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Abstract—The paper is devoted to discretization of integral norms of functions from a given
finite-dimensional subspace. We use recent general results on sampling discretization to derive a
new Marcinkiewicz type discretization theorem for the multivariate trigonometric polynomials
with frequencies from the hyperbolic crosses. It is shown that recently developed techniques
allow us to improve the known results in this direction.
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1. INTRODUCTION

Let Ω be a compact subset of Rd with a probability measure μ. By the Lq, 1 ≤ q < ∞, norm
we mean

‖f‖q := ‖f‖Lq(Ω) :=

⎛
⎝

∫

Ω

|f |q dμ

⎞
⎠
1/q

.

By discretization of the Lq norm we understand a replacement of the measure μ by a discrete
measure μm with support on a set ξ = {ξj}mj=1 ⊂ Ω. This means that integration with respect to
the measure μ is replaced by an appropriate cubature formula. Thus, integration is substituted by
evaluation of a function f at a finite set ξ of points. This is why we call this way of discretization
sampling discretization. Discretization is a very important step in making a continuous problem
computationally feasible. The reader can find a corresponding discussion in the recent survey [6].
The first results in sampling discretization were obtained in the 1930s by Marcinkiewicz as well as by
Marcinkiewicz and Zygmund (see [29]) for discretization of the Lq norms of the univariate trigono-
metric polynomials. We call discretization results of this kind the Marcinkiewicz type theorems.
Recently, substantial progress in sampling discretization has been made in [4–6, 13, 15, 26, 27]. To
discretize the integral norms successfully, a new technique was introduced. This technique takes
different forms in different papers, but the common feature of its forms is the following. The
new sampling discretization technique is a combination of a probabilistic technique, including the
chaining technique, with results on the entropy numbers in the uniform norm (or its variants).
Fundamental results from [2, 17, 20] were used. The reader can find results on chaining in [14, 23]
and on the generic chaining in [20]. We note that the idea of the chaining technique goes back
to the 1930s, when it was suggested by A. N. Kolmogorov. Later, results of this type have been
developed in the study of the central limit theorem in probability theory (see, for instance, [8]).
The reader can also find general results on metric entropy in [3; 16, Ch. 15; 19; 23, Ch. 3; 28, Ch. 7]
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SAMPLING DISCRETIZATION OF INTEGRAL NORMS 271

and in the recent papers [9, 25]. Bounds for the entropy numbers of function classes are important
in themselves, and they also have important connections with other fundamental problems (see, for
instance, [23, Ch. 3] and [7, Ch. 6]).

We now proceed to the detailed presentation.
Marcinkiewicz problem. Let Ω be a compact subset of R

d with a probability measure μ.
We say that a linear subspace XN (the index N usually stands for the dimension of XN ) of Lq(Ω),
1 ≤ q < ∞, admits the Marcinkiewicz type discretization theorem with parameters m ∈ N and q
and positive constants C1 ≤ C2 if there exists a set

{
ξj ∈ Ω: j = 1, . . . ,m

}

such that for any f ∈ XN we have

C1‖f‖qq ≤
1

m

m∑
j=1

|f(ξj)|q ≤ C2‖f‖qq. (1.1)

In the case q = ∞ we define L∞ as the space of continuous functions on Ω and ask for

C1‖f‖∞ ≤ max
1≤j≤m

|f(ξj)| ≤ ‖f‖∞. (1.2)

We will also use the following brief way to express the above properties: the M(m, q) (more precisely,
the M(m, q,C1, C2)) theorem holds for a subspace XN , written XN ∈ M(m, q) (more precisely,
XN ∈ M(m, q,C1, C2)).

Our main interest in this paper is to discuss the Marcinkiewicz problem in the case when XN is
a subspace of the trigonometric polynomials with frequencies (harmonics) from a hyperbolic cross.
By Q we denote a finite subset of Z

d, and |Q| stands for the number of elements in Q. Let

T (Q) :=

{
f : f =

∑
k∈Q

cke
i(k,x), ck ∈ C

}
.

