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Abstract—Reduced semigroup C∗-algebras for arbitrary cancellative semigroups are studied.
It is proved that if there exists a semigroup epimorphism from a semigroup to an arbitrary
group G, then the corresponding semigroup C∗-algebra is topologically G-graded. It is also
demonstrated that if the group is finite, then the graded semigroup C∗-algebra has the structure
of a projective Hilbert C∗-module.
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INTRODUCTION

In this paper, we consider reduced semigroup C∗-algebras, namely, the algebras generated by
left regular representations of cancellative semigroups. The study of such C∗-algebras was initiated
by Coburn [2, 3], Douglas [4], and Murphy [21, 22]. The further development of the theory of
semigroup C∗-algebras is due to many authors (see, for example, the references cited in [16]).

The present work is a continuation of the studies of reduced semigroup C∗-algebras started
in [1, 8–13, 17–19]. Here we study the following problems: the construction of a grading for reduced
semigroup C∗-algebras, and the existence of a Hilbert C∗-module structure on a graded semigroup
C∗-algebra.

The grading of an object of a category makes it possible to better understand the structure of this
object. In the category of C∗-algebras, one uses C∗-bundles, or Fell bundles, to construct a grading.
These bundles were introduced by Fell [7], who employed them to extend the notions of harmonic
analysis to the noncommutative case. Exel [5] introduced the notion of a topologically graded
C∗-algebra. A refinement of the definition of such an algebra is contained in [24]. It is important
that the topological grading of a C∗-algebra guarantees the existence of special operators which are
analogs of the Fourier coefficients. For a detailed account of the theory of graded C∗-algebras, we
refer the reader to the monograph [6]. In [1, 8, 9, 11, 17], the authors studied questions related to
the construction of gradings for different semigroup C∗-algebras. In [11], the notion of the σ-index
of a monomial was introduced and used to construct a G-grading of a semigroup C∗-algebra for a
finite cyclic group G. In the present study, we employ this notion to construct a G-grading of a
semigroup C∗-algebra for an arbitrary group G, including a nonabelian one.

It is well known that the theory of Hilbert C∗-modules is a convenient tool for studying C∗-al-
gebras. A detailed introduction to the theory of Hilbert C∗-modules, as well as many of its applica-
tions, is contained in the book [20]. In [23], the authors used the theory of Hilbert C∗-modules to de-
fine a noncommutative analog of branched coverings. To define the structure of a Hilbert C∗-module
on a semigroup C∗-algebra, we use the conditional expectation of algebraically finite index (see [25])
and thus define a noncommutative covering of a semigroup C∗-algebra [23, Definition 1.4].

The paper consists of the introduction and four sections. In Section 1, we give necessary informa-
tion on semigroup C∗-algebras and the definitions of graded and topologically graded C∗-algebras.
We present all necessary definitions related to Banach and Hilbert modules over C∗-algebras.
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In Sections 2 and 3, we construct a grading and show that this grading is topological. The
main result of these two sections is formulated as follows (Theorem 2). If there exists a semigroup
epimorphism σ : S → G from an arbitrary cancellative semigroup S to an arbitrary group G, then
the semigroup C∗-algebra C∗

r (S) is a topologically G-graded C∗-algebra. This theorem generalizes
the result obtained in [11], where a similar statement was proved for an abelian semigroup and a
finite cyclic group.

In Section 4, we study the existence of a Hilbert C∗-module structure on the G-graded C∗-algebra
C∗

r (S) under consideration. Namely, we prove that if G is a finite group, then the C∗-algebra C∗
r (S)

has the structure of a projective Hilbert C∗-module.

1. PRELIMINARIES

Throughout the paper, we denote by S an arbitrary cancellative semigroup with identity. Denote
the identity in S by e.

The object of the present study is the reduced semigroup C∗-algebra C∗
r (S). In this connection,

we recall the definition of this C∗-algebra.
Consider the Hilbert space l2(S) of square summable complex-valued functions defined on S:

l2(S) :=

{
f : S → C

∣∣∣∣ ∑
a∈S

|f(a)|2 < +∞
}
.

Denote the canonical orthonormal basis of l2(S) by {ea | a ∈ S}, where

ea(b) :=

{
1 if a = b,

0 if a �= b.

