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Abstract—We consider the inversion problem for linear quantization defined by an integral
transformation relating the matrix of a quantum operator to its classical symbol. For an ar-
bitrary linear quantization, we construct evolution equations for the density matrix and the
Wigner function. It is shown that the Weyl quantization is the only one for which the evolution
equation of the Wigner function is free of a quasi-probability source, which distinguishes this
quantization as the only physically adequate one in the class under consideration. As an exam-
ple, we give an exact stationary solution for the Wigner function of a harmonic oscillator with
an arbitrary linear quantization, and construct a sequence of quantizations that approximate
the Weyl quantization and tend to it in the weak sense so that the Wigner function remains
positive definite.
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1. INTRODUCTION

The Wigner function [21] is commonly understood as the Weyl symbol of the density matrix.
In problems of quantum statistics, this function is used as quasi-probability in the sense that the
average value of a quantum operator is obtained by averaging the corresponding classical symbol
with the Wigner function in the phase space of classical mechanics. However, in the general case, the
Wigner function is only real rather than nonnegative; moreover, it depends on the Planck constant,
so the analogy with the classical probability density is formal. Nevertheless, the convenience of
performing calculations in the classical phase space makes them more attractive compared to using
the complex density matrix of a quantum system. Thus, in [11, 12] the tomographic representation
of quantum mechanics was studied using the Wigner function as an analog of the density of the
distribution function. The properties of the Wigner function have also been investigated for various
quantum systems [14, 8] and for various commutation rules of canonical variables [9].

In many problems of quantum mechanics, relatively simple systems are considered: a set of
nonrelativistic particles interacting with an external field or with each other through a pair potential.
For such systems, the quantum Hamiltonian operator does not depend on the quantization rule,
i.e., on the arrangement of noncommuting operators in the product of coordinates and momenta.
However, the development of quantum theory has made it necessary to consider quantum equations
in the context of choosing a quantization rule. There are two reasons for that. First, it is needed
to formalize mathematically the transition from classical to quantum mechanics, which was begun
by Weyl [20], Born and Jordan [7], von Neumann [15], and other founders of quantum theory and
further developed by Berezin [2, 3]. Second, the questions of quantizing mechanical systems with a
potential that depends not only on coordinates but also on momenta have become topical. These
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are the so-called weakly relativistic systems with delayed interaction [10, 19, 17]. This sparked
interest in quantum equations written for a parametric class of quantizations containing various
variants of symmetrization. A relevant approach was developed in [18]. It turned out that the
Wigner function depends on the quantization rule, but the evolution equation was obtained only
for the τ -quantization [17, 16]. Particular results were obtained for equilibrium distributions within
the framework of Chernoff equivalent quantum semigroups [5]. In the present paper, we extend the
evolution equation for the Wigner function to the case of an arbitrary linear quantization.

2. LINEAR QUANTIZATION AND INVERSION FORMULA

Let A(q, p) be a dynamical quantity defined in the phase space R
2 of classical Hamiltonian

mechanics, so that q and p are generalized coordinate and momentum. Denote by ̂A the quantum
operator obtained by quantizing the function A(q, p). The operator ̂A acts in a Hilbert space L of
functions ψ(x), which is assumed to be the space L2(R). The function A(q, p) is called the classical
symbol of the operator ̂A.

Among many different rules of correspondence between functions and operators, we will consider
the so-called linear quantization, when the relation between the matrix of an operator and its
symbol is given by a linear transformation. The idea of linear quantization was formulated in
Berezin’s papers [2, 3], where the correspondence between the matrix ˜A(x, y) of an operator ̂A and
its classical symbol A(q, p) was established by an integral transformation of the symbol with kernel
K(q, p|x, y), called the quantization kernel:

˜A(x, y) =

∫

A(q, p)K(q, p|x, y) dq dp. (2.1)

The operator ̂A itself acts on ψ ∈ L as

̂Aψ(x) =

∫

˜A(x, y)ψ(y) dy. (2.2)

Here and in what follows, integrals are taken from −∞ to ∞. In [16] the so-called τ -quantization
kernel was introduced:

Kτ (q, p|x, y) =
1

2π�
δ
(

q − (1− τ)x− τy
)

exp

[

ip(x− y)

�

]

, τ ∈ [0, 1], (2.3)

where � is the Planck constant. When the quantization with kernel (2.3) is applied, the generalized
coordinate and momentum are assigned the operators q̂ = x and p̂ = −i� ∂/∂x irrespective of the
value of τ .

