s1
and s2 and methods of constructing optimal trajectories. Let L be a straight line orthogonal to

the segment [s1, s2] containing the point (s1 + s2)/2.

If D ∩ L = ∅ and the sets D and KY (s1) ∩ Γ1, for example, lie on the same side from L, then,

as one can see, the optimal trajectory is T2,1 , which traverses the cone KY (s2) along the segment

A2 = l1 ∩ KV (s2) and the cone KY (s1) along the graph of the function ρΓ2 : G1
def
= (gr ρ2(·)) ∩

KY (s1) (in Fig. 6, these portions of the trajectory are marked with the bold dashed line).

We now assume that
◦
D ∩L �= ∅.

Among the trajectories not intersecting the set
◦
D, there are two candidates for optimal ones;

these are T1,2 and T2,1, which intersect the cones KY (si) alternately. The latter trajectory is

defined above, and the trajectory T1,2 intersects KY (s1) along the segment A1 = l2 ∩KY (s1) and
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s1 l2 l′2
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A1 a
a′

b′ L

Y

b

A2

G1

s2 l1 l′1

Fig. 6. The case D ∩ L = ∅. Fig. 7. The case
◦
D ∩ L �= ∅).

the cone KY (s2) along the graph of the function ρΓ1 : G2
def
= (gr ρ(·)) ∩ KY (s2) (Fig. 7). These

trajectories correspond to the irradiation values

J1,2 =

∫

A1

F (s1 − x) dx+

∫

G2

F (s2 − x) dx, J2,1 =

∫

A2

F (s2 − x) dx+

∫

G1

F (s1 − x) dx.

Let us consider trajectories intersecting the set
◦
D. All of them contain the segment [a, a′] =

L ∩ D designated with regard to the direction of motion from t∗ to t∗. Indeed, differentiating the

function F (s1−x−α(s1−s2))+F (s2−x−α(s1−s2)) with respect to α, we see that the minimum

over α of this function is attained at α = 0 for all x ∈ [a, a′]. The search for an optimal trajectory

outside the set D can be implemented by solving the following problem.

Suppose that l is a ray from K(s), η is a segment from l, c is a point from KY (s)\l, and T(x, c)

is the set of trajectories

Tx = {t(τ) : 0 ≤ τ ≤ 1, t(0) = x, t(1) = c} ⊂ KY (s)

for x ∈ η. It is required to find the value

J(η, c) = inf
x∈η

inf

{ 1∫

0

Fs(t(τ)) dτ : T ∈ T(x, c)

}
. (8)

Define [q, q′] = L ∩ (KY (s1) ∪ KY (s2)), b = l1 ∩ l2, q
′
1,2 = l′1 ∩ Γ2, and q′2,1 = l′2 ∩ Γ1. It is

easily seen that, to approach optimally the point a from the point t∗, the object must intersect the

segment [q, b] using the solution of the problem J([q, b], a), and, to escape from the point a′ towards

the point t∗, it must intersect the segment [q′, q′1,2] if q
′ ∈ l′1 (Fig. 8a) and the interval [q′, q′2,1] if

q′ ∈ l′2 (Fig. 8b).

Lemma. Suppose that s = 0, the points v and w belong to KY (s), w �∈ l = {αv, α > 0}, and

J(α) =

1∫

0

Fs(λαv + (1− λ)w) dλ, α > 0.
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s1s1 q′2,1q′2,1
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q a
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a′
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q′q′
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L

b

b

s2s2

l1
l′1

q′1,2
(a) (b)

Γ1

Γ2

l2 l′2

Fig. 8. (a) The case q′ ∈ l′1. (b) The case q′ ∈ l′2.

Then the function J(α) is decreasing.

Proof. Indeed,

1

Δα

[
J(α+Δα)− J(α)

]
=

1

Δα

1∫

0

[
F (λ(α+Δα)v + (1− λ)w) − F (λαv + (1− λ)w)

]
dλ

−−−−→
Δα→0

1∫

0

F ′
α(λαv + (1− λ)w)λdλ < 0. �

Using the lemma, we conclude that one unknown part of the trajectory to the point a coincides

with the segment [a, b] (see Figs. 8a, 8b). To construct another part of the trajectory from the

point a′ to t∗, we use the following algorithm of finding an approximate solution of the problem

J([q, p0], a) (8), where a ∈
◦
K (s), l′ and l are the boundary rays with vertex s of the cone K(s),

po ∈ l, and q ∈ (s, p). We use the notation

∫ b

a
=

∫ b

a
F (x) dx, where [a, b] is a straight line segment.

