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Interpolation Theorems for Nonlinear Operators
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Abstract—We prove new interpolation theorems for a sufficiently wide class of nonlinear oper-
ators in Morrey-type spaces. In particular, these theorems apply to Urysohn integral operators.
We also obtain analogs of the Marcinkiewicz–Calderón and Stein–Weiss–Peetre interpolation
theorems and establish a criterion of (p, q) quasiweak boundedness of the Urysohn operator.
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1. INTRODUCTION

Let (U, μ) be a space with measure μ and Ω be a set. By GΩ = {Gt,y}t>0, y∈Ω we will denote a
two-parameter family of μ-measurable sets Gt,y satisfying the condition

Gt,y ⊂ Gs,y for 0 < t < s and y ∈ Ω.

We will call such a family a net. For y ∈ Ω, we set G{y} = {Gt,y}t>0. We say that these nets are
generated by the net GΩ. If the sets Gt,y, t > 0, are independent of the parameter y, we denote
such a net by G = {Gt}t>0.

Let 0 < p, q ≤ ∞ and 0 < λ < ∞. Define the space Mλ
p,q(GΩ, μ) of all μ-measurable functions

f : U → R such that

‖f‖Mλ
p,q(GΩ,μ) =

⎛
⎝

∞∫

0

⎛
⎝t−λ sup

y∈Ω

⎛
⎝
∫

Gt,y

|f(x)|p dμ

⎞
⎠
1/p⎞
⎠
q

dt

t

⎞
⎠
1/q

< ∞

for q < ∞ and

‖f‖Mλ
p,∞(GΩ,μ) = sup

t>0, y∈Ω
t−λ

⎛
⎝
∫

Gt,y

|f(x)|p dμ

⎞
⎠
1/p

< ∞

for q = ∞.
If U = R

n, μ is the Lebesgue measure, and Gt,y = B(y, t) (ball of radius t centered at y), then
we denote this space by Mλ

p,q,Ω. In particular, for q = ∞ and Ω = R
n, this is the classical Morrey

space Mλ
p .

If U = R
n, μ is the Lebesgue measure, Ω = {0}, and Gt = Gt,0 = B(0, t), then Mλ

p,q(GΩ, μ) is
the local Morrey-type space LMλ

p,q, which was introduced and used to study the properties of the
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maximal and fractional maximal operators by V. I. Burenkov, H. V. Guliyev, and V. S. Guliyev [4–7].
If Ω = {y} and Gt = Gt,y = B(y, t), then we denote the corresponding local Morrey-type space
by LMλ

p,q,y.
The problem of real interpolation of Morrey-type spaces was addressed in [26, 14, 23, 25, 3, 17].

It follows from the results of [23] that the interpolation space (Mλ0
p ,Mλ1

p )θ,∞, where 1 ≤ p < ∞
and 0 < λ0, λ1 < n/p, satisfies the inclusion

(
Mλ0

p ,Mλ1
p

)
θ,∞ ⊂ Mλ

p with λ = (1− θ)λ0 + θλ1, 0 < θ < 1.

In [25, 3], this inclusion was shown to be strict.
In [18], Lemarié-Rieusset proved that for 1 ≤ p0, p1 < ∞, 0 < λ0 < n/p0, and 0 < λ1 < n/p1,

the inclusion
(
Mλ0

p0 ,M
λ1
p1

)
θ,∞ ⊂ Mλ

p , where
1

p
=

1− θ

p0
+

θ

p1
, λ = (1− θ)λ0 + θλ1, 0 < θ < 1,

holds if and only if p0 = p1.
In [10, 12, 8], it was shown that the scale of local Morrey-type spaces LMλ

p,q with fixed p (in
contrast to the scale of Morrey spaces Mλ

p ) is closed under interpolation; namely, it was proved that
if 0 < p, q0, q1, q ≤ ∞ and λ0 �= λ1, 0 < λ0, λ1 < ∞, then

(
LMλ0

p,q0 , LM
λ1
p,q1

)
θ,q

= LMλ
p,q, where λ = (1− θ)λ0 + θλ1, 0 < θ < 1.

In [12], the interpolation spaces were described for much more general spaces than LMλ
p,q.

In [8, 9], the following interpolation theorem for quasi-additive operators was proved.
Theorem 1. Let Ω ⊂ R

n. Let 0 < p, q, σ, τ ≤ ∞, 0 ≤ α0, α1 < ∞ with α0, α1 > 0 if σ < ∞,
α0 �= α1, 0 ≤ β0, β1 < ∞, β0 �= β1, 0 < θ < 1, and

α = (1− θ)α0 + θα1, β = (1− θ)β0 + θβ1. (1.1)

Let T be a quasi-additive operator on
⋃

y∈Ω
(
LMα0

p,σ,y + LMα1
p,σ,y

)
with a quasi-additivity con-

stant A.
If for some M0,M1 > 0 the inequalities

‖Tf‖
LM

βi
q,∞,y

≤ Mi‖f‖LMαi
p,σ,y

(1.2)

hold for all y ∈ Ω and all functions f ∈ LMαi
p,σ,y, i = 0, 1, then the inequality

‖Tf‖
Mβ

q,τ,Ω
≤ cAM1−θ

0 Mθ
1 ‖f‖Mα

p,τ,Ω
(1.3)

holds for all functions f ∈ Mα
p,τ,Ω, where c > 0 depends only on α0, α1, β0, β1, q, σ, τ, and θ.

In this theorem, the strong estimate (1.3) is derived from the weak (in a sense) estimates (1.2).
In the present study, we significantly generalize this result: first, we consider a wider class of

nonlinear operators, including the Urysohn integral operator

(Tf)(y) =

∫

U

K(f(x), x, y) dμ;

second, we consider a much more general class of Morrey-type spaces; third, we consider a still
weaker version of estimates of type (1.2), which leads to a strong estimate of type (1.3).

In Section 2, we present a number of properties of the spaces Mλ
p,q(GΩ, μ) and give various

examples of these spaces. In particular, in Example 1, we demonstrate that the space Mλ
p,q(GΩ, μ)

coincides with the Lorentz space Lr,q(U, μ) for a certain choice of the net GΩ and under certain
relations between the parameters p, q, and λ. In Section 3, we describe the classes of nonlinear
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operators under consideration (partially quasi-additive operators) and give examples of operators
from these classes, including the Urysohn integral operator. In Section 4, we prove general interpo-
lation theorems for partially quasi-additive operators in the spaces Mλ

p,q(GΩ, μ). In Section 5, using
these theorems, we prove an analog of Calderón’s interpolation theorem for partially quasi-additive
operators. In Section 6, we prove a weak version of the Stein–Weiss–Peetre interpolation theorem
for the class of operators under consideration, including the Urysohn integral operator satisfying
the quasiweak boundedness condition. Finally, in Section 7, we prove a quasiweak boundedness
criterion for a wide class of Urysohn integral operators. The results for Urysohn integral operators
were given without proofs in the authors’ note [11].

