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Abstract—We consider the problem of extending algebraic polynomials from the unit sphere
of the Euclidean space of dimension m ≥ 2 to a concentric sphere of radius r �= 1 with the

smallest value of the L2-norm. An extension of an arbitrary polynomial is found. As a result,
we obtain the best extension of a class of polynomials of given degree n ≥ 1 whose norms in

the space L2 on the unit sphere do not exceed 1. We show that the best extension equals rn

for r > 1 and rn−1 for 0 < r < 1. We describe the best extension method. A.V. Parfenenkov
obtained in 2009 a similar result in the uniform norm on the plane (m = 2).
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1. INTRODUCTION

1.1. Problem statement. Main result. Let Rm, m ≥ 2, be the Euclidean space of points

x = (x1, . . . , xm) equipped with the norm |x| = |x|m =
( m∑

k=1

x2k
)1/2

; let Br = B
m
r = {x ∈ R

m:

|x| ≤ r} and Sr = S
m−1
r = {x ∈ R

m : |x| = r} be a ball and a sphere of radius r > 0 centered at the

origin of the space R
m, respectively; and let Zm

+ be the set of points α = (α1, . . . , αm) ∈ R
m with

nonnegative integer coordinates called multi-indices. For a multi-index α = (α1, . . . , αm) ∈ Z
m
+ and

a point x = (x1, . . . , xm) ∈ R
m, we set xα = xα1

1 xα2
2 · · · xαm

m .

Denote by L2(Sr) the space of complex-valued measurable square integrable on Sr functions

with the L2-norm

‖f‖ = ‖f‖L2(Sr) =

(
1

|Sr|

∫

Sr

|f(x)|2 dx
)1/2

;

here |Sr| is the area of the sphere Sr; L
2(Sr) is a Hilbert space with respect to the inner product

(f, g) =
1

|Sr|

∫

Sr

f(x)g(x) dx, f, g ∈ L2(Sr). (1.1)
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For a nonnegative integer n, denote by Pn = Pm
n the set of algebraic polynomials

Pn(x) = Pn(x1, . . . , xm) =
∑

α = (α1, . . . , αm) ∈ Z
m
+ ,

α1 + · · ·+ αm ≤ n

cαx
α (1.2)

in m real variables x = (x1, . . . , xm) ∈ R
m of degree (at most) n with complex coefficients {cα}.

A term xα in (1.2) is called a monomial, and the sum α1 + · · · + αm is the degree of this

monomial. The largest degree of monomials with nonzero coefficients is called the exact degree

of a polynomial Pn. Denote by Bn the set of polynomials from Pn whose norms in the space L2(S)

on the unit sphere S = S1 are bounded by 1; i.e.,

Bn = {Pn ∈ Pn : ‖Pn‖L2(S) ≤ 1}.

For a polynomial Pn ∈ Pn, we consider an associated class

Qn(Pn) = {Qn ∈ Pn : Qn(x) = Pn(x) for x ∈ S} (1.3)

of polynomials Qn ∈ Pn coinciding with Pn on the unit sphere S. For a polynomial Pn ∈ Pn, the

smallest value

un(Pn; r) = inf{‖Qn‖L2(Sr) : Qn ∈ Qn(Pn)}

of the L2(Sr)-norms of polynomials from the associated class on a sphere of radius r can be

interpreted as the value of the best L2-extension of the polynomial Pn from the unit sphere S

to the sphere Sr. In this case, it is natural to consider the value

θmn (r) = sup{un(Pn; r) : Pn ∈ Bn} = sup{un(Pn; r) : Pn ∈ Pn, ‖Pn‖L2(S) ≤ 1} (1.4)

as the value of the best L2-extension of the set of polynomials Bn from S to Sr. In the present

paper, we consider the problem of finding the exact value of the best extension θmn (r) and the best

extension method; we call it problem (1.4).

In 2009 Parfenenkov (see [1]) solved a problem similar to (1.4) in the uniform norm on the plane

(m = 2) for all r > 0.