For s ∈ Z
d
+ define

ρ(s) :=
{
k ∈ Z

d : [2sj−1] ≤ |kj | < 2sj , j = 1, . . . , d
}
,

where [x] denotes the integer part of x. We define the step hyperbolic cross Qn as

Qn :=
⋃

s : ‖s‖1≤n

ρ(s)

and the corresponding set of hyperbolic cross polynomials as

T (Qn) :=

{
f : f =

∑
k∈Qn

cke
i(k,x)

}
.

In addition to the step hyperbolic cross Qn, we also consider a more general step hyperbolic cross Qγ
n,

where γ = (γ1, . . . , γd) has the form 1 = γ1 = . . . = γν < γν+1 ≤ . . . ≤ γd with ν ∈ N, ν ≤ d:

Qγ
n :=

⋃
s : (γ,s)≤n

ρ(s).

It is clear that in the case γ = 1 := (1, . . . , 1) we have Q1
n = Qn. In this paper we are primarily

interested in the Marcinkiewicz type discretization theorems for the hyperbolic cross trigonometric
polynomials from T (Qγ

n).
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The most complete results on sampling discretization are obtained in the case q = 2. The prob-
lem is basically solved in the case of subspaces of trigonometric polynomials T (Q) with arbitrary Q.
In [26] it was shown how to derive the following result from the recent paper by S. Nitzan, A. Olevskii,
and A. Ulanovskii [18], which in turn is based on the paper of A. Marcus, D. A. Spielman, and
N. Srivastava [17].

Theorem 1.1. There are three positive absolute constants C1, C2, and C3 with the following
properties: For any d ∈ N and any Q ⊂ Z

d there exists a set of m ≤ C1|Q| points ξj ∈ T
d,

j = 1, . . . ,m, such that for any f ∈ T (Q) we have

C2‖f‖22 ≤
1

m

m∑
j=1

|f(ξj)|2 ≤ C3‖f‖22.

In other words, there exist three positive absolute constants C1, C2, and C3 such that for any
Q ⊂ Z

d we have T (Q) ∈ M(m, 2, C2, C3) provided m ≥ C1|Q|. We now restrict ourselves to the
case q ∈ [1,∞), q �= 2, and Q = Qγ

n. In this paper we provide some bounds on m which guarantee
that T (Qγ

n) ∈ M(m, q). The following theorem is the main result of the paper.
Theorem 1.2. For q ∈ [1,∞) and γ, where γ = (γ1, . . . , γd) has the form 1 = γ1 = . . . =

γν < γν+1 ≤ . . . ≤ γd with ν ∈ N, ν ≤ d, there are three positive constants Ci = Ci(q, γ), i = 1, 2, 3,
such that we have

T (Qγ
n) ∈ M(m, q,C2, C3) provided m ≥ C1|Qγ

n|nw(ν,q),

where

w(ν, q) =

⎧⎨
⎩

3, q = 1,

2, q ∈ (1, 2],

(ν − 1)(q − 2) + min{q, 3}, q > 2.

We point out that in the case ν = 1 the exponent of the extra factor in the bound for m does not
grow with q: w(1, q) ≤ 3. Theorem 1.2 improves the corresponding result of É. S. Belinskii [1]. In [1]
there is the following condition on the number of sampling points: m ≥ C1|Qγ

n|nmax{(d−1)(q−2),0}+4 .
Theorem 1.2 improves the bound from [1] for all q ∈ [1,∞). We note that in the case q = 2
Theorem 1.1 provides a stronger result than Theorem 1.2. In the case q ∈ [1, 3] Theorem 1.2 follows
from known general results. A new bound proved in this paper corresponds to the case q ∈ (3,∞).
We present this proof in Section 2. In Section 3 we discuss the entropy numbers of the unit Lq balls
of T (Qγ

n) in the uniform norm. Finally, in Section 4 we discuss an extension of Theorem 1.2 to the
case of arbitrary Q ⊂ Z

d.
Theorem 1.2 does not cover the case q = ∞. It is known that the sampling discretization results

in the case q = ∞ are fundamentally different from those in the case q ∈ [1,∞). Theorem 1.2 shows
that for all q ∈ [1,∞) the condition m ≥ C(q, d)|Qn|nw(d,q) is sufficient for T (Qn) ∈ M(m, q).
The extra factor nw(d,q) is logarithmic in terms of |Qn|. A nontrivial surprising negative result
was proved for q = ∞ (see [10–12] and also [28, Theorem 7.5.17]). The authors proved that the
necessary condition for T (Qn) ∈ M(m,∞) is m ≥ C|Qn|1+c with absolute constants C, c > 0. We
do not present new results for the case q = ∞ in this paper. The reader can find further results
and discussions concerning the case q = ∞ in [6, 13].