Let F and G be nonnegative functions defined on a set A. We say that G dominates F on A
and write “F � G on A” (or simply F � G when it is clear what set A is meant) if there exists a
c > 0 such that F (x) ≤ cG(x) for all x ∈ A. We also say that F and G are equivalent on A and
write “F 	 G on A” if F � G and G � F on A.

2. PROPERTIES OF MORREY-TYPE SPACES AND EXAMPLES

Lemma 1. 1. Let 0 < q0 < q1 ≤ ∞ and 0 < p, λ < ∞. Then the following continuous
embedding holds:

Mλ
p,q0(GΩ, μ) ↪→ Mλ

p,q1(GΩ, μ). (2.1)

2. Let 0 < p1 < p2 < ∞, 0 < q ≤ ∞, and 0 < λ1, d < ∞. Suppose the net GΩ = {Gt,y}t>0, y∈Ω
and measure μ are such that for some C > 0

μ(Gt,y) ≤ Ctd

for all y ∈ Ω and t > 0. Then the following continuous embedding holds:

Mλ2
p2,q(GΩ, μ) ↪→ Mλ1

p1,q(GΩ, μ), where λ2 = λ1 − d

(
1

p1
− 1

p2

)
> 0.

The proof is similar to that of [9, Lemma 2.1], which was given for the case of Gt,y = B(y, t).
Choosing the net GΩ and the parameter λ, we can describe the quasinorms of various spaces

using the quasinorm of the space Mλ
p,q(GΩ, μ). Here are a few examples. Based on these examples

and the interpolation theorem for linear and some nonlinear operators in the spaces Mλ
p,q(GΩ, μ),

we will then obtain, as a corollary, interpolation theorems for the corresponding spaces.
Let f be a μ-measurable function defined on U . The function

f∗(t) = inf
{
σ ≥ 0: μ({x ∈ U : |f(x)| > σ}) ≤ t

}
, t ≥ 0,

is called the nonincreasing rearrangement of f .
We say that a measure μ satisfies the regularity condition if for any μ-measurable set e and any

α ∈ (0, μ(e)/2] there exists a μ-measurable subset w ⊂ e such that

α ≤ μ(w) ≤ 2α. (2.2)

Lemma 2. Let μ be a regular measure and f ∈ Lloc
1 (U, μ). Suppose also that the function

f : U → C is integrable on all μ-measurable subsets of U of finite measure. Then there exists a net
G(f) = {Gt(f)}t>0 such that

t ≤ μ(Gt(f)) ≤ 2t, (2.3)
t∫

0

f∗(s) ds ≤
∫

Gt(f)

|f(x)| dμ ≤
2t∫

0

f∗(s) ds, (2.4)
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and (
f
(
1− χGt(f)

))∗
(s) ≤ f∗(t+ s), (2.5)

where χA is the characteristic function of a set A ⊂ U .
Proof. Let t > 0. Recall that according to the properties of rearrangements we have

μ
({

x ∈ U : |f(x)| ≥ f∗(t)
})

≥ t and μ
({

x ∈ U : |f(x)| > f∗(t)
})

≤ t. (2.6)

Put α = t− μ({x ∈ U : |f(x)| > f∗(t)}). In view of (2.6), we have α ≥ 0. Let us construct the
set Gt(f).

If α > μ({x ∈ U : |f(x)| = f∗(t)})/2, then we set Gt(f) = {x ∈ U : |f(x)| ≥ f∗(t)}, while if
α ≤ μ({x ∈ U : |f(x)| = f∗(t)})/2, then we set Gt(f) = {x ∈ U : |f(x)| > f∗(t)} ∪ w, where

w ⊂
{
x ∈ U : |f(x)| = f∗(t)

}
, α ≤ μ(w) ≤ 2α ≤ μ

({
x ∈ U : |f(x)| = f∗(t)

})
.

Such a set exists since the measure μ is regular.
Let us prove inequality (2.3). Indeed, in the first case, according to (2.6),

t ≤ μ(Gt(f)) = μ
({

x ∈ U : |f(x)| > f∗(t)
})

+ μ
({

x ∈ U : |f(x)| = f∗(t)
})

≤ μ
({

x ∈ U : |f(x)| > f∗(t)
})

+ 2α = 2t− μ
({

x ∈ U : |f(x)| > f∗(t)
})

≤ 2t.

In the second case,

t = α+ μ
({

x ∈ U : |f(x)| > f∗(t)
})

≤ μ(Gt(f)) = μ
({

x ∈ U : |f(x)| > f∗(t)
})

+ μ(w)

≤ μ
({

x ∈ U : |f(x)| > f∗(t)
})

+ 2α ≤ 2t.

Moreover,

sup
μ(e)≤t

∫

e

|f(x)| dμ ≤
∫

Gt(f)

|f(x)| dμ. (2.7)

Indeed,

t = α+ μ
({

x ∈ U : |f(x)| > f∗(t)
})

≤ μ(w) + μ
({

x ∈ U : |f(x)| > f∗(t)
})

= μ(Gt(f))

≤ μ
({

x ∈ U : |f(x)| > f∗(t)
})

+ 2α = t+ α ≤ 2t.

Let e be an arbitrary μ-measurable set with μ(e) ≤ t. It is clear from the definition of the set Gt(f)
that |f(x)| ≥ f∗(t) for x ∈ Gt(f) \ e and |f(x)| ≤ f∗(t) for x ∈ e \Gt(f). Therefore,

∫

Gt(f)

|f(x)| dμ−
∫

e

|f(x)| dμ =

∫

Gt(f)\e

|f(x)| dμ −
∫

e\Gt(f)

|f(x)| dμ

≥ f∗(t)
(
μ(Gt(f) \ e)− μ(e \Gt(f))

)
≥ f∗(t)

(
μ(Gt(f))− μ(e)

)
.

Since μ(Gt(f)) ≥ t and μ(e) ≤ t, we obtain f∗(t)(μ(Gt(f))− μ(e)) ≥ 0, and so
∫

Gt(f)

|f(x)| dμ −
∫

e

|f(x)| dμ ≥ 0.

Thus, according to the properties of rearrangements and inequalities (2.7) and (2.3),

t∫

0

f∗(s) ds = sup
μ(e)≤t

∫

e

|f(x)| dμ ≤
∫

Gt(f)

|f(x)| dμ ≤
μ(Gt(f))∫

0

f∗(s) ds ≤
2t∫

0

f∗(s) ds;

i.e., (2.4) holds.
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Next, for any s, t > 0, we have f∗(s+ t) = inf As,t, where

As,t =
{
σ ≥ 0: μ({x ∈ U : |f(x)| > σ}) ≤ s+ t

}

=
{
σ ≥ 0: μ({x ∈ Gt(f) : |f(x)| > σ}) + μ({x ∈ U \Gt(f) : |f(x)| > σ}) ≤ s+ t

}

=
{
σ ≥ 0: μ({x ∈ Gt(f) : |f(x)| > σ}) + μ

({
x ∈ U :

∣∣(f(1− χGt(f)

))
(x)
∣∣ > σ

})
≤ s+ t

}
.