In what follows, we give a solution to problem (1.4) for arbitrary dimension m ≥ 2 and all

r > 0, r �= 1; problem (1.4) in the case r = 1 is trivial: θmn (1) = 1.

Denote by Hn = H m
n the set of harmonic (in R

m) polynomials Hn ∈ Pm
n . Finally, let

Gn = Gm
n be the set of homogeneous harmonic polynomials Gn ∈ H m

n whose exact degree (and

order of homogeneity) is n.

The main result in the present paper is the following theorem.

Theorem. The following statements hold for every m ≥ 2 and n ≥ 1.

(1) For r > 1, the value of the best extension (1.4) is

θmn (r) = rn, (1.5)

and only homogeneous harmonic polynomials Gn ∈ Gn of degree n with unit norm ‖Gn‖L2(S) = 1

and polynomials from the associated classes Qn(Gn) are extremal in problem (1.4).

(2) For 0 < r < 1, the formula

θmn (r) = rn−1
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holds, and only homogeneous harmonic polynomials Gn−1 ∈ Gn−1 of degree n − 1 with unit norm

‖Gn−1‖L2(S) = 1 and polynomials from the associated classes Qn(Gn−1) are extremal in this case.

We describe the best method for extending polynomials from the unit sphere to a sphere Sr of

radius r �= 1 in Section 4 after the proof of the theorem.

As will be seen from Lemma 1 and the proof of the theorem, the case n = 1 is degenerate,

though formally the theorem holds for it.

Problem (1.4) is also meaningful for n = 0. This is a trivial case, and it is convenient to discuss

it after the proof of Lemma 1.

Note two known facts.

(1) The following formula holds for the area of a sphere Sr, r > 0 (see, for example, [2,

Ch. XVIII, Sect. 676, Example 3]):

|Sr| = σm rm−1, σm = |S| = 2πm/2

Γ (m/2)
.

(2) The following formula holds for functions f defined, measurable, and integrable on a

sphere Sr, r > 0 (details can be found, for example, in [3, (26)]):

∫

Sr

f(x) dx = rm−1

∫

S

f(rx) dx.

In what follows, the statements that a polynomial from Pn and, in particular, from Hn has

degree n mean only that the exact degree of the polynomial is at most n. The cases when the exact

degree of a polynomial is n will be discussed explicitly.

1.2. Gauss expansion of algebraic polynomials in several variables. In the study of

extremal problems for algebraic polynomials in several variables, the well-known Gauss theorem

on the representation of an arbitrary homogeneous polynomial in several variables in terms of

homogeneous harmonic polynomials is of great importance; a proof of this theorem can be found

in the monographs [4, Ch. XI, Sect. 2, Theorem XI.1] and [5, Ch. IV, Sect. 2, Theorem 2.1]. In the

present paper, we use the Gauss representation of an arbitrary polynomial in several variables in

terms of harmonic polynomials, which follows from this theorem. We formulate this statement in

the form of the following theorem (see, for example, [4, Ch. XI, Sect. 5, (XII.5.1)]).

Theorem A (Gauss expansion for algebraic polynomials). For every nonnegative integer n,

every polynomial Pn ∈ Pn can be uniquely presented in the form

Pn(x) =

[n/2]∑

s=0

|x|2s Hn−2s(x), x ∈ R
m,

where Hj ∈ Hj.

Corollary. For every r > 0 and every polynomial Pn ∈ Pn, there exists a unique harmonic

polynomial Hn = Hn(Pn, r) that coincides with Pn on the sphere Sr. In particular, for every

polynomial Pn ∈ Pn, its associated class (1.3) contains a unique harmonic polynomial.
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2. THE STRUCTURE OF THE ASSOCIATED CLASS

The authors do not claim the novelty of the following statement about the representation of the

associated class (1.3). However, we did not find a reference to such a result in the mathematical

literature. Therefore, here it is presented with a proof.

Lemma 1 (The structure of the associated class). If n ≥ 2, then, for every polynomial

Pn ∈ Pn, its associated class Qn(Pn) consists exactly of polynomials of the form

Qn(x) = Pn(x) +
(
|x|2 − 1

)
Rn−2(x), Rn−2 ∈ Pn−2.