In the algebra of all bounded operators on l2(S), consider the C∗-subalgebra generated by the set
of isometries {Ta | a ∈ S}, where the operator Ta is defined by the formula

Ta(eb) = eab, a, b ∈ S.

It is this C∗-subalgebra that is called the reduced semigroup C∗-algebra C∗
r (S).

Next, for the convenience of the reader, we recall the definition of a G-graded C∗-algebra from [6,
Definition 16.2].

Let A be an arbitrary C∗-algebra and G be a group. Then A is said to be a G-graded C∗-algebra
if there exists a family of linearly independent closed subspaces {Ag ⊂ A}g∈G such that the following
properties hold for any g, h ∈ G:

(1) AgAh ⊂ Agh,
(2) A∗

g = Ag−1 , and

(3) A =
⊕

g∈GAg.

In this case, the family of Banach spaces {Ag}g∈G is called a C∗-algebraic bundle or a Fell bundle
over the group G.

In [6, Definition 19.2], Exel also considered the notion of grading in a stronger sense. Namely,
a G-graded C∗-algebra A is said to be topologically graded if there exists a contractive linear map

F : A → Ae

that coincides with the identity map on the subspace Ae, where e is the identity element of the
group, and vanishes on every subspace Ag, where g ∈ G, g �= e.
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An important property of a topologically graded C∗-algebra is the existence of Fourier coefficients
(see [6, Corollary 19.6]). This means that for every g ∈ G there exists a contractive linear map

Fg : A → Ag

such that the equality Fg(A) = Ag holds for any finite sum A =
∑

h∈GAh with Ah ∈ Ah. Moreover,
the maps Fg, g ∈ G, have the following property: the equalities

Fg(BA) = BFh−1g(A) and Fg(AB) = Fgh−1(A)B

hold for any B ∈ Ah, h ∈ G, and A ∈ A.
The notions related to Banach and C∗-Hilbert modules are contained in the books [14, 20].

Recall the necessary definitions. By a module we mean a left module.
A module M over a C∗-algebra A is called a Banach A-module if it is a Banach space with norm

satisfying the inequality ‖A ·M‖ ≤ ‖A‖ · ‖M‖, where A ∈ A and M ∈ M. A subset X in a Banach
A-module M is called a set of generators if the finite A-linear combinations of elements of X are
dense in M. If X is a finite set, then the module M is said to be finitely generated.

An element M in an A-module M is said to be cyclic if the following equality holds:

M = A ·M := {A ·M | A ∈ A}.

A module with a cyclic element is called a cyclic module.
A module M over a C∗-algebra A is called a pre-Hilbert A-module if it is equipped with a

sesquilinear form 〈· , ·〉 : M × M → A, called an A-valued scalar (or inner) product, that has the
following properties for any M,N ∈ M and A ∈ A:

(1) 〈M,M〉 ≥ 0,
(2) 〈M,M〉 = 0 if and only if M = 0,
(3) 〈M,N〉 = 〈N,M〉∗, and
(4) 〈A ·M,N〉 = A〈M,N〉.
If M is a pre-Hilbert A-module, then one can define a norm ‖· ‖M on it as ‖M‖M = ‖〈M,M〉‖1/2

for any M ∈ M (see [20, Proposition 1.2.4]).
A pre-Hilbert A-module M that is complete in the norm ‖·‖M is called a Hilbert C∗-module.
For a C∗-algebra A and a C∗-subalgebra B in A, a linear map E : A → B such that E(B) = B

for any B ∈ B and ‖E(A)‖ ≤ ‖A‖ for any A ∈ A is called a conditional expectation (see [20, 25]).
A conditional expectation is said to be faithful if for any positive A ∈ A the equality E(A) = 0
implies A = 0. It is well known (see [20, Example 1.3.6]) that in this case one can introduce the
structure of a left pre-Hilbert B-module on the C∗-algebra A by defining the inner product

〈A,B〉 = E(AB∗) for any A,B ∈ A.

