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Abstract—In the geometric theory of defects, media with a spin structure (for example, fer-
romagnets) are regarded as manifolds with given Riemann–Cartan geometry. We consider the
case with the Euclidean metric, which corresponds to the absence of elastic deformations, but
with nontrivial SO(3) connection, which produces nontrivial curvature and torsion tensors. We
show that the ’t Hooft–Polyakov monopole has a physical interpretation; namely, in solid state
physics it describes media with continuous distribution of dislocations and disclinations. To
describe single disclinations, we use the Chern–Simons action. We give two examples of point
disclinations: a spherically symmetric point “hedgehog” disclination and a point disclination for
which the n-field takes a fixed value at infinity and has an essential singularity at the origin.
We also construct an example of linear disclinations with Frank vector divisible by 2π.
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1. INTRODUCTION

Many physical properties of solids such as plasticity, melting, growth, etc., are defined by defects
in the crystalline structure. Therefore, the study of defects is a topical scientific problem important
for applications. Although dozens of monographs and thousands of papers have been published, no
fundamental theory of defects is yet available.

One of the promising approaches to constructing a theory of defects is based on the Riemann–
Cartan geometry defined by nontrivial metric and torsion. In this approach, a crystal is considered
as an elastic continuous medium with a spin structure. If the displacement vector field is a smooth
function, then the crystal possesses only elastic stresses corresponding to diffeomorphisms of the flat
Euclidean space. If the displacement vector field has discontinuities, then we say that the medium
has defects in the elastic structure, which are called dislocations and result in nontrivial geometry.
Namely, they lead to a nonzero torsion tensor, which is equal to the surface density of the Burgers
vector.

The idea of relating torsion to dislocations aroused in the 1950s [3, 39, 41, 49]. This approach is
still being successfully developed (we note the reviews [15, 21, 36, 37, 42, 43, 55]) and is often called
the gauge theory of dislocations. A similar approach is also being developed in gravity [18]. Inter-
estingly, É. Cartan introduced the notion of torsion in geometry using the analogy with mechanics
of elastic media [6].

Parallel to the study of dislocations, another type of defects has been intensively investigated.
The point is that many solids (for example, ferromagnets, liquid crystals, spin glasses, etc.) not
only have elastic properties but also possess a spin structure. In this case, there are defects in the
spin structure, called disclinations [16]. They arise when the n-field describing a spin structure has
discontinuities. The presence of disclinations is also related to nontrivial geometry. Namely, the
curvature tensor for the SO(3) connection is equal to the surface density of the Frank vector. The
gauge approach based on the rotational group SO(3) was used in this case [14]. The SO(3) gauge
models of spin glasses with defects were considered in [19, 53].
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The geometric theory of static distribution of defects, which describes both types of defects
from a unique point of view, was proposed in [34]. In contrast to other approaches, the only
independent variables in this case are the vielbein and SO(3) connection. The torsion and curvature
tensors have a straightforward physical interpretation as the surface densities of dislocations and
disclinations, respectively. Covariant equations of equilibrium are postulated for the vielbein and
SO(3) connection as in gravity models with torsion. Since any solution of the equilibrium equations
is defined up to general coordinate transformations and local SO(3) rotations, we have to choose a
coordinate system (to fix the gauge) in order to specify a unique solution. The elastic gauge for the
vielbein [22] and the Lorentz gauge for the SO(3) connection [23] have been proposed recently. We
stress that the displacement and rotational vector fields are not considered as independent variables
in our approach. These notions can be introduced only in those domains of a medium where
defects are absent. In this case the equilibrium equations for the vielbein and SO(3) connection
are identically satisfied, the elastic gauge reduces to equations of nonlinear elasticity theory for the
displacement vector field, and the Lorentz gauge transforms into equations of the principal chiral
SO(3) field. In other words, to fix the coordinate system, one can choose two fundamental models:
elasticity theory and the principal chiral field.

The presence of defects produces nontrivial Riemann–Cartan geometry. This means that to
study the phenomena directly related to elastic media, we should modify the corresponding equa-
tions. For example, if the propagation of phonons in an ideal crystal is described by the wave
equation, then it is easy to take into account the influence of dislocations. To this end we should
replace the Euclidean metric by a nontrivial metric describing the distribution of defects. The
scattering of phonons on straight parallel dislocations was analyzed in [12, 35, 47]. To describe
quantum phenomena, one should make the same substitution of the metric in the Schrödinger
equation. Wedge dislocations with conical singularities and their influence on the properties of solid
bodies were considered in [1, 17, 31, 32]. Cylindrical dislocations were described in [10, 11, 24–26].
Other types of dislocations were considered, for example, in [2, 5, 8, 9, 45, 52].

Up to now, mainly dislocations and their influence on the physical properties of various media
have been considered as applications of the geometric theory of defects. It has been assumed that
the SO(3) connection is trivial but the metric differs from the Euclidean one and corresponds to a
given dislocation. One started to consider disclinations in the framework of the geometric theory
of defects only quite recently. Problems of this type imply that the metric is Euclidean (elastic
deformations are absent) but the SO(3) connection is nontrivial. As far as we know, the first papers
on this subject describe a straight disclination [27, 28]. The Chern–Simons action for the SO(3)
connection is used there.

In the geometric theory of defects, the SO(3) connection is used instead of the n-field. To
introduce it, we need to transform the n-field into the rotation angle field. This transformation is
nontrivial, because an additional gauge degree of freedom appears [29]. In addition, an SO(2) gauge
model without the SO(2) gauge field appears.

In the present review, we consider the case of Euclidean metric but nontrivial SO(3) connection,
which corresponds to the presence of disclinations. We start with a short introduction into the
geometric theory of defects.

Since the Lie algebras so(3) and su(2) are isomorphic, the static solutions of SU(2) gauge models
can be viewed as those describing some distribution of disclinations and, possibly, dislocations. In
particular, the ’t Hooft–Polyakov monopole has a straightforward physical interpretation in the
geometric theory of defects: it describes media with continuous distribution of disclinations and
dislocations [30]. This is considered in Section 5.

The first examples of point disclinations in the geometric theory of defects are based on the
Chern–Simons action. The most general form of the trivial spherically symmetric SO(3) connection
containing one arbitrary function of radius is found for this case. In Section 6, we construct two
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examples of point disclinations for different boundary conditions. The first one describes a hedgehog
disclination, and the second corresponds to a point disclination with n-field taking a fixed value at
infinity and having an essential singularity at the origin [33]. In Section 7, we describe straight linear
disclinations in the framework of the geometric theory of defects with the Chern–Simons action.