For n = 0 and 1, the class Qn(Pn) consists only of the polynomial Pn.

Proof. Let us first discuss the assertions of the lemma for n = 0 and 1. For n = 0, a polynomial

P0 ∈ P0 is a constant, and its associated class Q0(P0), obviously, consists only of the constant P0.

In the case n = 1, a polynomial P1 ∈ P1 has the form

P1(x1, . . . , xm) = a1x1 + a2x2 + · · ·+ amxm + am+1,

where {ak} are the coefficients of P1. Let

Q1(x1, . . . , xm) = b1x1 + b2x2 + · · ·+ bmxm + bm+1

also be a polynomial of the first degree, which coincides with P1 on the unit sphere. Consider their

difference

F1(x1, . . . , xm) = P1(x1, . . . , xm)−Q1(x1, . . . , xm)

= (a1 − b1)x1 + · · ·+ (am − bm)xm + (am+1 − bm+1).

Define ck = ak− bk. We take 2m points, one of whose coordinates is 1 or −1 while the others are 0.

These points belong to the unit sphere; hence, the difference F1 vanishes at them. As a result, we

obtain a system of 2m linear equations with respect to the variables ck:

cm+1 ± ck = 0, k = 0, . . . ,m.

This system has only the zero solution: ck = 0, 1 ≤ k ≤ m+1. Hence, the polynomial Q1 coincides

with the polynomial P1 everywhere in R
m.

Now, let n ≥ 2. Assume that F is a polynomial equal to the difference of algebraic polynomials

taking identical values on the unit sphere S, i.e., F is a polynomial vanishing on the unit sphere:

F (x) ≡ 0, x ∈ S. (2.1)

We represent the points x = (x1, . . . , xm) ∈ R
m in the form x = (ξ, y), where ξ = x1 ∈ R and

y = (x2, . . . , xm) ∈ R
m−1. We write the polynomial F (x) = F (ξ, y) as a polynomial in the variable ξ

whose coefficients are polynomials in y:

F (ξ, y) =

n∑

k=0

ck(y)ξ
k.

Divide F (ξ, y) by a second-degree polynomial ξ2 + |y|2m−1 − 1 = ξ2 + x22 + · · · + x2m − 1 in the

variable ξ regarding the coordinates of the point y as parameters. We obtain the relation

F (ξ, y) = R(ξ, y)(ξ2 + |y|2 − 1) + ξ U(y) + V (y), (2.2)
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where R(ξ, y), U(y), and V (y) are polynomials in the variables x = (ξ, y) and y, respectively.

For an arbitrary point y from the open unit ball
◦
B =

◦
B
m−1 of the space Rm−1, the two (distinct)

values

ξ± = ±
√

1− |y|2m−1

of the parameter ξ are such that the points x± = (ξ±, y) lie on the unit sphere of the space R
m;

hence, according to (2.1), we have F (ξ±, y) = 0. Substituting these points into representation (2.2),

we obtain

F (ξ±, y) = ξ±U(y) + V (y) = 0, y ∈
◦
B . (2.3)

Since ξ+ �= ξ−, relations (2.3) imply that U(y) = 0 and V (y) = 0 for y ∈
◦
B. Since U and V are

polynomials, this implies that U and V are identically equal to zero on R
m−1.

As a result, we obtain the following representation for the polynomial F :

F (x) = R(x)
(
|x|2m − 1

)
, x ∈ R

m.

It is easy to see that the polynomial R has degree at most n− 2, i.e., belongs to Pn−2.

Lemma 1 is proved completely.

Remark 1. The assertion of Lemma 1 for n = 0 shows that problem (1.4) is trivial in this

case. Specifically, θm0 (r) = 1, r > 0, and only the two polynomials ±1 are extremal.