It follows from the last representation of the set As,t that either μ({x ∈ Gt(f) : |f(x)| > σ}) ≤ t or
μ({x ∈ U : |(f(1− χGt(f)

))(x)| > σ}) ≤ s, i.e., As,t ⊂ Bt ∪ Cs,t, where

Bt =
{
σ ≥ 0: μ({x ∈ Gt(f) : |f(x)| > σ}) ≤ t

}
,

Cs,t =
{
σ ≥ 0: μ

({
x ∈ U :

∣∣(f(1− χGt(f)

))
(x)
∣∣ > σ

})
≤ s
}
.

Since |f(x)| ≥ f∗(t) for x ∈ Gt(f) and
∣∣(f(1− χGt(f)

))
(x)
∣∣ ≤ f∗(t) for any x ∈ U , we have

f∗(t+ s) = inf As,t ≥ inf(Bt ∪ Cs,t) = min{inf Bt, inf Cs,t}

≥ min
{
f∗(t),

(
f
(
1− χGt(f)

))∗
(t)
}
=
(
f
(
1− χGt(f)

))∗
(t). �

Example 1. Let 0 < r < ∞ and 0 < q ≤ ∞. The Lorentz space Lr,q(U, μ) is defined as the
set of all μ-measurable functions f such that

‖f‖Lr,q(U,μ) =

⎛
⎝

∞∫

0

(
t1/rf∗(t)

)q dt
t

⎞
⎠
1/q

< ∞.

Let μ be a regular measure, 1 < r < ∞, and λ = 1/r′, where 1/r + 1/r′ = 1. Then

‖f‖Lr,q(U,μ) 	 ‖f‖
M

1/r′
1,q (G,μ)

, (2.8)

where the implied equivalence constants depend only on the parameters q and r.
Indeed, it is well known that for 1 < r < ∞ the Lorentz space Lr,q(U, μ) can be equivalently

defined in terms of the average of the nonincreasing rearrangement f∗∗(t) = t−1
∫ t
0 f

∗(s) ds. By
Lemma 2 there exists a net G(f) = {Gt}t>0 for which inequalities (2.4) hold. Therefore,

‖f‖Lr,q 	

⎛
⎝

∞∫

0

(
t1/rf∗∗(t)

)q dt
t

⎞
⎠
1/q

=

⎛
⎝

∞∫

0

⎛
⎝t1/r−1

t∫

0

f∗(s) ds

⎞
⎠
q

dt

t

⎞
⎠
1/q

	

⎛
⎝

∞∫

0

⎛
⎝t1/r−1

∫

Gt(f)

|f(x)| dx

⎞
⎠
q

dt

t

⎞
⎠
1/q

= ‖f‖
M

1/r′
1,q (G,μ)

.

Example 2. Let w be a positive μ-measurable function. Put Gt = {x ∈ U : 1/ω(x) < t}
for t > 0. Then, up to a constant factor, ‖f‖Mλ

p,p(G,μ) coincides with

‖f‖Lp(wλ) =

⎛
⎝
∫

U

(
wλ(x)|f(x)|

)p
dμ

⎞
⎠
1/p

.

Example 3. Let 0 < p ≤ ∞, U = R
n, and μ be the Lebesgue measure on R

n. Let v be a
positive strictly increasing locally absolutely continuous function on (0,∞) such that

lim
t→+0

v(t) = 0 and lim
t→+∞

v(t) = ∞.
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If G = {Gt}t>0, where Gt = B(0, v−1(t)), t > 0, then the space M1
p,q(G) coincides with one of

the variants of the general local Morrey-type space LM
v(·)
p,q of all functions f ∈ Lloc

p (Rn) with finite
quasinorm

‖f‖
LM

v(·)
p,q

=

⎛
⎝

∞∫

0

(
(v(r))−1‖f‖Lp(B(0,r))

)q dv(r)
v(r)

⎞
⎠
1/q

(with the usual modification for q = ∞). Setting v(r) = t, we have

‖f‖
LM

v(·)
p,q

= ‖f‖M1
p,q(G).

Moreover, for 0 < λ < ∞, we have Mλ
p,q(G) = LM

vλ(·)
p,q and

‖f‖
LM

vλ(·)
p,q

= λ1/q‖f‖Mλ
p,q(G).

Example 4. Let 0 < p, q ≤ ∞ and w be a positive measurable function on (0,∞) such that
‖w‖Lq(t,∞) < ∞ for any t > 0,

lim
t→+0

‖w‖Lq(t,∞) = ∞ and lim
t→+∞

‖w‖L∞(t,∞) = 0 for q = ∞

(for q < ∞, the equality limt→+∞‖w‖Lq(t,∞) = 0 is obvious). Let us set v(t) = q−1/q‖w‖−1
Lq(t,∞)

in the previous example. Then the space M1
p,q(G) coincides with a variant of the general local

Morrey-type space LMp,q,w(·) of all functions f ∈ Lloc(Rn) with finite quasinorm

‖f‖LMp,q,w(·) =
∥∥w(r)‖f‖Lp(B(0,r))

∥∥
Lq(0,∞)

.

Moreover,
‖f‖LMp,q,w(·) = ‖f‖M1

p,q(G),

since (v(r))−q−1v′(r) = w(r) for a.e. r > 0.

3. SOME CLASSES OF NONLINEAR OPERATORS, EXAMPLES

Let (U, μ) be a space with measure μ and Z(U) be a linear space of μ-measurable functions
f : U → R such that fχw ∈ Z(U) for any function f ∈ Z(U) and any μ-measurable set w ⊂ U . Let
(V, ν) be a space with measure ν and M(V ) be the space of all ν-measurable functions f : V → R.

An operator T is said to be quasi-additive on Z(U) if T : Z(U) → M(V ) and there exists
an A ≥ 1 such that

|(T (f + g))(x)| ≤ A
(
|(Tf)(x)|+ |(Tg)(x)|

)
for a.e. x ∈ V (3.1)

for any functions f, g ∈ Z(U).
We say that an operator T is partially additive on Z(U) if T : Z(U) → M(V ) and for any

function f ∈ Z(U) and any μ-measurable set w ⊂ U one has

(Tf)(x) = (T (fχw))(x) + (T (fχU\w))(x) for a.e. x ∈ V. (3.2)

We say that an operator T is partially quasi-additive on Z(U) if T : Z(U) → M(V ) and there
exists an A ≥ 1 such that for any function f ∈ Z(U) and any μ-measurable set w ⊂ U one has

|(Tf)(x)| ≤ A
(
|(T (fχw))(x)| + |(T (fχU\w))(x)|

)
for a.e. x ∈ V (3.3)

(i.e., inequality (3.1) holds with f and g changed to fχw and fχU\w, respectively). Here A is a
partial quasi-additivity constant.
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If A = 1 in (3.1), then T is a subadditive operator; accordingly, if A = 1 in (3.3), then T is a
partially subadditive operator.