The matrix obtained by formula (2.1) with the quantization kernel (2.3) will be denoted
by ˜Aτ (x, y). For example, for the symbol ϕ(q)pm the τ -quantization yields the operator

̂Aτ = (i�)m
m
∑

k=0

Ck
mτkϕ(k)(x)

∂m−k

∂xm−k
. (2.4)

The τ -quantization is Hermitian only for τ = 1/2. In this case, formula (2.3) defines the so-called
Weyl quantization. Other versions of linear Hermitian quantizations can be obtained, for example,
by taking linear combinations of kernels of the form (2.3), as is done in [16]. Such a combination
can be represented as a linear integral transformation of the quantization kernel (2.3) with some
generalized function Q(τ) satisfying the condition

∫

Q(τ) dτ = 1. (2.5)
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The resulting quantization kernel can be represented as follows:

K(q, p|x, y) =
1

∫

0

Q(τ)Kτ (q, p|x, y) dτ, ˜A(x, y) =

1
∫

0

Q(τ) ˜Aτ (x, y) dτ. (2.6)

We will call Q(τ) the symmetrization function. If it is symmetric with respect to the point 1/2, then
the quantum operator given by (2.6) is Hermitian. We also introduce the characteristic function
XQ(z) of the quantization and the moments σn of the symmetrization function:

XQ(z) =

∫

Q(τ) exp(izτ) dτ =
∞
∑

n=0

σn
(iz)n

n!
. (2.7)

By specifying different symmetrization functions Q(τ) of the τ -quantization kernels, we obtain
different quantum operators corresponding to the same symbol. For example, as applied to the
symbol A(q, p) = ϕ(q)pm, the quantization (2.6) yields

̂A = (i�)m
m
∑

k=0

(

m

k

)

σkϕ
(k)(x)

∂m−k

∂xm−k
. (2.8)

Thus, to define an operator corresponding to a classical polynomial (in momenta) symbol, it is
sufficient to specify the moments σk.

Usually, one chooses nonnegative symmetrization functions Q(τ), so that an arbitrary linear
quantization can be viewed as a probabilistic mixture of τ -quantizations. For example, for the
Weyl quantization we have Q(τ) = δ(τ − 1/2), for the Born quantization we have Q(τ) = 1,
τ ∈ [0, 1], Q(τ) = 0, τ /∈ [0, 1], and for the Jordan quantization we have Q(τ) = (δ(τ) + δ(τ − 1))/2.
The characteristic functions of these quantizations are as follows: XQ(z) = eiz/2 for the Weyl
quantization, XQ(z) = (eiz − 1)/(iz) for the Born quantization, and XQ(z) = (eiz + 1)/(iz) for the
Jordan quantization.

Using the characteristic function of the quantization, XQ(z), one can represent the quantization
kernel (2.6) (taking account of (2.3)) as

K(q, p|x, y) = 1

(2π)2�

∫

exp

[

iz(q − x) + ip(x− y)

�

]

XQ(z(x− y)) dz. (2.9)

Let us obtain an inversion formula for the quantization (2.1) in the case when the quantization
kernel has the form (2.9). To this end we use the fact that an inverse transformation exists for any
τ -quantization. Namely, if the relation between the symbol and the matrix of the operator is given
by the quantization rule (2.1) with kernel (2.3), then for any τ there is an inverse transformation
of the form

A(q, p) =

∫

Lτ (x, y|q, p) ˜Aτ (x, y) dx dy,

Lτ (x, y|q, p) = δ
(

q − (1− τ)x− τy
)

exp

[

− ip(x− y)

�

]

.