Fix a finite family of rays li ∈ K(s) with vertex s that intersect the interval (a, q) in order from

the point q to the point a. Let p1 ∈ l1 be the point farthest from s such that the interval [p1, p0]

is disjoint with the interior of the set X\Y . Define ci = li ∩ [a, pi−1]. Applying the lemma (see

Fig. 9), we get
q∫

a

>

p0∫

a

for w = a, (9)

p0∫

c1

>

p1∫

p0

for w = p0,

c1∫

a

>

p1∫

a

for w = a

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⇒
p0∫

a

>

p1∫

a

+

p0∫

p1

. (10)
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s

l2
l1

a
ql3

c2

c1

Γ2Γ2

l′

p2

p1
p0

l

Fig. 9. Construction of an approximate solution of problem (8).

Let p2 ∈ l2 be the point farthest from s such that the segment [p1, p2] is disjoint with the interior

of the set X\Y . Applying the lemma, we get

p1∫

c2

>

p1∫

p2

for w = p1,

c2∫

a

>

p2∫

a

for w = a

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

⇒
p1∫

a

>

p2∫

a

+

p1∫

p2

. (11)

It follows from (9)–(11) that

q∫

a

>

p0∫

a

>

p1∫

a

+

p0∫

p1

>

p2∫

a

+

p1∫

p2

+

p0∫

p1

.

Thus, four trajectories are constructed: [a, q], [a, p0], [a, p1]∪ [p1, p0], and [a0, p2]∪ [p2, p1]∪ [p1, p0]

with decreasing values of the total exposure. These trajectories connect the point a with the

segment [q, p0]. The trajectory construction process can be continued by using all rays from the

given family {li}. Expanding the family {li}, we construct a trajectory for which the segment

[p0, p1]∪ [p1, p2]∪ . . .∪ [pk, pk+1] better approximates a part of the boundary Γ2. Moreover, we can

define an infinite set of rays in
{
li
}
approaching a point and construct a “converging” sequence of

trajectories.

Thus, if there is a pair of sources s1 and s2 with nonempty intersection
◦
KY (s1)∩

◦
KY (s2),

in order to find an optimal trajectory, one should determine to which of the considered cases the

relative position of the cones KY (si) belongs.

If the sources lie on the same part of the boundary ∂Y , say, on Γ1 and
◦
KY (s1)∩

◦
KY (s2) �= ∅,

then the above reasoning in the case of a single irradiator remains valid.

4. APPROXIMATE CONSTRUCTION OF OPTIMAL TRAJECTORIES IN R
3

Consider the case of a single emitter s. Assume that the boundary ∂Y does not block

radiation, i.e., does not form shadows. Assume also that s �∈ Y , any trajectory T ∈ T intersects
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the interior of the truncated cone KY (s) = K(s) ∩ Y , and, moreover, KY is the connected part of

the corridor Y nearest to s that has the indicated property. We will proceed from the fact that the

opening of the cone K(s) is less than π. For the chosen value of m, we construct two one-parameter

families of planes

{P i}, {Qj}, i, j ∈ {1, 2, . . . ,m}.

Suppose that L andR are the left and right sides of the surface Y ∩ ∂K(s), respectively (in the sense

that any trajectory from T enters the truncated cone KY (s) through L and leaves it through R), pl
and pr are points from the intersection of the corridor Y and the surfaces L and R, respectively,

and Pl and Pr are the tangent planes to L and R at the points pl and pr. Clearly, s ∈ Pl ∩Pr. Let

QI and QII be the planes containing the point s and supporting KY (s) from different sides of the

corridor Y . We define

P i =
1

i
Pl +

(
1− 1

i

)
Pr, Qj =

1

j
QI +

(
1− 1

j

)
QII , i, j ∈ {1, 2, . . . ,m} (12)

for given m. The planes P i and Qj decompose the cone K(s) into partial cones Kij bounded by

the planes P i, P i+1, Qj , and Qj+1. Let, for a ray l ⊂ Kij, the point z(l) ∈ l ∩ KY (s) be the

most distant from s. Among these rays, we find a ray l = lij for which ‖s − z(lij)‖ takes the

greatest value. Define zij = z(lij). We construct a graph whose vertices are the points zij and

edges are the segments connecting points zij and zi′j′ from neighboring partial cones, i.e., cones

having a common edge or a common face containing the point s. To determine the weight of an

edge [zij , zi′j′ ], we find the distance ρz from s to the boundary ∂Y along the ray {s + α(z − s),

α > 0}, where z = λzij + (1− λ)zi′j′ . The edge weight is defined as

1∫

0

F̃ (ρz(λzij + (1− λ)zi′j′)) dλ.

Let Zl be the set of the vertices zij of the graph that correspond to the partial cones Kij intersecting

the left side L of the set Y ∩ ∂K(s). The set of vertices Zr can be defined similarly. The problem of

constructing a trajectory that approximates the optimal one is reduced to finding a path connecting

the sets Zl and Zr and having the least sum of the weights of its edges.