There are many open problems in sampling discretization (see [6]). We now formulate one
directly related to Theorems 1.1 and 1.2.

Open problem 1. Is it true that for q ∈ [1,∞), q �= 2, and γ there are three positive constants
Ci = Ci(q, γ), i = 1, 2, 3, such that we have

T (Qγ
n) ∈ M(m, q,C2, C3) provided m ≥ C1|Qγ

n|?
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Throughout the paper the letter C denotes a positive constant, which may be different in different
formulas. The notation C(q, d) means that the constant C may depend on the parameters q and d.
Sometimes it will be convenient for us to use the following notation. For two sequences {ak}∞k=1

and {bk}∞k=1 we write ak 	 bk if there are two positive constants C1 and C2 independent of k such
that C1ak ≤ bk ≤ C2ak, k = 1, 2, . . . .

2. GENERAL RESULTS AND PROOF OF THEOREM 1.2

We begin with a simple remark on a connection between real and complex cases. Usually, general
results are proved for real subspaces XN . Suppose that a complex subspace has a form

CN =
{
f = fR + ifI : fR, fI ∈ XN

}
,

where XN is a real subspace.
Proposition 2.1. Let q ∈ [1,∞). Suppose XN ∈ M(m, q,C2, C3). Then

CN ∈ M
(
m, q, 2−q−1C2, 2

q+1C3

)
.

Proof. Using a simple inequality for a complex number z = x+ iy,

max{|x|, |y|} ≤ |z| ≤ |x|+ |y|,

we obtain the following inequalities. Let ξ = {ξj}mj=1 be such that for all g ∈ XN

C2‖g‖qq ≤
1

m

m∑
j=1

|g(ξj)|q ≤ C3‖g‖qq. (2.1)

Introduce the notation

gξ := (g(ξ1), . . . , g(ξm)), fR,ξ := (fR)ξ, fI,ξ := (fI)ξ ,

and

‖gξ‖q�q,m :=
1

m

m∑
j=1

|g(ξj)|q.

Then for f ∈ CN we obtain

‖f‖qq ≤ 2q
(
‖fR‖qq + ‖fI‖qq

)
≤ 2qC−1

2

(
‖fR,ξ‖q�q,m + ‖fI,ξ‖q�q,m

)
≤ 2q+1C−1

2 ‖fξ‖q�q,m
and

‖fξ‖q�q,m ≤ 2q
(
‖fR,ξ‖q�q,m + ‖fI,ξ‖q�q,m

)
≤ 2qC3

(
‖fR‖qq + ‖fI‖qq

)
≤ 2q+1C3‖f‖qq.

This proves Proposition 2.1. �
Thus, it is sufficient to prove Theorem 1.2 for the subspace RT (Qγ

n) of real trigonometric
polynomials from T (Qγ

n). Our proof is based on conditional theorems. We now formulate the
known conditional theorems.

We begin with the definition of the entropy numbers. Let X be a Banach space. Denote by
BX(y, r) a ball with center y and radius r: BX(y, r) := {x ∈ X : ‖x− y‖ ≤ r}. For a compact set A
and a positive number ε, we define the covering number Nε(A) as follows:

Nε(A) := Nε(A,X) := min

{
n : ∃y1, . . . , yn ∈ A : A ⊆

n⋃
j=1

BX(yj , ε)

}
.
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274 V. N. TEMLYAKOV

Along with the entropy Hε(A,X) := log2 Nε(A,X), it is convenient to consider the entropy num-
bers εk(A,X):

εk(A,X) := inf

{
ε : ∃y1, . . . , y2k ∈ A : A ⊆

2k⋃
j=1

BX(yj , ε)

}
.

In our definition of Nε(A) and εk(A,X) we require yj ∈ A. In a standard definition of Nε(A) and
εk(A,X) this restriction is not imposed. However, it is well known (see [23, p. 208]) that these
characteristics may differ at most by a factor of 2. Throughout the paper we also use the following
notation for the unit Lq ball of XN :

Xq
N :=

{
f ∈ XN : ‖f‖q ≤ 1

}
.