(2.10)

Thus, the kernel Lτ (x, y|q, p) is related to the kernel Kτ (q, p|x, y) as Lτ (x, y|q, p) = 2π�K∗
τ (q, p|x, y),

where the asterisk means complex conjugation. We emphasize that for an arbitrary linear combi-
nation of τ -quantizations with a kernel of the form (2.9), the inverse transformation has not been
previously considered.

For a linear quantization, the connection between the matrix of the operator and the symbol is
given by a kernel of the inverse transformation, L(x, y|q, p), so that

A(q, p) =

∫

L(x, y|q, p) ˜A(x, y) dx dy. (2.11)
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We represent the sought kernel L(x, y|q, p) as a linear integral transformation of the inverse ker-
nels (2.10) with an unknown symmetrization function S(τ), which is to be determined:

L(x, y|q, p) =
∫

S(τ)Lτ (x, y|q, p) dτ =
1

2π

∫

exp

[

iz(q − x)− ip(x− y)

�

]

XS(z(x− y)) dz. (2.12)

To find conditions on the characteristic function XS(z), we substitute expressions (2.12)
and (2.1) into (2.11). Introducing the new variables u = x − y and v = x + y, we transform
the integral (2.11) to

A(q, p) =
1

4π2�

∫

exp

[

ik(q − ξ)− iu(p − η)

�

]

A(ξ, η)XS(uk)X
∗
Q(uk) dξ dη dk du. (2.13)

This implies that if the characteristic function XS(z) corresponding to the symmetrization function
of the inverse kernels of τ -quantizations (2.12) is related to the characteristic function XQ(z) by the
condition

XS(z)X
∗
Q(z) = 1, (2.14)

then (2.13) becomes an identity. Indeed, in this case the integration with respect to dk and du can
be performed independently, so that we obtain 2πδ(q − ξ) and 2π�(p − η), respectively. As a result,
the remaining integral in (2.13) is transformed to

∫

A(ξ, η)δ(q − ξ)δ(p − η) dξ dη = A(q, p). One
can easily check that for the τ -quantization, when Q(λ) = δ(λ − τ), the characteristic function is
XQ(z) = exp(izτ), so for the inverse transformation we have XS(z) = XQ(z), just as it should be
according to (2.14).

Denote the moments of the inverse symmetrization function S(τ) by μn, so that

XS(z) =

∞
∑

n=0

μn
(iz)n

n!
. (2.15)

It then follows from (2.14) and (2.8) that
∞
∑

k=0

(−iz)k

k!
σk

∞
∑

n=0

(iz)n

n!
μn = 1. (2.16)

Equating the coefficients of the same powers of z in (2.16), we arrive at a triangular system of
equations, which allows us to successively express μk in terms of σk:

μ0σ0 = 1 ⇒ μ0 = 1,
n
∑

k=0

(−1)k
μn−kσk

k!(n− k)!
= 0, n ≥ 1. (2.17)

Note that the inversion of a linear quantization is closely related to the Bernoulli numbers. As
is well known (see, e.g., [1]), the Bernoulli numbers Bn are the coefficients of the Taylor series
expansion of the generating function

x

exp(x)− 1
=

∞
∑

n=0

Bn
xn

n!
. (2.18)

In this connection, consider the inversion of the Born quantization, with the characteristic func-
tion XQ(z) = (exp(iz)− 1)/(iz). According to (2.14), the characteristic function of the symmetriza-
tion of the inverse kernel in this case has the form XS(z) = −iz/(exp(−iz)− 1). Therefore, it is the
generating function of the Bernoulli numbers, but with alternating signs, so for this quantization
we have

μn = (−1)nBn, n > 0. (2.19)
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In fact, since only the even Bernoulli numbers are nonzero (apart from the first one), formula (2.19)
is only meaningful for the first moment; for the other moments we have μn = Bn, n > 1.