2. GRADING OF THE C∗-ALGEBRA C∗
r (S)

Let G be an arbitrary group. Denote the identity element of the group by e.
Suppose that there exists a surjective semigroup homomorphism

σ : S → G. (2.1)

Then the semigroup S can be represented as a disjoint union of subsets Sg,

S =
⊔
g∈G

Sg, (2.2)

such that every Sg is the complete preimage of the element g ∈ G, i.e., σ−1(g) = Sg.
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To construct a grading of the semigroup C∗-algebra C∗
r (S), we introduce the notion of a mono-

mial as well as the notion of a σ-index for a monomial and for the corresponding operator in this
C∗-algebra, where σ is the surjective homomorphism (2.1). We use the construction that was first
introduced by the author in the joint paper [11].

Consider the free semigroup generated by the set {T−1
a , T 1

a | a ∈ S}. The elements of this
semigroup are words of the form

V = T ik
ak
T
ik−1
ak−1 . . . T

i1
a1 , (2.3)

where a1, . . . , ak ∈ S and i1, . . . , ik ∈ {−1, 1}. We will call these words monomials. The number k
in (2.3) is called the length of the monomial. The semigroup itself is called the monomial semigroup
and is denoted by Mon.

The monomial semigroup is an involutive semigroup. The involution is defined on a monomial
of the form (2.3) by the formula

V ∗ = T−i1
a1 T−i2

a2 . . . T−ik
ak

.

Now we define a map of semigroups ind : Mon → G. For a monomial of the form (2.3), we set
by definition

indV = σ(ak)
ikσ(ak−1)

ik−1 . . . σ(a1)
i1 .

It is easy to see that the equalities

ind(V ·W ) = indV · indW and ind(V ∗) = (indV )−1 (2.4)

hold for any V,W ∈ Mon. Hence, the map ind is an involutive surjective semigroup homomorphism.
Every monomial V defines an operator V̂ on the Hilbert space l2(S) as follows:

T̂ 1
a = Ta, T̂−1

a = T ∗
a ,

and if V is a monomial of the form (2.3), then

V̂ = T̂ ik
ak

T̂
ik−1
ak−1 . . . T̂ i1

a1 . (2.5)

We will call operators of the form (2.5) operator monomials.
Lemma 1. Let V ∈ Mon and V̂ ea �= 0 for some basis vector ea ∈ l2(S). Then there exists an

element b ∈ S such that the following equalities hold :

V̂ ea = eb and σ(b) = indV · σ(a).

Proof. Let V be a monomial of the form (2.3). We will prove the lemma by induction on the
length k of the monomial.

Let k = 1. Then two cases are possible: either V = T 1
a1 or V = T−1

a1 . Let V̂ ea �= 0. Then, in
the first case, we obtain Ta1ea = ea1a. Hence, b = a1a and

σ(b) = σ(a1)σ(a) = indV · σ(a).

In the second case, we have T ∗
a1ea = eb, where a = a1b. Therefore, σ(a) = σ(a1)σ(b), and so

σ(b) = (σ(a1))
−1σ(a) = indV · σ(a).

Now, consider a monomial V of arbitrary length k. Obviously, we can write it as V = T ik
ak
V ′,

where V ′ satisfies the equalities V̂ ′ea = eb′ and σ(b′) = indV ′ · σ(a) by the induction hypothesis.
Then we have V̂ ea = T̂ ik

ak
eb′ = eb. In the same way as in the case of k = 1, we obtain the equality

σ(b) = indT ik
ak

· σ(b′). This implies the required assertion

σ(b) = indT ik
ak

· indV ′ · σ(a) = indV · σ(a). �
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It follows from Lemma 1 that if V̂1 = V̂2, then indV1 = indV2.
For an arbitrary monomial V ∈ Mon, we refer to the value indV of the map ind on V both as

the σ-index of the monomial V and the σ-index of the operator monomial V̂ .
Finite linear combinations of operator monomials form an involutive subalgebra, which is dense

in the C∗-algebra C∗
r (S). Denote this subalgebra by P (S).

It is easy to see that the monomials of σ-index e form an involutive subsemigroup in the monomial
semigroup Mon. Denote by Ae the C∗-subalgebra in C∗

r (S) generated by the operator monomials
of σ-index e.