2. ELASTIC DEFORMATIONS

Elasticity theory (see, e.g., [44, 48]) is a classical area of mathematical physics with its own
language developed for decades, which is different from the language of modern differential geometry
in many respects. In this section, we present necessary notions of elasticity theory from the point
of view of differential geometry (see, e.g., [13, 38]).

In an equilibrium state, a body occupies a bounded domain in the Euclidean space R
3 of the

observer. The equilibrium state is not defined uniquely: we can rotate or move the body as a whole.
No deformation or elastic stresses arise in this case, since the Euclidean metric is invariant with
respect to these transformations. We denote the Cartesian coordinates of a point of the body by
letters with Latin indices yi, i = 1, 2, 3. After a deformation or motion, every point of the body
occupies a new position: y �→ x. This deformation corresponds to some diffeomorphism of domains
in the Euclidean space. In addition, the body acquires the induced metric

δij �→ gij =
∂yk

∂xi
∂yl

∂xj
δkl. (2.1)

The difference

εij(y) :=
1

2

(
δij − gij(y)

)
(2.2)

is called the deformation tensor in the Cartesian coordinates. This difference is well defined, because
the tensor components are subtracted pointwise. The definition implies that the deformation is
identically zero in the equilibrium state. It is also zero after translations and rotations of the body
as a whole.

Since the Euclidean space of the observer has a natural affine structure, the observer can add
or subtract point coordinates before and after a deformation. After a deformation, every point has
new coordinates in the same coordinate system:

yi �→ xi := yi + ui, (2.3)

where ui(x) is the displacement vector field.
The following terminology is used in elasticity theory. If the components of the displacement

vector field are considered as functions of the initial coordinates y, then this system is called La-
grangian coordinates. If the post-deformation coordinates x are chosen as independent ones, then we
say that Eulerian coordinates are chosen. The Lagrangian and Eulerian coordinates are equivalent if
the domains of definition of the point coordinates xi and yi of the body are diffeomorphic. However,
in the geometric theory of defects, which is considered in the next sections, the situation is different.
In general, only in the final state (after creation of dislocations) an elastic medium occupies the
whole Euclidean space R

3. In the presence of dislocations, the initial medium coordinates yi do
not usually cover the whole R

3, because part of the medium can be removed or, conversely, added.
Therefore, we use Eulerian coordinates related to the medium points after an elastic deformation
and creation of defects.

In the absence of defects, the displacement vector field is assumed to be a sufficiently smooth
vector field in the Euclidean space R

3. The presence of discontinuities and (or) singularities in the
displacement field is interpreted as the existence of defects in an elastic medium, which are called
dislocations.
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We will consider only static deformations in what follows. Then the basic equilibrium equations
of an elastic medium for small deformations in the Cartesian coordinates have the form (see, e.g., [44,
Ch. I, §§ 2, 4])

∂jσ
ji + f i = 0, (2.4)

σij = λδijεk
k + 2μεij , (2.5)

where σji is the stress tensor (ith component of the elastic force acting on the unit area element
with normal nj), which is assumed to be symmetric. The tensor of small deformations εij is given
by symmetrized partial derivatives of the displacement vector field:

εij :=
1

2
(∂iuj + ∂jui), (2.6)

where the Latin indices are raised and lowered using the Euclidean metric δij and its inverse δij .
The letters λ and μ denote constants characterizing the elastic properties of media and are called
the Lame coefficients. The functions f i(x) describe the total density of inelastic forces inside a
medium, which are induced, for example, by gravity forces. We assume in what follows that such
forces are absent: f i(x) = 0. Equation (2.4) is Newton’s second law for an equilibrium state, and
equality (2.5) represents Hooke’s law.

Let us look at elastic deformations from the point of view of differential geometry. From the
mathematical standpoint, the map (2.3) is a diffeomorphism of the Euclidean space R3, with the
Euclidean metric δij induced by the pullback of the map yi �→ xi. This means that in the linear
approximation the deformed metric is

gij(x) =
∂yk

∂xi
∂yl

∂xj
δkl ≈ δij − ∂iuj − ∂jui = δij − 2εij ; (2.7)

that is, it is defined by the tensor of small deformations (2.6).
In the Riemannian geometry, the metric defines the Levi–Civita connection Γ̃ij

k(x) (Christof-
fel’s symbols). The corresponding curvature tensor after an elastic deformation is identically zero,
R̃ijk

l(x) = 0, because the curvature of the Euclidean space is zero and the map yi �→ xi is a
diffeomorphism. The torsion tensor is also zero for the same reason, since it is set to zero in the
observer space. Thus, elastic deformations of media correspond to the trivial Riemann–Cartan
geometry, because the curvature and torsion tensors vanish.

3. DISLOCATIONS

We start with describing linear dislocations in elastic media (see, e.g., [40, 44]). The simplest
and most common examples of straight dislocations are shown in Fig. 1. Let us cut a medium along
the half-plane x2 = 0, x1 > 0, then move the upper part of the medium x2 > 0, x1 > 0 (which
is above the cut) by a vector b towards the dislocation axis x3, and glue the two sides of the cut.
The vector b is called the Burgers vector. In general, the Burgers vector may be nonconstant on
the cut. For the edge dislocation, it varies from zero to some constant value b as the distance from
the dislocation axis increases. After the gluing, the medium comes to an equilibrium state, which is
called an edge dislocation and is shown in Fig. 1a. If the Burgers vector is parallel to the dislocation
line, then the dislocation is called a screw dislocation (Fig. 1b).

One and the same dislocation can be formed in different ways. For example, if the Burgers
vector is perpendicular to the cut plane and directed away from it, then the arising cavity should be
filled with an extra medium. One can easily imagine that the resulting defect is an edge dislocation
but rotated through the angle π/2 around the x3 axis. This example shows that the dislocation is
characterized by the dislocation line or axis (edge of the cut) and the Burgers vector rather than
by the cutting surface.
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b
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x2x2

x3x3

(a) (b)

Fig. 1. Straight linear dislocations: (a) edge and (b) screw dislocations.

From the topological viewpoint, a medium containing several or even infinitely many dislocations
represents the Euclidean space R

3. In contrast to elastic deformations, the displacement vector field
fails to be a smooth function because of cutting surfaces. At the same time we assume that the
partial derivatives of the displacement vector ∂ju

i (distortion tensor) are smooth functions on the
cutting surface. From the physical point of view, this assumption is reasonable because these
derivatives define the deformation tensor (2.6). In turn, the partial derivatives of the deformation
tensor should exist and be continuous functions everywhere in an equilibrium state except, possibly,
the dislocation axis, because the elastic forces on the two sides of the cut must be equal in an
equilibrium state. Since the deformation tensor defines the induced metric (2.7), we assume that the
metric and vielbein in R

3 are sufficiently smooth functions everywhere except, possibly, dislocation
axes.