Let K : E × U × V → R, where E =
⋃

f∈Z f(U), and T : Z(U) → M(V ) be an operator defined
as follows: for any f ∈ Z(U),

(Tf)(y) =

∫

U

K(f(x), x, y) dμ (3.4)

under the assumption that this integral exists and is finite for a.e. y ∈ V . This operator is called
the Urysohn integral operator. For the properties of the Urysohn operator and, in particular, the
conditions on K under which this integral exists and is finite for a.e. y ∈ V , we refer the reader to
the book [16] and papers [21, 22].

In particular, if f ∈ Lp(U, μ),

|K(z, x, y)| ≤ c|z|α|K(1, x, y)| for all x ∈ U, y ∈ V, z ∈ f(U)

with some 0 ≤ α ≤ p and c > 0, and ‖K(1, · , y)‖Lr(U,μ) < ∞ for a.e. y ∈ V , where 1/r = 1 − α/p,
then the integral in (3.4) exists and is finite for a.e. y ∈ V .

Lemma 3. For any function f ∈ Z(U), any μ-measurable set w ⊂ U, and any y ∈ V,

(Tf)(y) = (T (fχw))(y) + (T (fχU\w))(y) − (T (0))(y). (3.5)

Proof. Since the integral is additive with respect to the measure,

(Tf)(y)− (T (fχw))(y) =

∫

U

K(f(x), x, y) dμ −
∫

U

K
(
f(x)χw(x), x, y

)
dμ

=

∫

U\w

K
(
f(x)χU\w(x), x, y

)
dμ+

∫

w

K
(
f(x)χw(x), x, y

)
dμ

−
∫

U\w

K(0, x, y) dμ −
∫

w

K
(
f(x)χw(x), x, y

)
dμ

=

∫

U

K
(
f(x)χU\w(x), x, y

)
dμ −

∫

w

K(0, x, y) dμ −
∫

U\w

K(0, x, y) dμ

=

∫

U

K
(
f(x)χU\w(x), x, y

)
dμ −

∫

U

K(0, x, y) dμ = (T (fχU\w))(y)− (T (0))(y). �

Corollary 1. If

(T (0))(y) =

∫

U

K(0, x, y) dμ = 0 for a.e. y ∈ V, (3.6)

then T is a partially additive operator.
Corollary 2. If, for any f ∈ Z(U),

(Tf)(y) ≥ 0 for a.e. y ∈ V (3.7)

(in particular, if the kernel K is nonnegative), then T is a partially subadditive operator.
Proof. According to (3.5), we have

|(Tf)(y)| = (Tf)(y) = (T (fχw))(y) + (T (fχU\w))(y) − (T (0))(y)

≤ (T (fχw))(y) + (T (fχU\w))(y) = |(T (fχw))(y)|+ |(T (fχU\w))(y)|. �
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Corollary 3. If there is a B > 0 such that for any f ∈ Z(U)

|(T (0))(y)| ≤ B|(Tf)(y)| for a.e. y ∈ V, (3.8)

then T is a partially quasi-additive operator with partial quasi-additivity constant A = B + 1.
Proof. According to (3.5), we have

|(Tf)(y)| ≤ |(T (fχw))(y)| + |(T (fχU\w))(y)| + |(T (0))(y)|

≤ |(T (fχw))(y)| + |(T (fχU\w))(y)| +B|(T (fχw))(y)|

≤ (B + 1)
(
|(T (fχw))(y)| + |(T (fχU\w))(y)|

)
. �

Remark 1. If we are interested in the classical interpolation theorems for the Urysohn integral
operator and, hence, in estimates of the form

‖Tf‖Y ≤ C‖f‖X , f ∈ X, (3.9)

where X and Y are some quasinormed function spaces and C > 0 is independent of f , then
condition (3.6) is necessary. (If we take f = 0 in (3.9), then (Tf)(y) = 0 for a.e. y ∈ V .)

4. INTERPOLATION THEOREMS FOR MORREY-TYPE SPACES

Lemma 4 (Hardy inequalities). Let ξ > 0 and 0 < σ ≤ τ ≤ ∞. Then, for any nonnegative
Lebesgue measurable function g on (0,∞),

⎛
⎝

∞∫

0

⎛
⎝t−ξ

⎛
⎝

t∫

0

(g(r))σ
dr

r

⎞
⎠
1/σ⎞
⎠
τ

dt

t

⎞
⎠
1/τ

≤ (ξσ)−1/σ

⎛
⎝

∞∫

0

(
t−ξg(t)

)τ dt
t

⎞
⎠
1/τ

and ⎛
⎝

∞∫

0

⎛
⎝tξ

⎛
⎝

∞∫

t

(g(r))σ
dr

r

⎞
⎠
1/σ⎞
⎠
τ

dt

t

⎞
⎠
1/τ

≤ (ξσ)−1/σ

⎛
⎝

∞∫

0

(
tξg(t)

)τ dt
t

⎞
⎠
1/τ

.

Let (U, μ) be a space with measure μ, s > 0, and GΩ = {Gt,y}t>0, y∈Ω be a net. Define the nets
qGs
Ω = { qGs

t,y}t>0, y∈Ω, Ĝs
Ω = {Ĝs

t,y}t>0, y∈Ω and qGs
{y} = { qGs

t,y}t>0, Ĝs
{y} = {Ĝs

t,y}t>0 for y ∈ Ω, where

qGs
t,y =

{
Gt,y if s ≥ t,

Gs,y if s < t
and Ĝs

t,y =

{
∅ if s ≥ t,

Gt,y if s < t.
(4.1)

Remark 2. 1. If G = {Gt}t>0 is a filtration, i.e., G is a system of expanding σ-algebras
of measurable sets, then, in the theory of stochastic processes, the procedure defined by the first
relation in (4.1) is called a stop corresponding to the moment s, while the procedure defined by
the second relation in (4.1) defines a start corresponding to the moment s. These transformations
play an important role in constructing interpolation methods for stochastic processes [1, 2, 19]. In
this section, we present the main results of the study, in which these transformations also play a
significant role.