The Jordan quantization is also of practical interest. The moments μn of S(τ) in (2.17) for
this quantization turn out to be in a sense dual to the Bernoulli numbers. Since the characteristic
function for the Jordan quantization is XQ(z) = (1 + exp(iz))/2, by inverting this quantization we
find that the moments μn of the corresponding function S(τ) have a generating function XS(z) =
2/(1 + exp(−iz)). It follows from (2.17) that μn satisfy the relation

μn +

n
∑

k=0

(−1)kCk
nμn−k = 0, n ≥ 1. (2.20)

In (2.20) the zeroth-order moment is equal to one: μ0 = 1 (just as the Bernoulli number B0 = 1);
all moments of even order 2k, k ≥ 1, vanish (all Bernoulli numbers with odd indices 2k + 1, k ≥ 1,
vanish); the moments of odd order 2n + 1 have the sign (−1)n (the Bernoulli numbers with even
indices 2n have the sign (−1)n+1). Here are the first few nonzero numbers μk obtained recursively
from system (2.20) (these are their exact values):

μ0 = 1, μ1 = 0.5, μ3 = −0.25, μ5 = 0.5, μ7 = −2.125,

μ9 = 15.5, μ11 = −172.75, μ13 = 2730.5, μ15 = 58098.0625.
(2.21)

Note that linear quantizations admit a statistical interpretation. These quantizations are a
statistical mixture of τ -quantizations with a positive definite generalized probability density Q(τ);
i.e., any Hermitian quantization can be interpreted as a result of averaging τ -quantizations. Then the
concept of random τ -quantization defined by the kernel (2.3) arises naturally, and its average (2.9)
provides the quantization of the dynamical system.

3. EVOLUTION EQUATION FOR THE WIGNER FUNCTION

We use formula (2.14) to impart a closed form to the evolution equation of the Wigner func-
tion for the linear quantization defined by (2.1), (2.3), and (2.9). In the particular case of Weyl
quantization, the evolution equation for the Wigner function was obtained by Moyal [13].

Denote by ρ̃(x, y) the density matrix. The average value of an operator ̂A in the state ρ̂ is
given by

〈 ̂A〉 = Tr ρ̂ ̂A =

∫

ρ̂(x, y) ˜A(y, x) dx dy. (3.1)

Substituting formula (2.1) for the matrix ˜A(x, y) into (3.1), we obtain

〈 ̂A〉 =
∫

W (q, p)A(q, p) dq dp, (3.2)

where the function W (q, p) is a generalization of the Wigner function [21] to linear quantization:

W (q, p) =

∫

ρ̃(x, y)K(q, p|y, x) dx dy =

∫

Wτ (q, p)Q(τ) dτ, (3.3)

Wτ (q, p) =

∫

Kτ (q, p|y, x)ρ̃(x, y) dx dy. (3.4)

Using the inversion formula (2.14), we obtain a representation of the density matrix in terms of the
Wigner function:

ρ̃(x, y) =

∫

W (q, p)L(y, x|q, p) dq dp =

∫

S(τ) dτ

∫

W (q, p)Lτ (y, x|q, p) dq dp. (3.5)
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Let us now derive the evolution equation for the Wigner function. The time-dependent density
matrix and Wigner function will be denoted by the same symbols but with a time argument added.
The starting point is the quantum Liouville equation [4]; for a given Hamiltonian ̂H, this equation
reads i� ∂ρ̂/∂t = [ ̂H, ρ̂ ]. In terms of the matrices of operators, the equation has the form

i�
∂ρ̃(x, y, t)

∂t
=

∫

(

˜H(x, z)ρ̃(z, y, t) − ˜H(z, y)ρ̃(x, z, t)
)

dz

=
1

2π�

∫

Q(τ)

∫

H(τz + (1− τ)x, p)ρ̃(z, y, t)eip(x−z)/� dz dp dτ

− 1

2π�

∫

Q(τ)

∫

H(τy + (1− τ)z, p)ρ̃(x, z, t)eip(z−y)/� dz dp dτ. (3.6)

Differentiating (3.3) with respect to t and substituting the right-hand side of the Liouville equa-
tion (3.6) for i�∂ρ̃(x, y, t)/∂t, we find

i�
∂W (q, p, t)