Consider the case of two emitters s1 and s2 in R
3. Assume that Fs1 = Fs2 and the set

D =
◦
KY (s1) ∩

◦
KY (s2) is nonempty. We can also assume that [s1, s2] ∩

◦
D= ∅, since the emitters

s1 and s2 should not irradiate each other. Here, as earlier, we use the notation Li = LKY (si) and

Ri = RKY (si) for the left and right sides of the truncated cone KY (si). The part of the corridor Y

located, say, to the right from R2 and to the left from L1 is called a box and is denoted by R2L1.

Possible positions of the cones K(s1) and K(s2) are shown in Fig. 10. The boundary edges of the

set D are marked with the bold solid and dashed lines. We have s1 �∈ K(s2) and s2 �∈ K(s1), and

the set D is the intersection of Y with a tetrahedron with convex conical faces in the case (a); in

the case (b), s2 ∈ K(s1) and D = Y ∩K(s1) ∩K(s2).

For definiteness, we assume that the segment [s1, s2] lies “to the left” from the set D. Denote

the plane orthogonal to this segment and containing the point (s1 + s2)/2 by L.

First, we assume that L ∩ D = ∅. In this case, the optimal trajectory T is disjoint with D,

since, if t ∈ T ∩ D and ρ(s1, t) �= ρ(s2, t), the point t could be shifted to a point t′ ∈ D such that

ρ(s1, t) + ρ(s2, t) < ρ(s1, t
′) + ρ(s2, t

′).
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s2s2

T ′

s1s1

T ′′
T ′′′

(a) (b)

R2L1

Fig. 10. (a) The case s1 �∈ K(s2), s2 �∈ K(s1). (b) The case s2 ∈ K(s1), D = Y ∩K(s1) ∩K(s2).

Indeed, when ρ(s1, t) > ρ(s2, t), we can take t′ = s2 + ε(t − s2) for small ε > 0. Hence, T
intersects the cones K(si) successively, say, first K(s1) and then K(s2) (the case of the other order

is considered similarly). Thus, the problem is to find a trajectory T that optimally intersects

K(s1) when passing from the box L1L2 to the box R1L2; further, we must find a trajectory that

optimally intersects K(s2) when passing from the box R1L2 to the box R1R2. The optimality

means minimizing the total exposure of the object over each segment δTi = T ∩ K(si), i = 1, 2.

The behavior of the optimal trajectory on a short interval can be tracked using the intersection

points with the planes of a specially chosen one-parameter family similar to the family Pλ =

λPl + (1 − λ)Pr (see (12)). This family must cut a part of the space and the trajectory that

obviously contains the segment δTi of the trajectory. Taking into account the convexity of the

cones K(si) (i = 1, 2) and choosing an appropriate one-parameter family of planes, we see that

• in the case (a), the farthest from s1 trajectory of traversing the cone K(s1), denoted as T ′,

belongs to the set Y ∩K(s1) ∩ L2,

• in the case (b), the trajectory most distant from s1 is composed of two parts T ′′ and T ′′′, the

first of which, T ′′, belongs to ∂Y and connects L1 and L2, while the second, T ′′′, belongs to the

set Y ∩K(s1) ∩ L2.

In both cases, it remains to construct the trajectory T2 intersecting optimally the cone K(s2).

As noted above, the farthest from si curve is not always optimal; it is necessary to take into account

its length. To find a trajectory close to optimal, the methods proposed in the previous sections can

be used: namely, the methods presented in the section where the problem is studied in R
2 in order

to construct T ′ and T ′′′ and the algorithm for finding a trajectory in R
3 in the case of a single

emitter in order to find T ′′. In Fig. 10, one of the optimal trajectories is shown by the dotted line.

Let LD
def
= L∩D. The points x ∈ D are exposed to irradiation of magnitude 2F (‖s1 −x‖) from

the virtual source (s1+s2)/2. The set D is the intersection of Y with a convex set whose boundary

in the case (a) consists of fragments of four (three in the case (b)) conical surfaces:

L1 ∩K2, R1 ∩K2, L2 ∩K1, R2 ∩K1,

where Ki = K(si). In the simplest case where the plane L intersects the edges l̃ = (L1 ∩ L2) ∩ Y

and r̃ = (R1 ∩ R2) ∩ Y , the problem reduces to searching for an optimal planar curve from LD
connecting the points of intersection of L with the specified edges. This curve can be constructed
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by using the above lemma. The optimal trajectory outside D belongs to the boxes L1L2 and R1R2,

which lie outside the irradiation zone.

In the general case, we find the distances

min
{
‖x− d‖ : x ∈ l̃, d ∈ LD

}
, min

{
‖y − d‖ : y ∈ r̃, d ∈ LD

}

and pairs of points {xl ∈ l̃, dl ∈ LD} and {yr ∈ r̃, dr ∈ LD} implementing these lower bounds.

To solve the problem, it suffices to construct an optimal trajectory in LD connecting the points dl
and dr and two trajectories in D: one of them connects the points xl and dl and the other connects

the points yr and dr.

The above methods make it possible to construct either an optimal or close to optimal trajectory

in different cases of the location of the cones K(s).
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