2. Note that

‖f‖Mα
p,σ( ̂Gs

{y},μ)
=

⎛
⎝

∞∫

s

(
t−α‖f‖Lp(Gt,y,μ)

)σ dt

t

⎞
⎠
1/σ
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and

‖f‖
Mα

p,σ( qGs
{y},μ)

=

⎛
⎝

s∫

0

(
r−α‖f‖Lp(Gr,y ,μ)

)σ dr

r
+

∞∫

s

(
r−α‖f‖Lp(Gs,y ,μ)

)σ dr

r

⎞
⎠
1/σ

=

⎛
⎝

s∫

0

(
r−α‖f‖Lp(Gr,y ,μ)

)σ dr

r
+ ‖f‖σLp(Gs,y ,μ)

∞∫

s

r−ασ dr

r

⎞
⎠
1/σ

=

⎛
⎝

s∫

0

(
r−α‖f‖Lp(Gr,y ,μ)

)σ dr

r
+ (ασ)−1s−ασ‖f‖σLp(Gs,y ,μ)

⎞
⎠
1/σ

	 s−α‖f‖Lp(Gs,y ,μ) +

⎛
⎝

s∫

0

(
r−α‖f‖Lp(Gr,y ,μ)

)σ dr

r

⎞
⎠
1/σ

.

Lemma 5. Let 0 < p, σ, τ ≤ ∞ and 0 ≤ α0 < α < α1 with α0 > 0 if σ < ∞, and let
f ∈ Mα

p,τ (GΩ, μ). Then, for arbitrary y ∈ Ω and s > 0,

‖f‖Mα0
p,σ( qGs

{y},μ)
< ∞ and

∥∥f(1− χGs,y

)∥∥
M

α1
p,σ(G{y},μ)

≤ ‖f‖Mα1
p,σ( ̂Gs

{y},μ)
< ∞.

Proof. Let f ∈ Mα
p,τ (GΩ, μ), y ∈ Ω, and s > 0. Then

‖f‖
M

α0
p,σ( qG{y},μ)

	 s−α0‖f‖Lp(Gs,y ,μ) +

⎛
⎝

s∫

0

(
r−α0‖f‖Lp(Gr,y ,μ)

)σ dr

r

⎞
⎠
1/σ

≤ s−α0‖f‖Lp(Gs,y ,μ) + ‖f‖Mα
p,∞(GΩ,μ)

⎛
⎝

s∫

0

r(α−α0)σ dr

r

⎞
⎠
1/σ

< ∞.

To obtain the second relation, notice that

∥∥f(1− χGs,y

)∥∥
M

α1
p,σ(G{y},μ)

=

⎛
⎝

∞∫

s

(
r−α1

∥∥f(1− χGs,y

)∥∥
Lp(Gr,y ,μ)

)σ dr

r

⎞
⎠
1/σ

≤

⎛
⎝

∞∫

s

(r−α1‖f‖Lp(Gr,y ,μ))
σ dr

r

⎞
⎠
1/σ

= ‖f‖Mα1
p,σ( ̂Gs

{y},μ)

and

‖f‖
M

α1
p,σ( ̂Gs

{y},μ)
=

⎛
⎝

∞∫

s

(
r−α1‖f‖Lp(Gr,y ,μ)

)σ dr

r

⎞
⎠
1/σ

≤ Mα
p,∞(GΩ, μ)

⎛
⎝

∞∫

s

r(α−α1)σ dr

r

⎞
⎠
1/σ

< ∞. �

Theorem 2. Let (U, μ) and (V, ν) be spaces with measures μ and ν, and let Ω ⊂ R
n.

Let GΩ = {Gt,y}t>0, y∈Ω be a net in U, qGs
Ω and Ĝs

Ω for s > 0 be the nets in U defined in (4.1),
and qGs

{y} and Ĝs
{y} for s > 0 and y ∈ Ω be the nets generated by qGs

Ω and Ĝs
Ω in U .

Let FΩ = {Ft,y}t>0, y∈Ω be a net in V and F{y} for y ∈ Ω be the nets generated by FΩ in V .
Let 0 < p, q, σ, τ ≤ ∞, 0 ≤ α0, α1 < ∞ with α0, α1 > 0 if σ < ∞, α0 �= α1, 0 ≤ β0, β1 < ∞,

β0 �= β1, and 0 < θ < 1, and let α and β be as defined in (1.1).
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Let f ∈ Mα
p,τ (GΩ, μ), Uf = {fχw : w ⊂ U is a μ-measurable subset}, and T be a quasi-additive

operator on Uf with quasi-additivity constant A.
If for some M0,M1 > 0 the inequalities

∥∥T (fχGs,y

)∥∥
M

β0
q,∞(F{y},ν)

≤ M0‖f‖Mα0
p,σ( qGs

{y},μ)
, (4.2)

∥∥T (f(1− χGs,y

))∥∥
M

β1
q,∞(F{y},ν)

≤ M1‖f‖Mα1
p,σ( ̂Gs

{y},μ)
(4.3)

hold for all y ∈ Ω and s > 0, then the inequality

‖Tf‖
Mβ

q,τ (FΩ,ν)
≤ cAM1−θ

0 Mθ
1 ‖f‖Mα

p,τ (GΩ,μ) (4.4)

holds with a constant c > 0 depending only on α0, α1, β0, β1, q, σ, τ, and θ.
Remark 3. 1. According to Lemma 5, for a fixed function f ∈ Mα

p,q(GΩ, μ), the norms in the
hypotheses of the theorem are well defined.

2. This theorem, albeit similar to the classical interpolation theorems, has a significant difference.
The point is that the hypotheses and the statement of the theorem are formulated for a fixed function
f ∈ Mα

p,q(GΩ, μ). We can say that here we deal not with interpolation of operators but rather with
interpolation of inequalities for a fixed function. This fact makes the statement more universal for
applications (see Section 5). In particular, the sets Gs,y can be chosen depending on f .

3. Consider the nonlinear integral operator

(Tf)(y) =

∫

U

K(f(x), x, y) dμ such that (T (0))(y) =

∫

U

K(0, x, y) dμ �= 0.

The classical interpolation theorems do not apply to this operator (see Section 3). At the same
time, if T satisfies one of the conditions (3.7) or (3.8), Theorem 2 makes sense.

Proof of Theorem 2. Without loss of generality, we assume that α0 < α1. Since the em-
bedding Mα

p,σ1
(G{y}, μ) ↪→ Mα

p,σ2
(G{y}, μ) holds for σ1 < σ2, we can also assume without loss of

generality that 0 < σ ≤ τ ≤ ∞.
Let f ∈ Mα

p,τ (GΩ, μ), y ∈ Ω, and s > 0. Since fχw ∈ Mα
p,τ (GΩ, μ) for any μ-measurable set

w ⊂ U and the operator T is quasi-additive on the set Uf , it follows that

‖Tf‖Lq(Ft,y,ν) ≤ A
∥∥ |T (fχGs,y

)|+ |T (f(1− χGs,y
))|
∥∥
Lq(Ft,y ,ν)

≤ 2(1/q−1)+A
(
‖T (fχGs,y

)‖Lq(Ft,y,ν) + ‖T (f(1− χGs,y
))‖Lq(Ft,y,ν)

)
.