3. THE BEST EXTENSION OF HARMONIC POLYNOMIALS

In this section, we study the best extension

un(Hn; r) = inf{‖Qn‖L2(Sr) : Qn ∈ Qn(Hn)}

of harmonic polynomials Hn of degree n ≥ 1 from the unit sphere to a sphere of radius r > 0, r �= 1.

We will proceed from the quite obvious fact that a harmonic polynomial Hn ∈ H m
n is the sum

Hn =
n∑

k=0

Gk (3.1)

of homogeneous harmonic polynomials Gk ∈ Gm
k of degree k, 0 ≤ k ≤ n.

Lemma 2 (Extension of harmonic polynomials). The following formula holds for a harmonic

polynomial Hn written in the form (3.1) for n ≥ 2 and r > 0, r �= 1:

un(Hn; r) =
(
r2n‖Gn‖2L2(S) + r2(n−1)‖Gn−1‖2L2(S)

)1/2
. (3.2)

The best extension is implemented only by the polynomials

Q∗
n(x) = Hn(x) + (|x|2 − 1)R∗

n−2(x), (3.3)

where R∗
n−2 are polynomials of degree (at most) n − 2 for which the following representation

necessarily holds on the sphere Sr:

R∗
n−2(x) = − 1

r2 − 1

n−2∑

k=0

Gk(x), x ∈ Sr. (3.4)
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Proof. By Lemma 1, the following representation can be written for an arbitrary polynomial

Qn ∈ Qn(Hn):

Qn(x) = Hn(x) + (|x|2 − 1)Rn−2(x),

where Rn−2 is an arbitrary polynomial from Pn−2. By the corollary to Theorem A, the polynomial

Rn−2 coincides on the sphere Sr with some harmonic polynomial Hn−2 of degree (at most) n− 2,

which, according to formula (3.1), has the form

Hn−2(x) =

n−2∑

k=0

G0
k(x), x ∈ R

m,

where {G0
k}

n−2
k=0 are homogeneous harmonic polynomials. Consequently, the following representation

holds for the polynomial Rn−2 on Sr:

Rn−2(x) =

n−2∑

k=0

G0
k(x), x ∈ Sr.

Thus, we have the following formula for the polynomial Qn on the sphere Sr:

Qn(x) = Gn(x) +Gn−1(x) +

n−2∑

k=0

(
Gk(x) + (r2 − 1)G0

k(x)
)
, x ∈ Sr.

All n + 1 terms on the right-hand side of this formula are homogeneous harmonic polynomials of

the corresponding degree. Such polynomials are orthogonal on the sphere Sr with respect to the

inner product (1.1) (see, for example, [5, Ch. IV, Sect. 2, Corollary 2.4] or [4, Ch. XI, Sect. 3]).

Therefore,

‖Qn‖2L2(Sr)
= ‖Gn‖2L2(Sr)

+ ‖Gn−1‖2L2(Sr)
+

n−2∑

k=0

‖Gk + (r2 − 1)G0
k‖2L2(Sr)

.

The smallest value of the latter quantity is attained at polynomials {G0
k}

n−2
k=0 defined by the formulas

G0
k = −Gk/(r

2 − 1), 0 ≤ k ≤ n− 2,

at least on the sphere Sr. Thus, it is proved that

un(Hn; r) = inf{‖Qn‖L2(Sr) : Qn ∈ Qn(Hn)} = ‖Gn +Gn−1‖L2(Sr)

=
(
‖Gn‖2L2(Sr)

+ ‖Gn−1‖2L2(Sr)

)1/2
=

(
r2n‖Gn‖2L2(S)

+ r2(n−1)‖Gn−1‖2L2(S)

)1/2
.

The minimum here is attained at every polynomial of the form (3.3) in which R∗
n−2 is a polynomial

of degree n− 2 having the form (3.4) on the sphere Sr.

Lemma 2 is proved.