The main idea of the geometric approach is the following. To describe single dislocations in the
framework of elasticity theory, one has to solve equations for the displacement vector with given
boundary conditions on the cuts. This is possible for a small number of dislocations. However, the
boundary conditions become too complicated when the number of dislocations increases, so that
the problem is hardly solvable. Moreover, the same dislocation can be formed by different cuttings,
which results in an ambiguous displacement vector field. Another disadvantage of this approach is
that it cannot be used to describe a continuous distribution of defects, because the displacement
vector field does not exist in this case since it has discontinuities at every point. The main variable
in the geometric approach is a vielbein, which is a smooth function everywhere except, possibly, the
dislocation cores. We postulate new equations for the vielbein. The transition from a finite number
of dislocations to a continuous distribution of them is natural and simple in the geometric theory of
defects. The singularities in dislocation cores are smoothed in the same way as the masses of point
particles are smoothed after a transition to continuous media.

Now we proceed to constructing the formalism for the geometric theory of defects. In the
presence of defects, in an equilibrium state, there is no symmetry, and therefore the notion of
distinguished Cartesian coordinates is absent. Hence we consider an arbitrary curvilinear coordinate
system xμ, μ = 1, 2, 3, in R

3. Now we use Greek letters to number the coordinates because we
admit arbitrary coordinate changes. Then the Burgers vector can be expressed by an integral of
the displacement vector:

∮

C

dxμ ∂μu
i(x) = −

∮

C

dxμ ∂μy
i(x) = −bi, (3.1)

where C is a closed contour surrounding the dislocation axis (Fig. 2). This integral is invariant with
respect to arbitrary coordinate changes xμ �→ xμ

′
(x) and covariant under SO(3) global rotations
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b

x1

x2

C

Fig. 2. Section of a medium with an edge dislocation. The dislocation axis is perpendicular to the
figure plane; C is the integration contour for the Burgers vector b.

of yi. Here the components of the vector field ui(x) are considered with respect to an orthonormal
basis in the tangent space, u = uiei.

In the geometric theory of defects, we introduce a new independent variable (vielbein)

eμ
i(x) :=

{
∂μy

i outside the cut,

lim ∂μy
i on the cut,

(3.2)

instead of the partial derivatives of the displacement vector field ∂μu
i. By definition, the vielbein is a

smooth function on the cut. Note that if the vielbein was defined just as the partial derivative ∂μy
i,

it would have a δ-function singularity on the cut because the functions yi(x) have a jump there.
The Burgers vector can be represented as an integral over a surface S with the contour C as the

boundary:
∮

C

dxμeμ
i =

∫∫

S

dxμ ∧ dxν (∂μeν
i − ∂νeμ

i) = bi, (3.3)

where dxμ ∧ dxν is the area element. The definition of vielbein (3.2) implies that the integrand
vanishes everywhere except the dislocation axis. The integrand has a δ-function singularity at the
origin for an edge dislocation with constant Burgers vector. The criterion for the presence of a
dislocation is the violation of the integrability condition of the system of equations ∂μy

i = eμ
i:

∂μeν
i − ∂νeμ

i �= 0. (3.4)

If dislocations are absent, then the functions yi(x) exist and define the transformation to Cartesian
coordinates.

The field eμ
i is identified with the vielbein in the geometric theory of defects. Next, we compare

the integrand in (3.3) with the expression for torsion in Cartan variables:

Tμν
i = ∂μeν

i − eμ
jωνj

i − (μ ↔ ν). (3.5)

They differ only by the terms containing the SO(3) connection ωμ
ij = −ωμ

ji. This allows us to intro-
duce the following postulate. In the geometric theory of defects, the Burgers vector corresponding
to a surface S is defined by the integral of the torsion tensor:

bi :=

∫∫

S

dxμ ∧ dxν Tμν
i.
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This definition is invariant with respect to general coordinate transformations of xμ and covariant
under global rotations. Thus the torsion tensor in the geometric theory of defects has a straightfor-
ward physical meaning: it is equal to the surface density of the Burgers vector.

The physical meaning of the SO(3) connection will be given in Section 4, and now we show
how this definition reduces to the expression for the Burgers vector (3.3) obtained within elasticity
theory. If the curvature tensor for the SO(3) connection vanishes, then the connection is locally
trivial and there exists an SO(3) rotation such that ωμi

j = 0. In this case, we return to the previous
expression (3.3).

We have shown that the presence of linear dislocations results in nontrivial torsion. In the
geometric theory of defects, the vanishing of torsion, Tμν

i = 0, is naturally considered as a criterion
for the absence of dislocations. Then the term “dislocation” includes not only linear dislocations but
also arbitrary defects in elastic media. In three dimensions, there are also point and surface defects
along with linear dislocations. In the geometric approach, all of them are thought of as dislocations
because they are related to nontrivial torsion.

4. DISCLINATIONS

In the previous section, we related dislocations in elastic media to the torsion tensor. To this
end, we introduced the SO(3) connection. Now we show that the curvature of the SO(3) connec-
tion defines the surface density of the Frank vector, which characterizes other well-known defects:
disclinations in the spin structure of media [44].

Let a unit vector field ni(x) (nini = 1) be given at every point (spin structure). For example,
ni has the meaning of magnetic moments at every point of a medium for ferromagnets (Fig. 3a).
For nematic liquid crystals the unit vector field ni with the equivalence relation ni ∼ −ni describes
the director field (Fig. 3b).

Let us fix some direction ni
0 in the medium. Then the field ni(x) at a point x can be uniquely

defined by the rotation angle field ωij(x) = −ωji(x) taking values in the Lie algebra of rotations
so(3) (rotation angle): ni = nj

0Sj
i(ω), where Sj

i ∈ SO(3) is the rotational matrix corresponding
to the algebra element ωij. We use the following parameterization of the rotational group by its
algebra elements:

Si
j = (e(ωε))i

j = δji cosω +
(ωε)i

j

ω
sinω +

ωiω
j

ω2
(1− cosω) ∈ SO(3), (4.1)

where (ωε)i
j := ωkεki

j and ω :=
√

ωiωi is the magnitude of the vector ωi. The pseudovector
ωk = ωijε

ijk/2, where εijk is the totally antisymmetric third-rank tensor, ε123 = 1, is directed along
the rotational axis, its length being equal to the rotation angle.