From condition (4.2), we have

‖T (fχGs,y
)‖Lq(Ft,y,ν) = tβ0t−β0‖T (fχGs,y

)‖Lq(Ft,y ,ν) ≤ tβ0 sup
r>0

r−β0‖T (fχGs,y
)‖Lq(Fr,yν)

= tβ0‖T (fχGs,y
)‖

M
β0
q,∞,y(F,ν)

≤ M0t
β0‖f‖Mα0

p,σ( qG{y},μ)

	 M0t
β0

⎛
⎝s−α‖f‖Lp(Gs,y,μ) +

⎛
⎝

s∫

0

(
r−α‖f‖Lp(Gr,y ,μ)

)σ dr

r

⎞
⎠
1/σ⎞
⎠.

Hence, the following inequality holds for arbitrary s > 0 and y ∈ Ω:

‖T (fχGs,y
)‖Lq(Ft,y,ν) ≤ c1M0t

β0

⎡
⎣
⎛
⎝

s∫

0

(
r−α0 sup

y∈Ω
‖f‖Lp(Gr,y ,μ)

)σ dr

r

⎞
⎠
1/σ

+ s−α0 sup
y∈Ω

‖f‖Lp(Gs,y ,μ)

⎤
⎦,

where c1 > 0 depends only on α0, α1, and σ.
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Let us use condition (4.3) to estimate the second term:

‖T (f(1− χGs,y
))‖Lq(Ft,y,ν) = tβ1t−β1‖T (f(1− χGs,y

))‖Lq(Ft,y,ν) ≤ M1t
β1‖f‖

M
α1
p,σ( ̂Gs

{y},μ)

= M1t
β1

⎛
⎝

∞∫

s

(
t−α1‖f‖Lp(Gt,y,μ)

)σ dt

t

⎞
⎠
1/σ

≤ M1t
β1

⎛
⎝

∞∫

s

(
t−α1 sup

y∈Ω
‖f‖Lp(Gt,y,μ)

)σ dt
t

⎞
⎠
1/σ

.

Thus, for all t > 0, s > 0, and y ∈ Ω, we obtain

‖Tf‖Lq(Ft,y) ≤ c2A

⎛
⎝M0t

β0

⎡
⎣
⎛
⎝

s∫

0

(
r−α0 sup

y∈Ω
‖f‖Lp(Gr,y)

)σ dr
r

⎞
⎠
1/σ

+ s−α0 sup
y∈Ω

‖f‖Lp(Gs,y ,μ)

⎤
⎦

+M1t
β1

⎛
⎝

∞∫

s

(
t−α1 sup

y∈Ω
‖f‖Lp(Gt,y ,μ)

)σ dt
t

⎞
⎠
1/σ⎞
⎠,

where c2 > 0 depends only on q, α0, α1, and σ.
Set s = ctγ , where γ = (β1 − β0)/(α1 − α0) and c > 0 is a constant to be chosen later. Then

‖Tf‖
Mβ

q,τ (GΩ,μ)
=

⎛
⎝

∞∫

0

(
t−β sup

x∈Ω
‖Tf‖Lq(Ft,y)

)τ dt
t

⎞
⎠
1/τ

≤ 3(1/τ−1)+c2A(M0I1 +M0I2 +M1I3),

where

I1 =

⎛
⎝

∞∫

0

⎛
⎝tβ0−β

⎛
⎝

ctγ∫

0

(
r−α0 sup

y∈Ω
‖f‖Lp(Gr,y)

)σ dr
r

⎞
⎠
1/σ⎞
⎠
τ

dt

t

⎞
⎠
1/τ

,

I2 =

⎛
⎝

∞∫

0

(
tβ0−β(ctγ)−α0 sup

y∈Ω
‖f‖Lp(Gctγ ,y,μ)

)τ dt
t

⎞
⎠
1/τ

,

I3 =

⎛
⎝

∞∫

0

⎛
⎝tβ1−β

⎛
⎝

∞∫

ctγ

(
r−α1 sup

y∈Ω
‖f‖Lp(Gr+ctγ,y)

)σ dr
r

⎞
⎠
1/σ⎞
⎠
τ

dt

t

⎞
⎠
1/τ

.

Making the change ctγ → t, we obtain

I1 = γ−1/τ cθ(α1−α0)J1, I2 = γ−1/τ cθ(α1−α0)J2, I3 = γ−1/σc−(1−θ)(α1−α0)J3,

where

J1 =

⎛
⎝

∞∫

0

⎛
⎝t−θ(α1−α0)

⎛
⎝

t∫

0

(
r−α0 sup

y∈Ω
‖f‖Lp(Gr,y ,μ)

)σ dr
r

⎞
⎠
1/σ⎞
⎠
τ

dt

t

⎞
⎠
1/τ

,

J2 =

⎛
⎝

∞∫

0

(
t−θ(α1−α0)−α0 sup

y∈Ω
‖f‖Lp(Gt,y ,μ)

)τ dt
t

⎞
⎠
1/τ

= ‖f‖Mα
p,τ (GΩ,μ),

J3 =

⎛
⎝

∞∫

0

⎛
⎝t(1−θ)(α1−α0)

⎛
⎝

∞∫

0

(
rd(r + t)−α1−d sup

y∈Ω
‖f‖Lp(Gr+t,y)

)σ dr
r

⎞
⎠
1/σ⎞
⎠
τ

dt

t

⎞
⎠
1/τ

.
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To estimate J1 and J3, we apply the Hardy inequalities (Lemma 4), according to which we have

J1 ≤ (θ(α1 − α0)σ)
−1/σ

⎛
⎝

∞∫

0

(
t−α sup

y∈Ω
‖f‖Lp(Gt,y)

)τ dt
t

⎞
⎠
1/τ

= (θ(α1 − α0)σ)
−1/σ‖f‖Mα

p,τ (GΩ,μ),

J2 ≤ (θ(α1 − α0)σ)
−1/σ‖f‖Mα

p,τ (GΩ,μ),

J3 ≤ ((1− θ)(α1 − α0)σ)
−1/σ‖f‖Mα

p,τ (GΩ,μ).

For all c > 0, we obtain

‖Tf‖
Mβ

q,τ (FΩ,ν)
≤ c3

(
M0c

θ(α1−α0) +M1c
−(1−θ)(α1−α0)

)
‖f‖Mα

p,τ (GΩ,μ),

where c3 > 0 depends only on α0, α1, β0, β1, q, σ, τ , and θ.
Now we set c = (M1/M0)

1/(α1−α0). Then

‖Tf‖
Mβ

q,τ (FΩ,ν)
≤ 2c3M

1−θ
0 Mθ

1 ‖f‖Mα
p,τ (GΩ,μ). �

Remark 4. Theorem 2 implies, in particular, Theorem 1 formulated in the Introduction.
Indeed, if U = V = R

n, μ and ν are the Lebesgue measures, Gt,y = B(y, t), t > 0, y ∈ R
n,

and Ω = R
n, then inequalities (1.2) and Theorem 1 with f replaced by fχGs,y

for i = 0 and by
f(1− χGs,y

) for i = 1 imply inequalities (4.2) and (4.3). Hence, inequality (4.4) holds, which leads
to inequality (1.3).