Remark 2. In our opinion, it is of interest that polynomials (3.3) on the sphere Sr, regardless

of the value of r > 0, r �= 1, are defined by the same formula

Q∗
n(x) = Gn(x) +Gn−1(x), x ∈ Sr.
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4. COMPLETION OF STUDYING PROBLEM (1.4)

4.1. Proof of the main theorem. First, we justify the assertions of the theorem in the

case n ≥ 2. According to the corollary to Theorem A, for any polynomial Pn ∈ Pn, the associated

class contains a (unique) harmonic polynomial Hn ∈ Pn. The associated classes of these two

polynomials are the same; hence,

un(Pn; r) = un(Hn; r).

Using representation (3.1) of the polynomial Hn and formula (3.2), we obtain the relation

un(Pn; r) =
(
r2n‖Gn‖2L2(S) + r2(n−1)‖Gn−1‖2L2(S)

)1/2
. (4.1)

Hence, for r > 1,

un(Pn; r) ≤ rn
(
‖Gn‖2L2(S) + ‖Gn−1‖2L2(S)

)1/2

≤ rn
( n∑

k=0

‖Gk‖2L2(S)

)1/2
= rn‖Hn‖L2(S) = rn‖Pn‖L2(S).

Thus, the following estimate holds for every polynomial Pn ∈ Pn for r > 1:

un(Pn; r) ≤ rn‖Pn‖L2(S).

It is easy to conclude from the proof that this inequality turns into an equality if and only if

Hn = Gn. This implies the equality (1.5) and the characterization of extremal polynomials given

in the statement of the theorem.

The statements of the main theorem for r > 1 are proved.

In the case 0 < r < 1, formula (4.1) implies the inequality

un(Pn; r) ≤ rn−1
(
‖Gn‖2L2(S) + ‖Gn−1‖2L2(S)

)1/2
.

Hence, as for r > 1, the following estimate is valid for any polynomial Pn ∈ Pn in the case

0 < r < 1:

un(Pn; r) ≤ rn−1‖Pn‖L2(S).

This estimate implies all the assertions of the theorem for 0 < r < 1.

The main theorem is proved for n ≥ 2.

Consider the case n = 1. A polynomial P1 of the first degree is harmonic and has the form

P1 = G0 + G1, where G0 is a constant and G1 is a homogeneous polynomial of the first degree.

According to Lemma 1, the class associated with P1 consists only of this polynomial. Therefore,

in this case,

u1(P1; r) = ‖P1‖L2(Sr) =
(
r2‖G1‖2L2(S) + ‖G0‖2L2(S)

)1/2
. (4.2)

Formula (4.2) is analogous to formula (4.1). The further argument in the proof of the theorem for

n = 1 is carried out in the same way as for n ≥ 2.

The theorem is proved completely.
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4.2. The best extension method. In the above proof of the theorem, a method is con-

structed for extending a polynomial Pn ∈ Pn from the unit sphere of the space Rm to a polynomial

of degree at most n with the smallest value of the L2-norm on a sphere Sr of radius r �= 1; we call

it here the best extension method. In the case n = 1, for any r > 0, this method is the identity

operator, which assigns to any polynomial P1 ∈ P1 the same polynomial. In the case n ≥ 2, the

method consists of two steps.

(1) For a polynomial Pn ∈ Pn, we consider its associated harmonic polynomial Hn ∈ Pn.

(2) Using representation (3.1), we associate to the polynomial Hn a polynomial Q∗
n ∈ Pn by

formula (3.3).

The constructed mapping Pn → Q∗
n of the set Pn into itself will be the best extension method.

This mapping is many-valued for n ≥ 4, since the polynomial R∗
n−2 in formula (3.3) is defined

uniquely only on the sphere Sr.

However, a mapping Ar that extends a polynomial Pn ∈ Pn from the unit sphere S to a sphere

Sr, r �= 1, in the best way (i.e., with the smallest value of the L2-norm) is defined uniquely by the

formula

(ArPn)(x) = Gn(x) +Gn−1(x), x ∈ Sr;

this mapping is a linear operator, and the following formula holds for the norm of this operator

from L2(S) to L2(Sr):

‖Ar‖L2(S)→L2(Sr) = max{rn, rn−1}.

In this sense, the best extension method is single-valued, unique, and linear.
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