∂t
=

∫

K(q, p|y, x)
(

˜H(x, z)ρ̃(z, y, t) − ˜H(z, y)ρ̃(x, z, t)
)

dx dy dz

=

∫

(

U(q, p; q′, p′; q′′, p′′)− V (q, p; q′, p′; q′′, p′′)
)

H(q′, p′)W (q′′, p′′, t) dq′ dp′ dq′′ dp′′, (3.7)

where

U(q, p; q′, p′; q′′, p′′) =

∫

K(q, p|y, x)K(q′, p′|x, z)L(y, z|q′′, p′′) dx dy dz,

V (q, p; q′, p′; q′′, p′′) =

∫

K(q, p|y, x)K(q′, p′|z, y)L(z, x|q′′, p′′) dx dy dz.
(3.8)

Taking account of (2.9) and (2.12), we transform the integrals in (3.8) by making the change of
variables u = x− y, v = x+ y, z′ = z − x. This results in the following expressions:

U(q, p; q′, p′; q′′, p′′) =

∫

X∗
Q(su)XQ(−s′z′)

X∗
Q(−s′′(u+ z′))

d(v/2) du dz′

(2π�)2
ds ds′ ds′′

(2π)2

× exp

{

is
(

q− v

2
+

u

2

)

+ is′
(

q′− v

2
− u

2

)

+ is′′
(

q′′− v

2
+

u

2

)

− ipu

�
− ip′z′

�
+

ip′′(z′+u)

�

}

,

V (q, p; q′, p′; q′′, p′′) =

∫

X∗
Q(su)XQ(s

′′(u+ z′))

X∗
Q(s

′z′)

d(v/2) du dz′

(2π�)2
ds ds′ ds′′

(2π)2

× exp

{

is
(

q− v

2
+

u

2

)

+ is′
(

q′− v

2
− u

2
−z′

)

+ is′′
(

q′′− v

2
− u

2
−z′

)

− ipu

�
− ip′z′

�
+

ip′′(z′+u)

�

}

.

(3.9)

Integrating each of the expressions in (3.9) with respect to dv/2 gives rise to the delta function
2πδ(s + s′ + s′′), which allows us to integrate with respect to ds′′. Thus, the evolution equation
of the Wigner function for linear quantization has a rather cumbersome form and depends on the
quantization rule. This dependence appears in the form of three characteristic functions. The
evolution itself is determined by the difference U − V in (3.7). The further transformations in (3.7)
and (3.8) are made by passing to the Fourier transforms Hkω and Λ(ξ, η, t) for the Hamilton and
Wigner functions:

H(q′, p′) =

∫

Hkωe
−ikq′−iωp′ dk dω and Λ(ξ, η, t) =

∫

W (q, p, t)e−iξq+iηp dq dp. (3.10)
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Substituting (3.10) into (3.7) and using (3.9), after integrating with respect to dq′ dp′ we obtain the
evolution equation for the Wigner function:

i�

X∗
Q(�ξη)

∂Λ(ξ, η, t)

∂t
=

∫

XQ(�kω)e
−i�kη

X∗
Q(�(ξ + k)(η − ω))

HkωΛ(ξ + k, η − ω, t) dk dω

−
∫

XQ(�kω)e
i�ξω

X∗
Q(�(ξ + k)(η − ω))

HkωΛ(ξ + k, η − ω, t) dk dω.

One can see that instead of the Fourier transform of the Wigner function, it is convenient to
introduce the function

F (ξ, η, t) =
Λ(ξ, η, t)

X∗
Q(�ξη)

, (3.11)

and instead of the Fourier transform of the Hamiltonian, the function

G(k, ω) = XQ(�kω)Hkω. (3.12)

Then we obtain a more compact final expression for the generalization of the Moyal equation to an
arbitrary linear quantization of the form (2.9):

i�
∂F (ξ, η, t)

∂t
=

∫

(

e−i�kη − ei�ξω
)

G(k, ω)F (ξ + k, η − ω, t) dk dω. (3.13)