Let U = V = R
n, μ and ν be the Lebesgue measures, Ω ⊂ R

n, 0 < p, q ≤ ∞, and 0 ≤ λ < ∞
with λ > 0 if q < ∞. Let v be a positive locally absolutely continuous strictly increasing function
defined on (0,∞). Define the spaces Mλ

p,q,Ω(v) in the spirit of Example 3:

Mλ
p,q,Ω(v) =

⎧⎨
⎩f ∈ Lloc

p (Rn) : ‖f‖Mλ
p,q,Ω(v)

=

⎛
⎝

∞∫

0

(
(v(r))−λ sup

y∈Ω
‖f‖Lp(B(y,r))

)q dv(r)
v(r)

⎞
⎠
1/q

< ∞

⎫⎬
⎭

for 0 < q < ∞ and

Mλ
p,∞,Ω(v) =

{
f : ‖f‖Mλ

p,∞,Ω(v) = sup
r>0, y∈Ω

(v(r))−λ‖f‖Lp(B(y,r)) < ∞
}

for q = ∞.
Corollary 4. Let Ω ⊂ R

n, 0 < p, q, σ, τ ≤ ∞, 0 ≤ α0, α1 < ∞ with α0, α1 > 0 if σ < ∞,
α0 �= α1, 0 ≤ β0, β1 < ∞, β0 �= β1, and 0 < θ < 1, and let α and β be as defined in (1.1).

Suppose that the functions v and w satisfy the conditions indicated above, and let T be a partially
quasi-additive operator on Mα

p,τ,Ω(w) with partial quasi-additivity constant A.
If for some M0,M1 > 0 the inequalities

‖Tf‖
M

βi
q,∞,y(v)

≤ Mi‖f‖Mαi
p,σ,y(w)

hold for all y ∈ Ω and all functions f ∈ LMαi
p,σ,y(w), i = 0, 1, then the inequality

‖Tf‖
Mβ

q,τ,Ω(v)
≤ cAM1−θ

0 Mθ
1 ‖f‖Mα

p,τ,Ω(w)

holds for all functions f ∈ LMα
p,τ,Ω(w), where c > 0 depends only on α0, α1, β0, β1, q, σ, τ, and θ.

Proof. Let μ be the Lebesgue measure in R
n. Let v−1 and w−1 be the inverse functions of v

and w, respectively. Consider the nets F = {Ft,y}t>0, y∈Ω and G = {Gt,y}t>0, y∈Ω with

Ft,y = B(y, v−1(t)) and Gt,y = B(y,w−1(t)).
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Then Mλ
p,q,Ω(w) and Mλ

p,q,y(w) coincide with the spaces Mλ
p,q(GΩ, μ) and Mλ

p,q(G{y}, μ), respectively.
Next, we apply Theorem 2. �

The following interpolation theorem is purely a theorem on interpolation of inequalities (it does
not contain any operator).

Theorem 3. Let (U, μ) and (V, ν) be spaces with measures μ and ν, and let Ω ⊂ R
n.

Let GΩ = {Gt,y}t>0, y∈Ω be a net in U, qGs
Ω and Ĝs

Ω for s > 0 be the nets in U defined in (4.1),
and qGs

{y} and Ĝs
{y} for s > 0 and y ∈ Ω be the nets generated by qGs

Ω and Ĝs
Ω in U .

Let FΩ = {Ft,y}t>0, y∈Ω, F 0
Ω(s) = {(F 0(s))t,y}t>0, y∈Ω, and F 1

Ω(s) = {(F 1(s))t,y}t>0, y∈Ω for
s > 0 be nets in V, and let F 0

{y}(s) and F 1
{y}(s) for s > 0 and y ∈ Ω be the nets in V generated

by F 0
Ω(s) and F 1

Ω(s); in addition, suppose that

Ft,y ⊂ (F 0(s))t,y ∪ (F 1(s))t,y (4.5)

for all s, t > 0 and y ∈ Ω.
Let 0 < p, q, σ, τ ≤ ∞, 0 ≤ α0, α1 < ∞ with α0, α1 > 0 if σ < ∞, α0 �= α1, 0 ≤ β0, β1 < ∞,

β0 �= β1, and 0 < θ < 1, and let α and β be as defined in (1.1).
Let f ∈ Mα

p,τ (GΩ, μ) and g be a ν-measurable function on V .
If for some M0,M1 > 0 the inequalities

‖g‖
M

β0
q,∞(F 0

{y}(s),ν)
≤ M0‖f‖Mα0

p,σ( qGs
{y},μ)

, (4.6)

‖g‖
M

β1
q,∞(F 1

{y}(s),ν)
≤ M1‖f‖Mα1

p,σ( ̂Gs
{y},μ)

(4.7)

hold for all y ∈ Ω and s > 0, then the inequality

‖g‖
Mβ

q,τ (FΩ,ν)
≤ cM1−θ

0 Mθ
1 ‖f‖Mα

p,τ (GΩ,μ) (4.8)

holds with a constant c > 0 depending only on q, τ, σ, α0, α1, β0, β1, and θ.

Proof. Without loss of generality, we may assume that α0 < α1. Since the embedding
Mα

p,σ1
(G{y}, μ) ↪→ Mα

p,σ2
(G{y}, μ) holds for σ1 < σ2, we can also assume without loss of generality

that 0 < σ ≤ τ ≤ ∞.
Let f ∈ Mα

p,τ (GΩ, μ), y ∈ Ω, and s > 0. According to (4.5),

‖g‖Lq(Ft,y,ν) ≤ 2(1/q−1)+
(
‖g‖Lq((F 0(s))t,y ,ν) + ‖g‖Lq((F 1(s))t,y ,ν)

)
.