The first conditional theorem in the sampling discretization was proved in [27] in the case q = 1.
Theorem 2.1. Suppose that a subspace XN satisfies the condition (B ≥ 1)

εk(X
1
N , L∞) ≤ B

⎧⎨
⎩

N

k
, k ≤ N,

2−k/N , k > N.

Then for a sufficiently large absolute constant C there exists a set of

m ≤ CNB
(
log2(2N log2(8B))

)2

points ξj ∈ Ω, j = 1, . . . ,m, such that for any f ∈ XN we have

1

2
‖f‖1 ≤

1

m

m∑
j=1

|f(ξj)| ≤ 3

2
‖f‖1.

The proof of Theorem 2.1 in [27] is based on the concentration measure result from [2] (see [27,
Lemma 2.1]) and on the elementary chaining type technique from [14] (see also [23, Ch. 4]). Theo-
rem 2.1 was extended to the case q ∈ [1,∞) in [4].

Theorem 2.2. Let 1 ≤ q < ∞. Suppose that a subspace XN satisfies the condition

εk(X
q
N , L∞) ≤ B

(
N

k

)1/q

, 1 ≤ k ≤ N, (2.2)

where B ≥ 1. Then for a sufficiently large constant C(q) there exists a set of

m ≤ C(q)NBq(log2(2BN))2

points ξj ∈ Ω, j = 1, . . . ,m, such that for any f ∈ XN we have

1

2
‖f‖qq ≤

1

m

m∑
j=1

|f(ξj)|q ≤ 3

2
‖f‖qq.

Note the well-known fact that inequality (2.2) implies

εk(X
q
N , L∞) ≤ 6B · 2−k/N , k > N.

Just as the proof of Theorem 2.1, the proof of Theorem 2.2 in [4] is based on the concentration
measure result from [2]. However, the chaining technique used in [4] differs from that in [27]. In [4]
the corresponding ε-nets are built in a more delicate way than in [27] (sandwiching technique). In
both Theorems 2.1 and 2.2 the conditions are formulated in terms of the entropy numbers in the
uniform norm L∞. Very recently, a new idea in this direction was developed in [15]. E. Kosov
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in [15] proves the corresponding theorem with the conditions imposed on the entropy numbers in a
weaker metric than the uniform norm. We now formulate his result.

Let Ys := {yj}sj=1 ⊂ Ω be a set of sample points from the domain Ω. Introduce a seminorm

‖f‖Ys := ‖f‖L∞(Ys) := max
1≤j≤s

|f(yj)|.

Clearly, for any Ys we have ‖f‖Ys ≤ ‖f‖∞. The following result is from [15] (see Corollary 3.4
there).

Theorem 2.3. Let 1 ≤ q < ∞. There exists a number C1(q) > 0 such that for m and B
satisfying

m ≥ C1(q)NBq(logN)w(q), w(1) := 2, w(q) := max{q, 2} − 1 for 1 < q < ∞,

and for a subspace XN satisfying for any set Ym ⊂ Ω the condition

εk(X
q
N , L∞(Ym)) ≤ B

(
N

k

)1/q

, 1 ≤ k ≤ N, (2.3)

there are points ξj ∈ Ω, j = 1, . . . ,m, such that for any f ∈ XN we have

1

2
‖f‖qq ≤

1

m

m∑
j=1

|f(ξj)|q ≤ 3

2
‖f‖qq.

We now proceed to the proof of Theorem 1.2.
Proof of Theorem 1.2. We treat separately four cases. We have

XN = RT (Qγ
n), N = |Qγ

n| 	 2nnν−1. (2.4)

Case q = 1. We use Theorem 2.1 here. We obtain the required bounds on the entropy numbers
from Proposition 3.1. It gives B = C(γ)n. Therefore, by Theorem 2.1 we obtain

RT (Qγ
n) ∈ M(m, 1) provided m ≥ C(γ)|Qγ

n|n3, (2.5)

which is claimed in Theorem 1.2.
Case q ∈ (1, 2]. We use Theorem 2.3 here. We obtain the required bounds on the entropy

numbers from Proposition 3.1. It gives B = C(q, γ)n1/q. Therefore, by Theorem 2.3 we obtain