If the medium has a spin structure, then it may have defects, called disclinations. For linear
disclinations parallel to the x3 axis, the vector field n lies in the perpendicular plane x1, x2. The sim-
plest examples of linear disclinations are shown in Fig. 4. Every linear disclination is characterized

(a) (b)

Fig. 3. Examples of media with a spin structure: (a) ferromagnets and (b) nematic liquid crystals.
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x1x1

x2x2

CC

(a) (b)

Fig. 4. Distribution of the unit vector field in the plane x1, x2 for linear disclinations parallel to the
x3 axis: (a) for Θ = 2π and (b) for Θ = 4π.

by the Frank vector

Θi = εijkΩ
jk, where Ωij =

∮

C

dxμ ∂μω
ij , (4.2)

with the integral taken along a closed contour C around the disclination axis. The length of the
Frank vector is equal to the total rotation angle of field ni around the disclination.

The vector field ni defines a map of the Euclidean space into a sphere n : R3 → S
2. For linear

disclinations parallel to the x3 axis, this map is restricted to a map of the plane R
2 into a circle S

1.
It is clear that the total rotation angle must be a multiple of 2π in this case.

Just as in the case of the displacement vector field for dislocations, the field ωij(x) taking values
in the algebra so(3) is not a continuous function on R

3 in the presence of disclinations. Let us make
a cut in R

3 bounded by the disclination axis. Then we can consider the field ωij(x) as a smooth
field on the whole space without the cut. Assume that all partial derivatives of ωij(x) have the
same limit on different sides of the cut. Then we define a new field

ωμ
ij :=

{
∂μω

ij outside the cut,

lim ∂μω
ij on the cut.

(4.3)

By construction, the functions ωμ
ij are smooth everywhere except, possibly, the disclination axis.

Then the Frank vector can be represented by the surface integral

Ωij =

∮

C

dxμ ωμ
ij =

∫∫

S

dxμ ∧ dxν (∂μων
ij − ∂νωμ

ij), (4.4)

where S is an arbitrary surface with boundary C. If the field ωμ
ij is fixed, then the integrability

conditions for the system of equations ∂μω
ij = ωμ

ij are given by the equalities

∂μων
ij − ∂νωμ

ij = 0. (4.5)

This noncovariant equality yields a criterion of the absence of disclinations.
We identify the field ωμ

ij with the SO(3) connection in the geometric theory of defects. The
terms with derivatives in the expression for the curvature

Rμνj
i = ∂μωνj

i − ωμj
kωνk

i − (μ ↔ ν) (4.6)

coincide with those in (4.5). Therefore, we postulate the covariant criterion of the absence of
disclinations as the vanishing of the curvature tensor for the SO(3) connection: Rμν

ij = 0. At the
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same time we assign a physical meaning to the curvature in Cartan variables as the surface density
of the Frank vector:

Ωij :=

∫∫
dxμ ∧ dxνRμν

ij. (4.7)

This definition reduces to the previous expression for the Frank vector (4.4) in the case when
rotations of the vector n are confined to a fixed plane. Then rotations are restricted to the subgroup
SO(2) ⊂ SO(3). In this case the quadratic terms in the expression for the curvature (4.6) vanish,
because the rotation group of the plane SO(2) is abelian, and we get the previous expression (4.4)
for the Frank vector.

5. THE ’T HOOFT–POLYAKOV MONOPOLE

The ’t Hooft–Polyakov monopole is a static spherically symmetric solution with finite energy
of the field equations of the SU(2) gauge Yang–Mills model with the triplet of scalar fields ϕ in
the adjoint representation and λϕ4 interaction [20, 50] (see also [46, 54, 56]). Many other static
solutions are related to this one, but they do not have spherical symmetry and satisfy some boundary
conditions at infinity, where the triplet of scalar fields takes values on a two-dimensional sphere and
the components of the SU(2) connection tend to zero. These solutions are divided into homotopically
inequivalent classes and characterized by the topological charge (index of the map S

2 → S
2 of the

boundary of the three-dimensional Euclidean space, represented by a two-dimensional sphere, into
the range of values of the triplet of scalar fields). These classes of field configurations have some
properties of particles (finiteness of energy, stability, and localization in space) and are highly
interesting from the theoretical point of view.

We will show below that solutions of the ’t Hooft–Polyakov type have a straightforward physical
interpretation in the geometric theory of defects and describe a continuous distribution of disloca-
tions and disclinations, because the Lie algebras su(2) and so(3) are isomorphic [30].

5.1. The action and vacuum solutions. Recall that the Lie algebra su(2) is compact,
simple, coincides with the Lie algebra of three-dimensional rotations so(3), and is defined by the
commutation relations

[Ji, Jj ] = −εij
kJk, i, j, k = 1, 2, 3, (5.1)

where Ji is a basis of the Lie algebra, εijk is the totally antisymmetric third-rank tensor, and
the indices are raised and lowered by using the Euclidean metric δij , which is proportional to the
Killing–Cartan form in this case.

Consider the SU(2) gauge model in the Minkowskian space R
1,3 with Cartesian coordinates xα

which is described by the Lagrangian

L = − 1

4
FαβiFαβi +

1

2
∇αϕi∇αϕi −

1

4
λ(ϕ2 − a2)2, (5.2)

where Aα
i are the components of the local form of the SU(2) connection (Yang–Mills fields),

Fαβ
i := ∂αAβ

i − ∂βAα
i + eAα

jAβ
kεjk

i

is the Yang–Mills field strength (components of the local curvature form of the SU(2) connection),
e ∈ R, λ > 0, and a > 0 are coupling constants, ϕ := (ϕi) ∈ R

3 is the triplet of real scalar
fields transforming under the adjoint representation of the group SU(2), ϕ2 := ϕiϕi, and ∇αϕ

i :=
∂αϕ

i + eAα
jϕkεjk

i is the covariant derivative of scalar fields.
Since the gauge fields in (5.2) transform under the adjoint representation of SU(2) and it co-

incides with the fundamental representation of SO(3), everything is reduced to the orthogonal
rotational group SO(3) from the point of view of equations of motion.
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The Lagrangian (5.2) yields the following equations of motion:

δS

δAα
i
= ∇βF

βα
i + e(∇αϕj)ϕkεikj = 0, (5.3)

δS

δϕi
= −∇α∇αϕi − λ(ϕ2 − a2)ϕi = 0. (5.4)

It implies the Hamiltonian density

H = − 1

2
PμiPμi +

1

4
FμνiFμνi +

1

2
pipi −

1

2
∇μϕi∇μϕi +

1

4
λ(ϕ2 − a2)2 + μi∇μP

μ
i + λiP 0

i, (5.5)

where (Pα
i) = (P 0

i, P
μ
i) and pi are momenta conjugate to the potentials (Aα

i) = (A0
i, Aμ

i) and
scalar fields ϕi, and μi and λi are Lagrange multipliers standing in front of the first-class constraints
P 0

i = 0 and ∇μP
μ
i = 0. We recall that the Greek letters from the middle of the alphabet

take only space values, μ, ν, . . . = 1, 2, 3. The energy is, by definition, the numerical value of the
Hamiltonian for physical degrees of freedom, i.e., the Hamiltonian after solving all constraints and
gauge conditions. In the case under consideration, the energy density for a given field configuration is
obtained from the Hamiltonian (5.5) after discarding the last two terms proportional to constraints:

E = − 1

2
PμiPμi +

1

4
FμνiFμνi +

1

2
pipi −

1

2
∇μϕi∇μϕi +

1

4
λ(ϕ2 − a2)2. (5.6)

It is explicitly positive definite. Recall that the space Greek indices μ and ν are raised and lowered
by the negative definite metric ημν = −δμν in our case.