For any g ∈ G, the closure of the linear hull of the set of all operator monomials of σ-index g is
a Banach subspace in the C∗-algebra C∗

r (S), which we denote by Ag.
Next, using the expansion (2.2), we represent the Hilbert space l2(S) as an orthogonal sum of

subspaces:

l2(S) =
⊕
g∈G

Hg, (2.6)

where every subspace Hg, g ∈ G, has a Hilbert basis given by the family of functions {ea | a ∈ Sg}.
The following lemma shows how the spaces Hg behave under the action of the elements of the

space Ah, for g, h ∈ G.
Lemma 2. For any g, h ∈ G and any operator A ∈ Ah, the following inclusion holds:

A(Hg) ⊂ Hhg.

In particular, for any g ∈ G, the subspace Hg is invariant under the action of any element of the
C∗-algebra Ae.

Proof. Since finite linear combinations of operator monomials of σ-index h form a dense sub-
space in the Banach space Ah, it suffices to prove the lemma for such operator monomials.

Fix elements h, g ∈ G. Let V be an arbitrary monomial of σ-index h. Take any basis vector
ea ∈ Hg with V̂ ea �= 0. If there is no such vector, then V̂ (Hg) = {0} ⊂ Hhg. By Lemma 1, we
obtain V̂ ea = eb, where b ∈ S is an element such that σ(b) = indV · σ(a). Since σ(a) = g, we have
σ(b) = hg. Thus, b ∈ Shg and eb ∈ Hhg. �

Next, we apply Lemma 2 in order to prove that the family of subspaces {Ag | g ∈ G} is a
C∗-algebraic bundle over the group G. This statement is a generalization of Lemma 3 from [11].

Lemma 3. The following assertions hold for the system of subspaces {Ag | g ∈ G}:
(1) AgAh ⊂ Agh,

(2) A∗
g = Ag−1 ,

(3) the family {Ag | g ∈ G} is a linearly independent system of closed subspaces in the C∗-alge-
bra C∗

r (S), and
(4) C∗

r (S) =
⊕

g∈G Ag.

Proof. For operator monomials, assertions (1) and (2) follow from equalities (2.4). In the
general case, the assertions hold since the finite linear combinations of operator monomials of
σ-index g are dense in the Banach space Ag.

Let us prove assertion (3). Let A =
∑

g∈G Ag = 0, where Ag ∈ Ag. Note that this sum contains
a finite number of nonzero terms. We will show that then Ag = 0 for any g. Let g0 ∈ G be an
element such that Ag0 �= 0. Then we have the representation

Ag0 = −
∑

g∈G, g �=g0

Ag.
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By Lemma 2, the inclusion Ag0(Hh) ⊂ Hg0h holds for any h ∈ G. This implies the relation

−
∑

g∈G, g �=g0

Ag(Hh) ⊂ Hg0h.

On the other hand, by the same Lemma 2, we have the inclusion

−
∑

g∈G, g �=g0

Ag(Hh) ⊂
⊕

g∈G, g �=g0

Hgh.

Since g0h �= gh and the subspaces Hg, g ∈ G, are orthogonal, we obtain the equality

Hg0h ∩
⊕

g∈G, g �=g0

Hgh = {0}.

This implies the relation

Ag0 = −
∑

g∈G, g �=g0

Ag = 0.

Let us prove assertion (4). Note that the finite linear combinations of operator monomials are
dense in the C∗-algebra C∗

r (S). On the other hand, they are dense in
⊕

g∈G Ag, since every such
finite linear combination can be represented as

∑
g∈GAg, where Ag is a finite linear combination of

operator monomials of σ-index g. From the inclusion
⊕

g∈G Ag ⊂ C∗
r (S) we find that the subspace⊕

g∈GAg is dense in C∗
r (S). �

Thus, Lemma 3 implies the following result on the G-grading of the semigroup C∗-algebra C∗
r (S).

Theorem 1. Let σ : S → G be a surjective semigroup homomorphism. Let Ag be a closed
subspace in C∗

r (S) generated by the operator monomials of σ-index g, where g ∈ G. Then the family
of subspaces {Ag | g ∈ G} forms a Fell bundle of the semigroup C∗-algebra C∗

r (S) over the group G.