RT (Qγ
n) ∈ M(m, q) provided m ≥ C(q, γ)|Qγ

n|n2, (2.6)

which is claimed in Theorem 1.2.
Case q ∈ (2, 3). We use Theorem 2.3 here. We obtain the required bounds on the entropy

numbers from Lemma 3.2. It is well known that the condition T (Qγ
n) ∈ M(s,∞) with s ≤ C(d) · 2nd

holds (see the argument in the proof of Proposition 3.1 below). It gives B = C(q, d)n1/qMN−1/q,
where M is from the Nikol’skii inequality (3.7) (see below). It is known (see [21, 22]) that

M 	 2n/qn(ν−1)(1−1/q).

Therefore,
MN−1/q 	 n(ν−1)(1−2/q), Bq 	 n(ν−1)(q−2)+1.

By Theorem 2.3 we obtain

RT (Qγ
n) ∈ M(m, q) provided m ≥ C(q, γ)|Qγ

n|n(ν−1)(q−2)+q, (2.7)

which is claimed in Theorem 1.2.
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Case q ∈ [3,∞). We use Theorem 2.2 here. In the same way as above in the case q ∈ (2, 3),
we get

Bq 	 n(ν−1)(q−2)+1.

By Theorem 2.2 we obtain

RT (Qγ
n) ∈ M(m, q) provided m ≥ C(q, γ)|Qγ

n|n(ν−1)(q−2)+3, (2.8)

which is claimed in Theorem 1.2. �

3. BOUNDS OF THE ENTROPY NUMBERS

In this section we obtain bounds of the entropy numbers εk(RT (Qγ
n)q, L∞) in the form (2.2).

Some results on the entropy numbers εk(RT (Qn)
q, L∞) can be found in [28, Ch. 7]. However, those

results are designed for proving upper bounds of the entropy numbers of classes of functions with
mixed smoothness. Here we obtain bounds which serve better the sampling discretization (see a
detailed discussion of such a comparison in [27, Sect. 7]). We begin with the case q ∈ [1, 2]. The
following result is from [5].

Theorem 3.1. Assume that XN is an N -dimensional subspace of L∞(Ω) satisfying the fol-
lowing two conditions:

(i) there exists a constant K1 > 1 such that

‖f‖∞ ≤ (K1N)1/2‖f‖2 ∀f ∈ XN ; (3.1)

(ii) there exists a constant K2 > 1 such that

‖f‖∞ ≤ K2‖f‖logN ∀f ∈ XN . (3.2)

Then for each 1 ≤ q ≤ 2 there exists a constant C(q) > 0 depending only on q such that

εk(X
q
N , L∞) ≤ C(q)

(
K1K

2
2 logN

)1/q
⎧⎪⎨
⎪⎩

(
N

k

)1/q

, 1 ≤ k ≤ N,

2−k/N , k > N.

(3.3)

We now apply Theorem 3.1 to the case XN = RT (Qγ
n). Clearly, in this case N = dimRT (Qγ

n) =
|Qγ

n| 	 2nnν−1.
Proposition 3.1. Let q ∈ [1, 2]. We have the bound

εk
(
RT (Qγ

n)
q, L∞

)
≤ C(q, γ)n1/q

(
|Qγ

n|
k

)1/q

. (3.4)

Proof. It is well known and easy to check that condition (i) is satisfied with K1 = 1.
Condition (ii) follows from known results on sampling discretization. We now explain it. Let
Πn := [−2n, 2n]d be a d-dimensional cube. It is known (see, for instance, [28, Theorem 3.3.15]) that
there exists a set Ys with s ≤ C1(d) · 2nd such that for all 1 ≤ p ≤ ∞ and f ∈ RT (Πn)

C2(d)‖f‖p ≤ ‖fYs‖�p,s ≤ C3(d)‖f‖p. (3.5)

It remains to note that Qγ
n ⊂ Πn and that in R

s we have

‖x‖�∞ ≤ C(a)‖x‖�a log s,s
. � (3.6)

We now proceed to the case q ∈ (2,∞). We will use the following result from [15], which was
proved with the help of deep results from functional analysis (see [20, Lemma 16.5.4]).
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Lemma 3.1. Let q ∈ (2,∞). Assume that for any f ∈ XN we have

‖f‖∞ ≤ M‖f‖q (3.7)

with some constant M . Then for k ∈ [1, N ] we have for any Ys

εk(X
q
N , L∞(Ys)) ≤ C(q)(log s)1/qMN−1/q

(
N

k

)1/q

. (3.8)

We would like to estimate the entropy numbers in the uniform norm. For that purpose we derive
from Lemma 3.1 the following statement.