The expression for the energy density (5.6) does not depend on A0
i. For simplicity, we choose

the time gauge A0
i = 0. The solutions of equations of motion (5.3), (5.4) with minimal energy

correspond to vacuum. In the case under study, the minimal value is zero and is achieved if and
only if the following conditions hold:

Pμ
i = 0, pi = 0, Fμν

i = 0, ∇αϕ
i = 0, ϕ2 = a2. (5.7)

The first two conditions mean that the vacuum solution in the time gauge must be static. The third
condition implies that the components of the gauge fields must be pure gauge, and, without loss of
generality, we put Aμ

i = 0. Then the last two equations imply the equalities ∂μϕi = 0 and ϕ2 = a2.

5.2. Static spherically symmetric solutions. We consider the following ansatz: A0
i = 0,

Aμ
i = Aμ

i(x), and ϕi = ϕi(x), where x := (xμ) ∈ R
3 is a point in Euclidean space. In this case,

the equations of motion (5.3), (5.4) are

∇νF
νμ

i + e(∇μϕj)ϕkεikj = 0,

−∇μ∇μϕi − λ(ϕ2 − a2)ϕi = 0.
(5.8)

These are exactly the Euler–Lagrange equations for the Euclidean three-dimensional action with
the Lagrangian

L = − 1

4
FμνiFμνi +

1

2
∇μϕi∇μϕi −

1

4
λ(ϕ2 − a2)2, (5.9)

which depends only on the space components Aμ
i(x) and ϕi(x).

Let us refine the definition of spherical symmetry. The rotational group SO(3) acts naturally in
the coordinate space (xμ) ∈ R

3, on which all fields are defined. Moreover, there is another three-
dimensional Euclidean space (ϕi) ∈ R

3, the target space. Therefore, the action of the rotational
group should be extended. There is an alternative: we can say that the SO(3) group either does
not act in the target space at all or acts in the same way as in the coordinate space xμ. The
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’t Hooft–Polyakov monopole corresponds to the second definition. In this case, the group of global
SO(3) rotations acts on Greek and Latin indices in the same way, and they can be identified.

Since the Greek and Latin indices are identified in what follows, we change the sign of the space
metric, ημν �→ δμν . In other words, we minimize the energy

E :=

∫
dx

(
1

4
FμνiFμνi +

1

2
∇μϕi∇μϕi +

1

4
λ(ϕ2 − a2)2

)
, (5.10)

where the Greek indices μ, ν = 1, 2, 3 are raised and lowered by using the Euclidean metric δμν , and

Fμν
i = ∂μAν

i − ∂νAμ
i + eAμ

jAν
kεjk

i,

∇μϕ
i = ∂μϕ

i + eAμ
jϕkεjk

i.
(5.11)

The Euler–Lagrange equations for the functional (5.10) are

δE
δAμ

i
= −∇νF

νμ
i + e(∇μϕj)ϕkεikj = 0,

δE
δϕi

= −∇μ∇μϕ
i + λ(ϕ2 − a2)ϕi = 0.

(5.12)

This system of equations is solved with the spherically symmetric boundary conditions:

lim
r→∞

Aμ
i → 0, lim

r→∞
ϕi → xi

r
a. (5.13)

Now we make the spherically symmetric ansatz

ϕi =
xi

r

H

er
, Aμ

i =
εμ

ijxj
r

K − 1

er
, (5.14)

where H(r) and K(r) are some unknown functions of radius only. After simple calculations, the
Euler–Lagrange equations (5.12) become

r2K ′′ = K(K2 +H2 − 1), r2H ′′ = 2HK2 + λ

(
H2

e2
− a2r2

)
H. (5.15)

At present, an analytic solution is known only for λ = 0. It is [4, 51]

K =
ear

sinh(ear)
, H =

ear

tanh(ear)
− 1 (5.16)

and is called the Bogomol’nyi–Prasad–Sommerfield solution. It is easy to verify that this solution
has finite energy. Numerical analysis of the system of equations (5.15) shows that there exist other
spherically symmetric solutions with finite energy.

5.3. The ’t Hooft–Polyakov monopole in the geometric theory of defects. It was
shown in Subsection 5.2 that static monopole solutions minimize the energy (5.10). This is a three-
dimensional functional depending on the SO(3) connection, in which the metric is supposed to be
Euclidean. Consider it as an expression for the free energy in the geometric theory of defects, the
triplet of scalar fields ϕi being considered as the source of defects.

The Euclidean metric means that elastic stresses in the medium are absent. The Cartan variables
for the monopole solutions are

eμ
i = δiμ, ωμ

ij = Aμ
kεk

ij =
(
δjμx

i − δiμx
j
)K − 1

er2
, (5.17)
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where the spherically symmetric SO(3) connection (5.14) is used. Note that the vielbein is also
chosen in a spherically symmetric form. Simple calculations yield the following expressions for the
curvature and torsion:

Rμν
k =

1

2
Rμν

ijεij
k = Fμν

k = εμν
k K

′

er
− εμν

jxjx
k

er3

(
K ′ − K2 − 1

r

)
, (5.18)

Tμν
k =

(
δkμxν − δkνxμ

)K − 1

er2
. (5.19)

In the geometric theory of defects, the curvature (5.18) and torsion (5.19) are physically inter-
preted as the surface densities of the Frank and Burgers vectors. That is, they are equal to the kth
components of the corresponding vectors on the unit surface area element dxμ ∧ dxν . If sμ is the
normal to the area element, then the corresponding densities of the Frank and Burgers vectors are

fμ
i :=

1

2
εμ

νρRνρ
i =

1

3er
δiμ

(
2K ′ +

K2 − 1

r

)
− 1

er

(
x̂μx̂

i − 1

3
δiμ

)(
K ′ − K2 − 1

r

)
, (5.20)

bμ
i :=

1

2
εμ

νρTνρ
i = εμ

ij x̂j
K − 1

er
, (5.21)

where x̂μ := xμ/r and the tensor fμ
i is decomposed into irreducible parts.