Traditionally, equation (3.13) is written for the Weyl quantization (in which case it is called the
Moyal equation). This equation has the form

∂W (q, p, t)

∂t
=

i

�

∫

Hkωe
ikq+iωp

(

W

(

q +
�ω

2
, p − �k

2
, t

)

−W

(

q − �ω

2
, p +

�k

2
, t

))

dk dω. (3.14)

It is easy to check that for the Weyl quantization equations (3.14) and (3.13) coincide. Indeed,
passing to the Fourier transform of the Wigner function in (3.14), we obtain the equation

�
∂Λ(ξ, η, t)

∂t
= −

∫

HkωΛ(ξ + k, η − ω, t) sin
�(ξω + kη)

2
dk dω, (3.15)

which coincides with (3.13) in view of (3.11) and (3.12). For other linear quantizations of the
form (2.6), the evolution equation of the Wigner function differs significantly from (3.15). However,
we emphasize that the difference is not related to the physics of quantization of the Hamiltonian or
other observables but follows from the mathematical definition of the Wigner function (3.3), which
itself depends on quantization, even if the Hamiltonian operator does not depend on it.

The further analysis depends on the specific form of the Hamiltonian defining the integral kernel
in (3.13). For example, if we consider a particle of unit mass with momentum p in a field with
potential U(q), then H(q, p) = p2/2 + U(q) and so Hkω = −δ(k)δ′′(ω)/2 + δ(ω)Uk. For this model,
equation (3.13) takes the form

∂Λ(ξ, η, t)

∂t
+ ξ

∂Λ(ξ, η, t)

∂η
− i�

2
ξ2Λ(ξ, η, t)

(

1− 2i
X ′∗

Q (�ξη)

X∗
Q(�ξη)

)

= − i

�
X∗

Q(�ξη)

∫

(

XQ(−�kη)e−i�ηk − 1
)

Uk
Λ(ξ + k, η, t)

X∗
Q(�(ξ + k)η)

dk. (3.16)

It follows from (3.16) that in the general case of an arbitrary linear quantization, the left-hand side
of the equation contains a source term, which is absent only if the parenthesized expression with the
logarithmic derivative of the characteristic function of the quantization is equal to zero, that is, if
2iX ′∗(z) = X∗(z). This condition holds only for the Weyl quantization, for which X∗(z) = e−iz/2.
Only in this case the source term vanishes.
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4. HARMONIC OSCILLATOR

To illustrate the differences between quantizations in equation (3.16), we consider the example
of a harmonic oscillator. In this case Uk = −1/2δ′′(k), so that (3.16) becomes

∂Λ(ξ, η, t)

∂t
+ ξ

∂Λ(ξ, η, t)

∂η
− η

∂Λ(ξ, η, t)

∂ξ
=

i�

2
(ξ2 − η2)Λ(ξ, η, t)

(

1− 2i
X

′∗
Q (�ξη)

X∗
Q(�ξη)

)

. (4.1)

Let us find the general stationary solution of equation (4.1) as the sum of a particular solution and
the general solution of the homogeneous equation. The general solution to the homogeneous equa-
tion (4.1) is an arbitrary differentiable function of the sum of squared arguments, g(ξ2/2 + η2/2).
A particular solution of this equation for the function w = lnΛ(ξ, η) is i�ξη/2 + lnX∗

Q(�ξη). As
a result, we obtain the stationary Wigner function (more precisely, its Fourier transform) for the
harmonic oscillator in the form

Λ(ξ, η) = ei�ξη/2X∗
Q(�ξη) exp

(

g

(

ξ2

2
+

η2

2

))

. (4.2)

The factor ei�ξη/2X∗
Q(�ξη) multiplying the exponential of the function g(ξ2/2 + η2/2) in (4.2) cor-

responds to the choice of symmetrization in the quantization rule. This factor is equal to one only
if X∗

Q(z) = e−iz/2, i.e., for the Weyl quantization. In all other cases, we obtain a solution with a
source of quasi-probability.