Lemma 3.2. Let q ∈ (2,∞). Assume that for any f ∈ XN we have (3.7) with some con-
stant M . Assume also that XN ∈ M(s,∞) with s ≤ aN c. Then for k ∈ [1, N ] we have

εk(X
q
N , L∞) ≤ C(q, a, c)(logN)1/qMN−1/q

(
N

k

)1/q

. (3.9)

Proof. The condition XN ∈ M(s,∞) means that there exists a set Ys such that for any f ∈ XN

we have
‖f‖∞ ≤ C1‖f‖Ys . (3.10)

Lemma 3.1, relation (3.10), and inequality log s ≤ c logN imply Lemma 3.2. �
We now show how to derive a bound on the entropy numbers εk(X

q
N , L∞(Ys)), obtained in [15],

from Theorem 3.1.
Proposition 3.2. Assume that XN is an N -dimensional subspace of L∞(Ω) satisfying con-

dition (i) of Theorem 3.1. Then for each 1 ≤ q ≤ 2 and any Ys with log s ≤ a logN there exists a
constant C(q, a) > 0 depending only on q and a such that

εk(X
q
N , L∞(Ys)) ≤ C(q, a)(K1 logN)1/q

⎧⎪⎨
⎪⎩

(
N

k

)1/q

, 1 ≤ k ≤ N,

2−k/N , k > N.

(3.11)

Proof. Using [5, Lemma 4.3] we discretize simultaneously the Lq and L2 norms, i.e., replace Ω
by ΩN with 8K1N

a+2 ≤ |ΩN | ≤ CK1N
a+2 to get for p = q and p = 2

1

2
‖f‖p ≤ ‖f‖Lp(ΩN ) ≤

3

2
‖f‖p, ‖f‖pLp(ΩN ) :=

1

N

∑
ω∈ΩN

|f(ω)|p.

Note that the Nikol’skii inequality (3.1) implies the inequality

‖f‖∞ ≤ (K1N)1/q‖f‖q ∀f ∈ XN . (3.12)

For a given Ys consider a new domain ΩS := ΩN ∪ Ys, |ΩS | = S. Then

1

S

s∑
j=1

|f(yj)|q ≤
1

S
sK1N‖f‖qq ≤ (8N)−1‖f‖qq.

This implies that ‖f‖Lq(Ω) 	 ‖f‖Lq(ΩS). In the same way we obtain ‖f‖L2(Ω) 	 ‖f‖L2(ΩS). We
now want to apply Theorem 3.1 to XN restricted to ΩS. Condition (i) is satisfied because of
‖f‖L2(Ω) 	 ‖f‖L2(ΩS). Relation (3.6) guarantees that condition (ii) of Theorem 3.1 is satisfied in
the case of ΩS . Therefore, applying Theorem 3.1 to XN restricted to ΩS, we obtain the bounds of
the entropy numbers in the metric L∞(ΩS). Obviously, ‖·‖L∞(Ys) ≤ ‖·‖L∞(ΩS). �
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A comment on limitations. In Proposition 3.1, which is a corollary of Theorem 3.1, we
proved the following bound for XN = RT (Qγ

n) and 1 ≤ q ≤ 2:

εk(X
q
N , L∞) ≤ C(q, γ)(logN)1/q

(
N

k

)1/q

, 1 ≤ k ≤ N. (3.13)

Open problem 2. Could we replace (logN)1/q by (logN)α with α < 1/q in the bound (3.3)
of Theorem 3.1?

It follows from known results on the behavior of the entropy numbers of the classes Wa,b
q of

functions with mixed smoothness that for 1 ≤ q < ∞ it must be α ≥ 1/2. We now give a definition
of these classes.