3. TOPOLOGICAL GRADING OF THE C∗-ALGEBRA C∗
r (S)

Here we prove that the semigroup C∗-algebra C∗
r (S) is topologically graded (for the grading

constructed in Section 2).
In the next lemma, we construct a linear bounded operator that allows us to talk about the

topological G-grading of the semigroup C∗-algebra C∗
r (S).

Lemma 4. There exists a contractive linear operator

F : C∗
r (S) → Ae

that coincides with the identity operator on Ae and vanishes on every subspace Ag, g ∈ G, g �= e.
Proof. Recall that the involutive subalgebra P (S), which consists of all finite linear combina-

tions of operator monomials, is dense in the C∗-algebra C∗
r (S). Therefore, to prove the lemma, it

suffices to construct a linear bounded operator

F : P (S) → Ae

that leaves invariant the linear combinations of operator monomials of σ-index e and vanishes on
the linear combinations of operator monomials of σ-index g for every g �= e.

Since every element A ∈ P (S) can be uniquely represented as a finite sum of nonzero terms of
the form

A =
∑
g∈G

Ag, (3.1)

where Ag ∈ Ag, the formula
F (A) = Ae

obviously defines a linear operator on the normed space P (S) that satisfies the required conditions.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 313 2021



126 E. V. LIPACHEVA

Let us prove that F is a contractive operator. To this end, we fix an arbitrary element A ∈ P (S)
and consider its representation (3.1).

Let us show that the following estimate for the norms holds:

‖F (A)‖ = ‖Ae‖ ≤ ‖A‖. (3.2)

Recall that the Hilbert space l2(S) decomposes into the orthogonal sum (2.6). By Lemma 2,
the subspaces Hg are invariant with respect to Ae. Therefore, for every element Ae ∈ Ae, we have
the decomposition

Ae =
⊕
g∈G

Ag
e,

where Ag
e denotes the restriction of the operator Ae to the subspace Hg. This implies the following

equality for the operator norms:
‖Ae‖ = sup

g∈G
‖Ag

e‖.

Fix an arbitrary number ε > 0. Let g0 ∈ G be an element such that the inequality

‖Ag0
e ‖ ≥ ‖Ae‖ − ε (3.3)

is satisfied. Note that the following inequality holds:

‖A‖ = sup
‖x‖=1, x∈l2(S)

(Ax,Ax)1/2 ≥ sup
‖x‖=1, x∈Hg0

(Ax,Ax)1/2.

For x ∈ Hg0 , consider the inner product

(Ax,Ax) =

( ∑
g∈G

Agx,
∑
h∈G

Ahx

)
=

∑
g,h∈G

(Agx,Ahx).

Let us show that (Agx,Ahx) = 0 for g �= h. Indeed, since x ∈ Hg0 , by Lemma 2 we have Agx ∈ Hgg0

and Ahx ∈ Hhg0. If g �= h, then gg0 �= hg0, and since the subspaces Hgg0 and Hhg0 are orthogonal,
we obtain (Agx,Ahx) = 0. Thus, we have the estimate

(Ax,Ax) =
∑
g∈G

(Agx,Agx) ≥ (Aex,Aex),

which implies the inequality

‖A‖ ≥ sup
‖x‖=1, x∈Hg0

(Ax,Ax)1/2 ≥ sup
‖x‖=1, x∈Hg0

(Aex,Aex)
1/2 = ‖Ag0

e ‖. (3.4)

Since ε is arbitrary, from inequalities (3.3) and (3.4) we obtain the required inequality (3.2). �
Note that the constructed linear operator

F : C∗
r (S) → Ae

is a conditional expectation. We will call it the conditional expectation associated with the grading
{Ag | g ∈ G}.

Lemmas 3 and 4 allow us to claim that the C∗-algebra C∗
r (S) is topologically graded.

Theorem 2. Let σ : S → G be a surjective semigroup homomorphism. Let Ag be a closed
subspace in C∗

r (S) generated by the operator monomials of σ-index g, where g ∈ G. Then the
system of subspaces {Ag | g ∈ G} forms a topological G-grading of the semigroup C∗-algebra C∗

r (S).
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4. FINITELY GENERATED PROJECTIVE HILBERT Ae-MODULE

In this section, we show that the C∗-algebra C∗
r (S) is a left Banach Ae-module. Moreover, if G

is a finite group, then C∗
r (S) is a finitely generated projective Hilbert Ae-module.