The functions K(r) and H(r) for the Bogomol’nyi–Prasad–Sommerfield solution are given
by (5.16). They have the following asymptotics:

K
∣∣
r→0

≈ 1− (ear)2

6
− (ear)4

120
, K

∣∣
r→∞ ≈ 2eare−ear → 0,

H
∣∣
r→0

≈ 1 +
(ear)2

3
− 2(ear)4

15
, H

∣∣
r→∞ ≈ ear − 1 → ∞.

(5.22)

The corresponding asymptotics of the densities of the Frank and Burgers vectors are

fμ
i
∣∣
r→0

≈ − 1

3
δiμ

(
ea2 +

7

90
e3a4r2

)
+

2

45
xμx

ie3a4 → − 1

3
δiμea

2,

bμ
i
∣
∣
r→0

≈ − 1

6
εμ

ijxj

(
ea2 +

e2a4r2

20

)
→ − 1

6
εμ

ijxjea
2,

ϕi
∣
∣
r→0

≈ 1

3
xi
(
ea2 − 2e3a4r2

5

)
→ 1

3
xiea2,

fμ
i
∣∣
r→∞ ≈ −xμx

i

er4
→ 0, bμ

i
∣∣
r→∞ ≈ −εμ

ijxj
1

er2
→ 0, ϕi

∣∣
r→∞ ≈ xi

r

(
a− 1

er

)
→ xi

r
a.

(5.23)

It implies, in particular, that the energy integral (5.10) converges.
Thus the monopole solutions of the SO(3) gauge model describe continuous distributions of

dislocations and disclinations in continuous media. There is no descriptive representation of such a
distribution of defects by the displacement vector field and n-field, because they are not defined for
continuous distributions of defects.

6. SPHERICALLY SYMMETRIC DISCLINATIONS

Let us consider the Chern–Simons action for the SO(3) connection as the free energy for discli-
nations [27, 28]. The point disclinations considered in the present section are described in [33].

Consider the three-dimensional Euclidean space with Cartesian coordinates (xμ) ∈ R
3, μ =

1, 2, 3. Let components of the local SO(3) connection form Aμ
ij(x) = −Aμ

ji(x), i, j = 1, 2, 3 (the

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 313 2021



90 M. O. KATANAEV

Yang–Mills fields) be given. From the geometric point of view, we may assume that the topologically
trivial manifold R

3 is equipped with the Riemann–Cartan geometry defined by the flat vielbein eμ
i

satisfying the equality δμν = eμ
ieν

jδij and the SO(3) connection ωμi
j = Aμi

j.
Since we have the third-rank totally antisymmetric tensor εijk in three dimensions, the connec-

tion components can be parameterized by a field with two indices: Aμ
ij = Aμ

kεk
ij . The related

components of the local curvature form for the SO(3) connection are

Fμνk :=
1

2
Fμν

ijεijk = ∂μAνk − ∂νAμk +Aμ
iAν

jεijk. (6.1)

We assume that the group of global SO(3) rotations acts simultaneously on the base R
3 and on

the Lie algebra so(3), which is also the three-dimensional space R
3 as a vector space. This means

that if S ∈ SO(3) is an orthogonal matrix, then the transformation has the form

Aμ
ij �→ S−1ν

μ Aν
klSk

iSl
j , S ∈ SO(3).

The difference between Greek and Latin indices disappears under this assumption, but we will
distinguish them if possible.

The most general spherically symmetric connection components are

Aμ
i = εμ

ij xj
r

K − 1

r
+ δiμV (r) +

xμx
i

r2
U(r), r ≥ 0, (6.2)

where K(r), V (r), and U(r) are arbitrary sufficiently smooth functions of radius. The case V =
U = 0 corresponds to the ’t Hooft–Polyakov monopole (5.14).

Straightforward calculations of the components of the spherically symmetric curvature tensor
yield

Fμν
i =

εμν
i

r

[
K ′ + rV (V + U)

]
+

εμν
jxjx

i

r3

(
−K ′ +

K2 − 1

r
− rV U

)

+
xμδ

i
ν − xνδ

i
μ

r2
[
rV ′ − U − (K − 1)(V + U)

]
. (6.3)

We assume that the expression for the free energy of the SO(3) connection is given by the
Chern–Simons action [7], which can be conveniently written using the notation of differential forms,

SCS :=

∫

R3

tr

(
dA ∧A− 2

3
A ∧A ∧A

)
, (6.4)

where dxμAμi
j(x) is the matrix-valued local connection 1-form, the symbol ∧ denotes external

multiplication, and matrix indices are dropped. The Euler–Lagrange equations for the Chern–
Simons action (6.4) are nonlinear: Fμν

i = 0 (flat connection). In the spherically symmetric case,
these equations reduce to the following system:

K ′ + rV (V + U) = 0, (6.5)

−K ′ +
K2 − 1

r
− rV U = 0, (6.6)

rV ′ − U − (K − 1)(V + U) = 0, (6.7)

because the tensor structures in (6.3) are functionally independent.
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Theorem 6.1. A general solution to the system of equations (6.5)–(6.7) is

K = cos f, V =
sin f

r
, U =

rf ′ − sin f

r
, (6.8)

where f(r) is an arbitrary sufficiently smooth function of the radius r ≥ 0.
The proof is given in [33].
Thus a general spherically symmetric solution of the Euler–Lagrange equations is

Aμ
i =

εμ
ijxj
r2

(cos f − 1) + δiμ
sin f

r
+

xμx
i

r3
(rf ′ − sin f), (6.9)

where f(r) is an arbitrary function. If the function f is smooth and tends to zero sufficiently fast as
r → 0, then the curvature for the SO(3) connection is identically zero on the whole R

3 and there is
no disclination. If f(0) �= 0, then disclinations may appear at the origin of the coordinate system.
To understand their structure, we have to find the unit vector field n(x).