Define for f ∈ L1

δs(f) :=
∑

k∈ρ(s)
f̂(k)ei(k,x), f̂(k) := (2π)−d

∫

[0,2π]d

f(x)e−i(k,x) dx,

and
fl :=

∑
‖s‖1=l

δs(f), l ∈ N ∪ {0}.

Consider the class (see [24])

Wa,b
q :=

{
f : ‖fl‖q ≤ 2−al l (d−1)b

}
, l := max{l, 1}.

Let XN := T (Qn) in dimension d = 2. Then N 	 2nn. If (3.13) holds for all n ∈ N, then
by [28, Theorem 7.7.15] we obtain for a > 1/q

εk(W
a,b
q , L∞) ≤ C(q, a, b)k−a(log k)a+b+α. (3.14)

On the other hand, by [28, Theorem 7.7.10], for q = 1 and a > 1 we obtain

εk(W
a,b
1 , L∞) 	 k−a(log k)a+b+1/2. (3.15)

Also, by [28, Theorem 7.7.14], for 1 < q < ∞ and a > max{1/q, 1/2} we have

εk(W
a,b
q , L∞) 	 k−a(log k)a+b+1/2. (3.16)

Comparing (3.14) with (3.15) and (3.16), we obtain the above claim.

4. DISCUSSION

As we pointed out in the Introduction, our main interest in this paper is sampling discretization
of the Lq norms, 1 ≤ q < ∞, of hyperbolic cross polynomials from T (Qγ

n). Theorem 1.2 provides
such results. In this section we discuss the following question: Is it possible to extend Theorem 1.2
to T (Q) with arbitrary Q ∈ Z

d? This discussion will illustrate advantages and limitations of the
techniques used in the proof of Theorem 1.2. Theorem 1.1 gives the sampling discretization result
for all T (Q) in the case q = 2. It turns out that in the case q ∈ [1, 2) Theorem 1.2 can be extended
to the case of arbitrary Q.

Theorem 4.1. For q ∈ [1, 2) there are three positive constants Ci = Ci(q), i = 1, 2, 3, such
that for any Q ∈ Z

d we have

T (Q) ∈ M(m, q,C2, C3) provided m ≥ C1|Q|(log(2|Q|))w(q),

where
w(1) = 3 and w(q) = 2 for q ∈ (1, 2).
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Proof. Let XN = RT (Q), N = |Q|. First, we use Proposition 3.2. The hypotheses of that
proposition (condition (3.1)) are satisfied with K1 = 1. Therefore, Proposition 3.2 guarantees that
for each 1 ≤ q ≤ 2 and any Ys with log s ≤ a logN there exists a constant C(q, a) > 0 depending
only on q and a such that

εk(X
q
N , L∞(Ys)) ≤ C(q, a)(logN)1/q

(
N

k

)1/q

, 1 ≤ k ≤ N. (4.1)

We now apply Theorem 2.3. Set m = s. The parameter a satisfying logm ≤ a logN will be chosen
later. Then by (4.1) we find B = C(q, a)(logN)1/q. We need to satisfy the following inequality in
order to apply Theorem 2.3:

m ≥ C1(q)N(C(q, a))q(logN)1+w(q). (4.2)

Clearly, for any fixed a > 1 we can achieve simultaneously (4.2) and logm ≤ a logN provided
N ≥ C ′(q, a). Thus, we apply Theorem 2.3 and complete the proof of Theorem 4.1. �

We note that a version of Theorem 4.1 with w(q) = 3, q ∈ [1, 2], follows from a theorem obtained
in [5]. That theorem is formulated as follows.

Theorem 4.2. Let XN be an N -dimensional subspace of L∞(Ω) satisfying the following con-
dition:

‖f‖∞ ≤ (K1N)1/2‖f‖2 ∀f ∈ XN , logK1 ≤ α logN.

Then for q ∈ [1, 2] we have

XN ∈ M(m, q) provided m ≥ C(q, α)N(logN)3.