Recall that the semigroup S can be represented as the disjoint union (2.2). Let us fix an arbitrary
element xg in each set Sg. Denote the set of all such xg by X. Thus, X ⊂ S and X ∩ Sg = {xg}
for any g ∈ G.

By a set of representatives of the classes {Sg | g ∈ G} = {σ−1(g) | g ∈ G} we will mean an
arbitrary subset X ⊂ S with the following property: for any g ∈ G, there exists a unique x ∈ X
such that X ∩ Sg = {x}.

Lemma 5. For every g ∈ G, the equality

Ag = Ae · Txg

holds; i.e., the space Ag is a cyclic Banach Ae-module, and the element Txg is a cyclic element of
the module Ag.

Proof. First, let us show that the inclusion Ae · Txg ⊂ Ag holds. If A(e) =
∑

i αiV̂
(e)
i is a finite

linear combination of operator monomials of σ-index e, where αi ∈ C, then A(e)Txg =
∑

i αiV̂
(e)
i Txg

is obviously a finite linear combination of operator monomials of σ-index g. Let {A(e)
n } be a sequence

of such linear combinations, and let limn→∞A
(e)
n = Be ∈ Ae. Then, in view of the inequality

‖A(e)
n Txg −BeTxg‖ ≤ ‖A(e)

n −Be‖ · ‖Txg‖ = ‖A(e)
n −Be‖,

we obtain BeTxg = limn→∞A
(e)
n Txg ∈ Ag.

Let us establish the reverse inclusion Ag ⊂ Ae · Txg . Let Bg ∈ Ag. Set Be := BgT
∗
xg

. Then we
obviously have Bg = BeTxg . Just as above, taking into account that the σ-index of T ∗

xg
is equal

to g−1, we can show that Be ∈ Ae. This completes the proof of the lemma. �
Assertion (4) of Lemma 3 and Lemma 5 imply the following theorem.
Theorem 3. Let G be an arbitrary group with identity e, σ : S → G be a surjective semigroup

homomorphism, and X be a set of representatives of the classes {σ−1(g) | g ∈ G}. Let Ae be the
C∗-subalgebra in C∗

r (S) generated by the operator monomials of σ-index e. Then the C∗-algebra
C∗

r (S) is a Banach Ae-module with generating set {Tx | x ∈ X}.
As pointed out in Section 1, since the system of subspaces {Ag | g ∈ G} forms a topological

G-grading of the C∗-algebra C∗
r (S), for every g there exists a contractive linear map

Fg : C∗
r (S) → Ag

such that for any finite sum A =
∑

g∈GAg with Ag ∈ Ag we have the equality Fg(A) = Ag.
Moreover, the maps Fg satisfy the equalities

Fg(AB) = Fgh−1(A)B and Fg(BA) = BFh−1g(A) (4.1)

for any A ∈ C∗
r (S) and B ∈ Ah.

Note that the construction of the operator F in Lemma 4 and the principle of extension by
continuity (see, for example, [15, Ch. 2, § 1, Theorem 2]) immediately imply the equality Fe = F .

Next, let G be a finite group.
First, we examine the geometry of the underlying Banach space of the reduced semigroup C∗-al-

gebra C∗
r (S).

Theorem 4. Let G be a finite group with identity e, σ : S → G be a surjective semigroup
homomorphism, and X be a set of representatives of the classes {σ−1(g) | g ∈ G}. Let Ae be the
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C∗-subalgebra in C∗
r (S) generated by the operator monomials of σ-index e. Then the C∗-algebra

C∗
r (S) is a finitely generated Banach Ae-module with a set of generators {Tx | x ∈ X}. Moreover,

it can be represented as a direct sum of a finite number of cyclic Ae-modules:

C∗
r (S) =

⊕
x∈X

Ae · Tx.