For example, for the Jordan quantization (2.14), the solution (4.2) has the form

Λ(ξ, η) = cos

(

�

2
ξη

)

exp(g). (4.3)

Because of the cosine factor in (4.3), the Wigner function for the equilibrium harmonic oscillator
is of alternating sign, which is not very natural for its interpretation as an analog of the probability
density. Thus, the Jordan quantization is not very convenient for describing the harmonic oscillator.

Let us find out how the function Λ(ξ, η) changes in (4.3) if we start to bring the delta functions
closer to the middle of the interval [0, 1], that is, instead of the Jordan quantization, use the
quantization shifted by ±a from the point τ = 1/2:

Q(τ) =
1

2

(

δ

(

τ − a− 1

2

)

+ δ

(

τ + a− 1

2

))

, XQ(z) = eiz/2 cos(az). (4.4)

For this quantization, instead of (4.3) we obtain a solution of the form

Λ(ξ, η) = cos(a�ξη) exp(g). (4.5)

As expected, for a → 0, (4.5) leads to the result for the Weyl quantization; however, it should be
noted that the convergence is not uniform in ξη for large values of ξη, that is, for small values of qp,
which is important precisely in the quantum domain. Therefore, for arbitrarily small values of a,
the function (4.5) will always be nonpositive. Thus, the model of delta functions symmetrically
approaching the point 1/2 exhibits properties that are fundamentally different from those of the
Weyl quantization, and therefore cannot serve for the approximation of the latter. The need for
such an approximation arises because the delta functions cannot be realized exactly in physics but
are approximated by “caps,” i.e., are somewhat “smeared.”
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Then, instead of a set of delta functions, consider an approximating model in the form of a
triangular distribution. Let

Q(τ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

τ − 1/2 + a

a2
,

1

2
− a ≤ τ ≤ 1

2
,

1/2 + a− τ

a2
,

1

2
< τ ≤ 1

2
+ a,

0,

∣

∣

∣

∣

τ − 1

2

∣

∣

∣

∣

> a.

(4.6)

The moments of this distribution are as follows:

σn(a) =

1/2+a
∫

1/2−a

τnQ(τ) dτ =
1

2n(n+ 1)(n + 2)

n+2
∑

k=2

Ck
n+2(1 + (−1)k)(2a)k−2. (4.7)

Since lima→0 σn(a) = 2−n, this distribution also approximates the Weyl quantization. Its charac-
teristic function is

XQ(z) = eiz/2
sin2(az/2)

(az/2)2
. (4.8)

Therefore, the solution (4.2) in this case takes the form

Λ(ξ, η) =
sin2(a�ξη/2)

(a�ξη/2)2
exp(g(ξ2 + η2)) (4.9)

and is nonnegative, in contrast to the solution (4.5). Thus, it preserves the possibility of probabilistic
interpretation and shows that if the Weyl quantization is physically realized in the form of a “weakly
smeared” delta function, then no paradox with negative quasi-probability arises. Of course, the
convergence to the solution for the Weyl quantization as a → 0 is not uniform.

5. CONCLUSIONS

For every linear quantization given by a superposition of τ -quantizations, an inversion formula for
the corresponding kernel can be obtained, which relates the matrix of the operator to its symbol.
This superposition can be interpreted as a probabilistic mixture of τ -quantizations, i.e., as their
averaging with respect to some measure or pseudo-measure. The characteristic functions of the
densities of these measures are tied by the inversion condition. On this basis, a generalization of the
Moyal equation is obtained, which describes the evolution of the Wigner function for an arbitrary
linear quantization. It is shown that among linear quantizations only the Weyl quantization is free
of a probability source in the evolution equation of the Wigner function. Various approximations
for the kernel of the Weyl quantization are constructed. It is shown that there is an approximation
weakly converging to the Weyl kernel for which the stationary solution of the Moyal equation for
the harmonic oscillator is positive, which agrees with the physical meaning of the solution.

In our recent paper [6], we derived the generalized Moyal equation and gave an example of its
application to the problem of anharmonic oscillator as a demonstration of a real physical system in
which the order of noncommuting operators affects the form of the evolution equation.
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