6.1. Point disclinations. In the simply connected domains of the Euclidean space with van-
ishing curvature, the connection components are pure gauge, Aμ = ∂μS

−1S, where S ∈ SO(3) and
matrix indices are dropped. Our aim is to find the orthogonal matrix S for a given connection (6.9).
The equation for S has the form ∂μS

−1 = AμS
−1 and coincides with the condition of parallel

displacement of vectors. In the case of zero curvature, the parallel displacement does not depend
on the curve along which it is made. Therefore, we consider an arbitrary curve γ = x(t), t ∈ [0, b],
starting at x0 := x(0) and ending at xb := x(b). Then for the matrix S, we obtain an ordinary
differential equation along γ:

Ṡ−1 = ẋμAμS
−1. (6.10)

When the curve passes through the point x(t), the solution of this equation is given by the path-
ordered exponential:

S−1(x(t)) = P exp

⎛

⎝
t∫

0

ds ẋμ(s)Aμ(s)

⎞

⎠S−1
0 , (6.11)

where S0 is the orthogonal matrix at the initial point x0.
Let γ be the ray starting at the infinite point and ending at a point x, i.e., γ = (xμt), t ∈ [1,∞],

and S0 := S(∞) := �. Then the equality ẋμAμi
j = f ′xkεki

j holds for the connection (6.9). Now
we can easily check that the matrices in the integrand in the path-ordered exponential commute:
[ẋμAμ, ẋ

νAν ] = 0. Consequently, the path-ordered exponential coincides with the usual one, and
the integral (6.11) can be easily calculated:

1∫

∞

ds ẋμAμi
j =

1∫

∞

ds f ′xkεki
j =

1∫

∞

ds
df

d(rs)
xkεki

j =
xkεki

j

r

[
f(r)− f(∞)

]
.

That is, the solution of (6.10) is

S−1j
i = exp(−fkεki

j), fk :=
xk

r

[
f(∞)− f(r)

]
. (6.12)

The vector (fk) is an element of the Lie algebra so(3). Its direction coincides with the rotational
axis in the isotopic space and its length is equal to the rotation angle. The exponential map for the
SO(3) group is well known:

Si
j = exp(fkεki

j) = δji cosF +
fkεki

j

F
sinF +

fif
j

F 2
(1− cosF ), (6.13)

where F 2 := f ifi = [f(∞)− f(r)]2.
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x1

x3

Fig. 5. Spherically symmetric “hedgehog” disclination. The section x2 = 0 is shown in the figure.

6.2. Examples of point disclinations. The rotational matrix (6.13) is defined by the differ-
ence f(∞)− f(r), where f(r) is an arbitrary sufficiently smooth function. Without loss of generality
we put f(∞) = 0 and change the sign of f(r). Then we can choose F (r) = f(r), and the spherically
symmetric rotational matrix takes the form

Si
j = exp(fkεki

j) = δji cos f +
fkεki

j

f
sin f +

fif
j

f2
(1− cos f), (6.14)

where f i = xif(r)/r with an arbitrary function f(r) equal to zero at infinity.
Example 6.1 (“hedgehog” disclination). Let us choose the spherically symmetric boundary

condition at infinity: ni(r = ∞) = xi/r. Then the n-field has the same form in the whole space R
3:

ni(r) := nj(∞)Sj
i(r) = xi/r for an arbitrary function f . We see that the n-field is directed along

the radius everywhere and has the unit length. The distribution of the n-field is shown in Fig. 5.
Now we consider spherically asymmetric disclinations. Fix the vector n0 := (0, 0, 1) at infinity,

and thus break the spherical symmetry. Then the components of the n-field are

n1 = −x2
r

sin f +
x1x3
r2

(1− cos f),

n2 =
x1
r

sin f +
x2x3
r2

(1− cos f),

n3 = cos f +
x23
r2

(1− cos f),

where we lowered the coordinate indices for simplicity to distinguish them from exponents. Let us
pass to the spherical coordinates, (x1, x2, x3) �→ (r, θ, ϕ). Then the components of the n-field are

n1 = − sin θ sinϕ sin f + sin θ cos θ cosϕ(1 − cos f),

n2 = sin θ cosϕ sin f + sin θ cos θ sinϕ(1 − cos f),

n3 = cos f + cos2 θ(1− cos f).

This implies that the limit of the n-field at the origin does not depend on the path along which
the limit r → 0 is taken if and only if f(0) = 0, π. This is the degenerate case, when the n-field is
continuous at zero and disclinations are absent. If f(0) �= 0, π, then the limit n-field does depend on
the path to the origin along which the limit is taken. Consequently, in the general case, the origin
is an essential singularity, and the model describes point disclinations located at the origin.

After fixing the vector n0, we still have the invariance under rotations in the x1, x2 plane.
Therefore, to visualize disclinations, it is sufficient to put x2 = 0, that is, to analyze the distribution
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x1x1

x2x3

Fig. 6. Two sections (x2 = 0 and x3 = 0) of the disclination for f(r) := πe−r/2. The arrows are the
projections of the vector n on the corresponding plane. If the length of an arrow is less then unity,
then the vector has a component in the perpendicular direction. The spherical symmetry is broken
by the boundary condition n(∞) := (0, 0, 1).

of the n-field in the x1, x3 plane:

n1 =
x1x3
r2

(1− cos f), n2 =
x1
r

sin f, n3 = cos f +
x23
r2

(1− cos f).

We see that in general the vector n has a nonzero component in the direction perpendicular to the
x1, x3 plane, which slightly obscures the pictures.

Various distributions of the n-field depend on the choice of the function f(r). We put f(∞) = 0.
Then the n-field coincides with n0 at infinity. If f(0) = 0, π, the unit vector field is continuous at
zero and disclinations are absent. In the opposite case, there are disclinations with an essential
singularity at the origin.

Example 6.2. Set f(r) := πe−r/2, which implies f(0) = π/2 and f(∞) = 0. In this case,
the vector field n in the plane x2 = 0 has all three nontrivial components. Therefore, we draw
the projections of the n-field on the two planes x2 = 0 and x3 = 0 in Fig. 6 for visualization.
The projection of the vector field has unit length on the plane x2 = 0 at infinity, because the
perpendicular component is absent. The projection becomes less at internal points because the
perpendicular component arises. Conversely, the projections of the vectors n on the plane x3 = 0
are zero at infinity and nontrivial at internal points, which is clear from the picture.

The equilibrium equations for the disclinations described above hold everywhere in R
3 except the

origin, where the SO(3) connection is singular. The analysis of this singularity is difficult in general,
because the equations are nonlinear, and we postpone it for further investigations. We consider linear
disclinations in the next section, for which the equations become linear. The singularity for these
disclinations is proportional to the δ-function with support located along the disclination line.

7. LINEAR DISCLINATIONS

We assume that the expression for the free energy is given by the Chern–Simons action (6.4),
as in the previous section. To describe linear disclinations, we add a source term to the action:

SCS[A] + Sint =

∫

R3

(
1

2
dAi ∧Ai +

1

6
Ai ∧Aj ∧Akεijk −Ai ∧ Ji

)
, (7.1)

where J is the 2-form of the disclinations source, which is not specified here. The interaction term is
similar to the minimal coupling of the electric charge to the electromagnetic field in electrodynamics.
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The equilibrium equations for the action (7.1) are

Fμν
k = Jμν

k, (7.2)

where Jμν
k are the components of the source for the SO(3) connection.