Proof. First, we prove the equality of spaces

C∗
r (S) =

⊕
g∈G

Ag. (4.2)

To this end, we show that the equality

A =
∑
g∈G

Fg(A) (4.3)

holds for any A ∈ C∗
r (S). Let {An}n∈N be a sequence in P (S) that converges to A. Note that

equality (4.3) holds for any finite sum of the form A =
∑

g∈GAg; i.e., for any An ∈ P (S), we have

An =
∑
g∈G

(An)g =
∑
g∈G

Fg(An).

Then we obtain the chain of inequalities∥∥∥∥∥A−
∑
g∈G

Fg(A)

∥∥∥∥∥ ≤ ‖A−An‖+
∥∥∥∥∥
∑
g∈G

Fg(An)−
∑
g∈G

Fg(A)

∥∥∥∥∥
≤ ‖A−An‖+

∑
g∈G

‖Fg‖ · ‖An −A‖ = (k + 1) · ‖A−An‖,

where k is the order of the group G. This estimate implies equality (4.3).
Now, employing Lemma 5, we obtain the assertion of the theorem. �
In fact, as we will see below, if the group G is finite, then the C∗-algebra C∗

r (S) is a finitely
generated projective C∗-Hilbert Ae-module.

Recall the definition of a finitely generated projective Hilbert module [20]. Let M be a Hilbert
A-module such that there exists a Hilbert A-module N for which the direct sum M⊕N is isomorphic
as a module to the direct sum of a finite number of copies of the Hilbert A-module A. Then M is
called a finitely generated projective A-module.

In [25, Corollary 3.1.4], conditions on the conditional expectation E : A → B ⊂ A are presented
under which A is a C∗-Hilbert module over the C∗-algebra B.

The conditional expectation E : A → B ⊂ A is called a conditional expectation of algebraically
finite index (see [25, Definition 1.2.2] and [20, Sect. 4.5]) if there exists a finite set of elements
X1, . . . ,Xn ∈ A such that every element A ∈ A can be represented as

A =

n∑
k=1

E(AX∗
k)Xk.

If the conditional expectation is a conditional expectation of algebraically finite index, then it
is faithful [25]. In [25, Corollary 3.1.4], it is demonstrated that the algebraic finiteness of the
index is equivalent to the fact that A is a finitely generated projective Hilbert C∗-module over the
C∗-algebra B (see also [23, Theorem 5.7]).
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In the following lemma and theorem, we prove that in the case of a finite group G the conditional
expectation F : C∗

r (S) → Ae constructed in Lemma 4 is a conditional expectation of algebraically
finite index and that the C∗-algebra C∗

r (S) is a finitely generated projective Hilbert Ae-module.
Lemma 6. The conditional expectation F : C∗

r (S)→Ae associated with the grading {Ag | g ∈G}
is a conditional expectation of algebraically finite index.

Proof. By Theorem 4, any element A ∈ C∗
r (S) can be represented as the finite sum (4.3).

Then, using the properties (4.1) and taking into account that Fe = F , we obtain for any A ∈ C∗
r (G)

the equalities

A =
∑
g∈G

Fg(A) =
∑
g∈G

Fg(AT
∗
xg
Txg ) =

∑
g∈G

F (AT ∗
xg
)Txg .

This means that the conditional expectation F constructed in Lemma 4 is a conditional expectation
of algebraically finite index. �

Theorem 5. Let G be a finite group with identity e and σ : S → G be a surjective semigroup
homomorphism. Let Ae be the C∗-subalgebra in C∗

r (S) generated by the operator monomials of
σ-index e. Then the C∗-algebra C∗

r (S) is a finitely generated projective Hilbert Ae-module.
Proof. It follows from Lemma 6 that the conditional expectation F : C∗

r (S) → Ae associated
with the grading {Ag | g ∈ G} is faithful. Then we can define the following Ae-valued inner product
on the C∗-algebra C∗

r (S):
〈A,B〉 = F (AB∗),

where A,B ∈ C∗
r (S). On the other hand, as already mentioned above, the algebraic finiteness of the

index of the conditional expectation F associated with the grading {Ag | g ∈ G} implies that the
C∗-algebra C∗

r (S) is a finitely generated projective Hilbert C∗-module over the C∗-algebra Ae. �
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