We note that the key fact which allowed us to prove Theorem 4.1 is that both in Theorem 4.2
and in Proposition 3.2 we only need the Nikol’skii type inequality (3.1) between ‖·‖∞ and ‖·‖2.
This inequality is the same for all T (Q) with |Q| = N . We do not know if Theorem 1.2 can be
extended to T (Q) with arbitrary Q ∈ Z

d in the case q ∈ (2,∞). Our proof of Theorem 1.2 in
the case q ∈ (2,∞) is based on the Nikol’skii type inequality (3.7) between ‖·‖∞ and ‖·‖q, which
depends on Q rather than only on |Q|.

Open problem 3. Is it true that for q ∈ (2,∞) and d ∈ N there are positive constants
Ci = Ci(q, d), i = 1, 2, 3, and c(q, d) such that for any Q ∈ Z

d we have

T (Q) ∈ M(m, q,C2, C3) provided m ≥ C1|Q|(log(2|Q|))c(q,d)?

We also refer the reader to a list of open problems on sampling discretization in [6].
The cornerstone of the above-discussed technique of proving sampling discretization results is

the entropy bounds of the type

εk(X
q
N , L∞) ≤ B

(
N

k

)1/q

, 1 ≤ k ≤ N, 1 ≤ q < ∞. (4.3)

Thus, the problem of finding conditions on XN which guarantee relation (4.3) is a natural problem.
It is well known (see, for instance, [4]) that relation (4.3) for k = 1 implies the following Nikol’skii
type inequality for XN :

‖f‖∞ ≤ 4BN1/q‖f‖q ∀f ∈ XN . (4.4)
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Therefore, the Nikol’skii type inequality (4.4) is a necessary condition for (4.3) to hold. Lemma 3.2
shows that in the case q ∈ (2,∞) condition (4.4), combined with one more condition XN ∈ M(s,∞),
s ≤ aN c, implies a slightly weaker inequality than in (4.3); namely, instead of B we get B′ =
BC(q, a, c)(logN)1/q.

FUNDING

The work was supported by the Government of the Russian Federation, grant no. 14.W03.31.0031.

REFERENCES
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19. C. Schütt, “Entropy numbers of diagonal operators between symmetric Banach spaces,” J. Approx. Theory

40 (2), 121–128 (1984).
20. M. Talagrand, Upper and Lower Bounds for Stochastic Processes: Modern Methods and Classical Problems

(Springer, Berlin, 2014).
21. V. N. Temlyakov, “Approximation of periodic functions of several variables with bounded mixed derivative,”

Proc. Steklov Inst. Math. 156, 255–283 (1983) [transl. from Tr. Mat. Inst. Steklova 156, 233–260 (1980)].
22. V. N. Temlyakov, Approximation of Functions with Bounded Mixed Derivative (Nauka, Moscow, 1986), Tr. Mat.

Inst. Steklova 178. Engl. transl.: Approximation of Functions with a Bounded Mixed Derivative (Am. Math.
Soc., Providence, RI, 1989), Proc. Steklov Inst. Math. 178.

23. V. Temlyakov, Greedy Approximation (Cambridge Univ. Press, Cambridge, 2011), Cambridge Monogr. Appl.
Comput. Math. 20.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 312 2021



SAMPLING DISCRETIZATION OF INTEGRAL NORMS 281

24. V. Temlyakov, “Constructive sparse trigonometric approximation for functions with small mixed smoothness,”
Constr. Approx. 45 (3), 467–495 (2017).

25. V. Temlyakov, “On the entropy numbers of the mixed smoothness function classes,” J. Approx. Theory 217,
26–56 (2017); arXiv: 1602.08712v1 [math.NA].

26. V. N. Temlyakov, “The Marcinkiewicz-type discretization theorems for the hyperbolic cross polynomials,” Jaen
J. Approx. 9 (1–2), 37–63 (2017); arXiv: 1702.01617v2 [math.NA].

27. V. N. Temlyakov, “The Marcinkiewicz-type discretization theorems,” Constr. Approx. 48 (2), 337–369 (2018);
arXiv: 1703.03743v1 [math.NA].

28. V. Temlyakov, Multivariate Approximation (Cambridge Univ. Press, Cambridge, 2018), Cambridge Monogr.
Appl. Comput. Math. 32.

29. A. Zygmund, Trigonometric Series (Univ. Press, Cambridge, 1959), Vols. 1, 2.

This article was submitted by the author
simultaneously in Russian and English

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 312 2021