The first two terms in the action (7.1) change by an external differential under local SO(3)
rotations. Therefore, we have to impose the condition DJk = 0, where DJk := dJk + J j ∧ ωj

k is
the external covariant derivative, for the self-consistency of the Euler–Lagrange equations.

Consider one linear disclination qμ(t) ∈ R
3, where t ∈ R is a parameter along the disclination

core. The interaction term is written in the form

Sint :=

∫
dqμAμiJ

i =

∫
dt q̇μAμiJ

i. (7.3)

This action is invariant with respect to coordinate changes in R
3 (up to boundary terms) and an

arbitrary reparameterization of the curve qμ(t). We assume that the disclination is located in such
a way that the inequality q̇3 �= 0 holds everywhere. To obtain the variation of this action with
respect to the SO(3) connection, we insert the three-dimensional δ-function into the integrand:

Sint =

∫
dt d3x q̇μAμiJ

iδ3(x− q) =

∫
d3x

q̇μ

q̇3
AμiJ

iδ2(x− q),

where we have integrated with respect to t using one δ-function δ(x3 − q3(t)) and δ2(x − q) :=
δ(x1 − q1)δ(x2 − q2) denotes the two-dimensional δ-function on the plane x1, x2. Then the variation
of the interaction term is

δSint

δAμi
=

q̇μ

q̇3
J iδ2(x− q). (7.4)

We consider equations (7.2) on the topologically trivial manifold M ≈ R
3 with Cartesian coordi-

nate system x1 = x, x2 = y and x3. The disclination is supposed to be straight and coinciding with
the x3 axis, i.e., q1 = q2 = 0 and q3 = t. We are looking for solutions of (7.2) which are invariant
with respect to translations along the x3 axis and describe rotations only in the x, y plane. In this
case, the SO(3) connection has only two nontrivial components Ax

3 and Ay
3, which depend on a

point on the plane (x, y) ∈ R
2 = C. To find the solution, we introduce the complex coordinate

z := x+ iy. Then the two real components of the SO(3) connection combine into a complex one:

Az
3 =

1

2
Ax

3 − i

2
Ay

3, Az
3 =

1

2
Ax

3 +
i

2
Ay

3. (7.5)

The corresponding curvature tensor (field strength) has only one linearly independent complex
component

Fzz
3 = 2

(
∂zAz

3 − ∂zAz
3
)
, (7.6)

which is linear in the connection. This is a consequence of the fact that the rotational SO(2) group
acting on the x, y plane is abelian and nonlinear terms in the curvature tensor disappear.

In our case, the quadratic terms in the curvature vanish identically, and we are able to consider
sources of the δ-function form because the equilibrium equations (7.2) become linear. Now we fix
the sources

Fzz
3 = 4πiDδ(z), D ∈ R, (7.7)

where δ(z) is the two-dimensional δ-function on the complex plane. It is clear that this source has
rotational symmetry.

The solution of equation (7.7) describes a new type of geometric singularity. If this equation
was considered as a second-order equation for the metric, then its solution would describe a conical
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singularity on the x, y plane. In this case, the solution corresponds to a wedge dislocation in the
geometric theory of defects [34]. Now the situation is different. We consider this equation as a
first-order one for the SO(3) connection and show that it describes the defect of the unit vector field
(disclination), the metric being Euclidean.

Equation (7.7) has the solution

Az
3 = − iD

z
, Az

3 =
iD

z
. (7.8)

To check that this is indeed a solution, one can use the well-known formula (see, e.g., [57])

∂z
1

z
= πδ(z) ⇔ ∂z

1

z
= πδ(z). (7.9)

The corresponding real components are

Ax
3 = − 2Dy

x2 + y2
, Ay

3 =
2Dx

x2 + y2
. (7.10)

Outside the x3 axis the curvature is flat, and therefore the connection is given by partial deriva-
tives of some function. This function is the rotation angle field θ(x, y) of the unit vector field on the
plane in the geometric theory of defects. This field must satisfy the following system of equations:

∂xθ = − 2Dy

x2 + y2
, ∂yθ =

2Dx

x2 + y2
. (7.11)

The integrability conditions for this system outside the disclination axis, ∂xyθ = ∂yxθ, are fulfilled,
and one can easily write down a general solution

θ = −2D arctan
x

y
+C, C = const. (7.12)

We fix the constant of integration to be C := πD. Then the solution takes the form

tan
θ

2D
=

y

x
= tanϕ, (7.13)

where ϕ is the ordinary polar angle on the plane (x, y) ∈ R
2. The polar angle changes by 2π along

a contour C around the x3 axis. We must impose the quantization condition D = n/2, n ∈ Z, in
order that the rotation angle field θ(x, y) be well defined.

Thus the rotation angle field takes the form θ = nϕ, where ϕ is the ordinary polar angle on
the x, y plane. It is defined everywhere except the cut along a half-plane, say, y = 0, x ≥ 0. The
corresponding SO(3) connection has only two nontrivial components

Ax
12 = − ny

x2 + y2
= −n

r
sinϕ, Ay

12 =
nx

x2 + y2
=

n

r
cosϕ,

where r :=
√

x2 + y2 is the polar radius. The SO(3) connection is defined everywhere on the x, y
plane except the origin, where its curl has a δ-function singularity (7.7). We see that the SO(3)
connection behaves much better than the respective rotation angle field, as it should be in the
geometric theory of defects.

Thus, along a closed contour C encircling the x3 axis, the rotation angle field changes from 0
to 2πn, where |2πn| = |Ω| is the magnitude of the Frank vector. It is exactly the linear disclination
of the unit vector field with the core coinciding with the x3 axis. For n = 0 the disclination is absent.
This case requires separate treatment: for D = 0, the equality θ = 0 must hold as a consequence
of (7.12). Two simple examples of linear disclinations for n = 1 and n = 2 are presented in Fig. 4,
where the distribution of the rotation angle field is shown on the x, y plane.
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8. CONCLUSIONS

We give a review of the geometric theory of defects in this paper. Currently known examples
of disclinations are described. Since the Lie algebras so(3) and su(2) are isomorphic, the static
solutions of SU(2) gauge models have a straightforward physical interpretation in the framework
of the geometric theory of defects. In particular, the ’t Hooft–Polyakov monopole has a physical
interpretation in crystals: it describes continuous distributions of dislocations and disclinations.

We have shown that the Chern–Simons action is well suited for describing single disclinations
in the geometric theory of defects. To describe point disclinations, we have found the most general
spherically symmetric SO(3) connection containing one arbitrary function of radius. Two examples
are given: a spherically symmetric “hedgehog” disclination and a point disclination with a constant
value of the n-field at infinity and an essential singularity at the origin. The Chern–Simons action
also describes linear disclinations. As an example, we have considered straight linear disclinations
with Frank vector being a multiple of 2π.
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