From conditions (4.6) and (4.7), we have

‖g‖Lq((F 0(s))t,y ,ν) = tβ0t−β0‖g‖Lq((F 0(s))t,y ,ν) ≤ tβ0 sup
r>0

r−β0‖g‖Lq((F 0(s))t,y ,ν)

= Aβ0tβ0‖g‖
M

β0
q,∞(F 0

{y}(s),ν)
≤ M0t

β0‖f‖
M

α0
p,σ( qGs

{y},μ)

	 M0t
β0

⎛
⎝
⎛
⎝

s∫

0

(
r−α0‖f‖Lp(Gs

r,y ,μ)

)σ dr

r

⎞
⎠
1/σ

+ s−α0‖f‖Lp(Gs,y ,μ)

⎞
⎠

and

‖f‖Lq((F 1(s))t,y ,ν) ≤ M1t
β1‖f‖Mp,σ( ̂Gs

{y})
= M1t

β1

⎛
⎝

∞∫

s

(
r−α0‖f‖Lp(Gs

r,y ,μ)

)σ dr

r

⎞
⎠
1/σ

.
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Thus, for all t > 0, s > 0, and y ∈ Ω, we obtain

‖g‖Lq(Ft,y) ≤ c2

⎛
⎝M0t

β0

⎡
⎣
⎛
⎝

s∫

0

(
r−α0 sup

y∈Ω
‖f‖Lp(Gr,y)

)σ dr
r

⎞
⎠
1/σ

+ s−α0 sup
y∈Ω

‖f‖Lp(Gs,y ,μ)

⎤
⎦

+M1t
β1

⎛
⎝

∞∫

s

(
t−α1 sup

y∈Ω
‖f‖Lp(Gt,y ,μ)

)σ dt
t

⎞
⎠
1/σ⎞
⎠,

where c2 > 0 depends only on q, α0, α1, and σ.
The further arguments are similar to those in the proof of Theorem 2. �
Remark 5. The hypotheses of Theorem 3 contain the nets FΩ, F 0

Ω(s), and F 1
Ω(s) that satisfy

condition (4.5). We now give an example of such nets, independent of Ω, which will be used in
Sections 5 and 6.

Let (U, μ), Z(U), (V, ν), and M(V ) be as in Section 3. Let T : Z(U) → M(V ) be a partially
quasi-additive operator with partial quasi-additivity constant A, and let the nets F , F 0(s), and
F 1(s) be defined by the following sets:

Ft =
{
x ∈ V : |(Tf)(x)| > t−1h(x)

}
, t > 0,

F 0
t (s) =

{
x ∈ V : |(T (fχGs

))(x)| > (2At)−1h(x)
}
, t > 0, s > 0,

F 1
t (s) =

{
x ∈ V : |(T (f(1− χGs

)))(x)| > (2At)−1h(x)
}
, t > 0, s > 0,

where h is a positive function on V .
Now, let us show that the partial quasi-additivity of T implies the inclusion

Ft ⊂ F 0
t (s) ∪ F 1

t (s), s > 0, t > 0.

Indeed, if x ∈ Ft, then x ∈ V and

(T (fχGs
))(x) >

h(x)

2At
⇔ x ∈ F 0

t (s)

or

(T (f(1− χGs
)))(x) >

h(x)

2At
⇔ x ∈ F 1

t (s),

since otherwise

(T (fχGs
))(x) ≤ h(x)

2At
, (T (f(1− χGs

)))(x) ≤ h(x)

2At

and

|(Tf)(x)| ≤ A
(
|(T (fχGs

))(x)| + |(T (f(1− χGs
)))(x)|

)
≤ h(x)

t
,

which contradicts the fact that x ∈ Ft.

5. MARCINKIEWICZ–CALDERÓN TYPE INTERPOLATION THEOREM

Inspecting the standard proof of the Marcinkiewicz theorem, one can easily verify that the
condition of quasi-additivity of the operator T is applied in the proof only to sums of the form
fχw + f(1− χw) rather than to arbitrary sums f1 + f2; i.e., it suffices to assume that the operator T
is partially quasi-additive. Taking this fact into account, we present the Marcinkiewicz interpolation
theorem in the following form.
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Theorem 4. Let (U, μ) and (V, ν) be spaces with measures μ and ν.
Let 1 ≤ p0 ≤ p1 < ∞, 1 ≤ q0, q1 < ∞, q0 �= q1, 0 < θ < 1, and

1

p
=

1− θ

p0
+

θ

p1
≥ 1

q
=

1− θ

q0
+

θ

q1
.

Let T be a partially quasi-additive operator on Lp0(U, μ) + Lp1(U, μ) with partial quasi-additivity
constant A.

If for some M0,M1 > 0 the inequalities

‖Tf‖Lqi,∞(V,ν) ≤ Mi‖f‖Lpi (U,μ)
(5.1)

hold for all functions f ∈ Lpi(U, μ), i = 0, 1, then the inequality

‖Tf‖Lq(V,ν) ≤ cAM1−θ
0 Mθ

1 ‖f‖Lp(U,μ) (5.2)

holds for all f ∈ Lp(U, μ), where c > 0 depends only on p0, p1, q0, q1, and θ.
The well-known Calderón theorem [13] generalizes and, in a sense, strengthens the Marcinkiewicz

interpolation theorem in the case when the operator is quasi-additive. There are various proofs of
this theorem, but all of them employ the quasi-additivity condition in an essential way and are not
generally valid in the case of just partial quasi-additivity.

We will prove an analog of the Calderón theorem for partially quasi-additive operators T , while
requiring the regularity of the corresponding measures.

Theorem 5. Let (U, μ) and (V, ν) be spaces with measures μ and ν satisfying the regularity
condition (2.2).

Let 1 ≤ p0 < p1 < ∞, 1 ≤ q0, q1 < ∞, q0 �= q1, 0 < σ, τ ≤ ∞, 0 < θ < 1, and
1

p
=

1− θ

p0
+

θ

p1
,

1

q
=

1− θ

q0
+

θ

q1
. (5.3)

Let T be a partially quasi-additive operator on Lp0,σ(U, μ) + Lp1,σ(U, μ) with partial quasi-
additivity constant A.

If for some M0,M1 > 0 the inequalities

‖Tf‖Lqi,∞(V,ν) ≤ Mi‖f‖Lpi,σ(U,μ)
(5.4)

hold for all f ∈ Lpi,σ(U, μ), i = 0, 1, then the inequality

‖Tf‖Lq,τ (V,ν) ≤ cAM1−θ
0 Mθ

1 ‖f‖Lp,τ (U,μ) (5.5)

holds for all f ∈ Lp,τ (U, μ), where c > 0 depends only on p0, p1, q0, q1, σ, τ, and θ.
Proof. Let f ∈ Lp,τ (U, μ). It follows from Lemma 2 and Example 1 that there exist nets

G(f) = {Gt(f)}t>0 and H(Tf) = {Ht(Tf)}t>0 that satisfy the conditions

μ(Gt(f)) 	 t and ν(Ht(Tf)) 	 t

and are such that
t∫

0

(Tf)∗(s) ds ≤
∫

Ht(Tf)

|(Tf)(x)| dν ≤
2t∫

0

(Tf)∗(s) ds,

t∫

0

f∗(s) ds ≤
∫

Gt(f)

|f(x)| dμ ≤
2t∫

0

f∗(s) ds,

‖Tf‖Lq,τ (V,ν) 	 ‖Tf‖
M

1/q′
1,τ (H(Tf),ν)

, and ‖f‖Lp,τ (U,μ) 	 ‖f‖
M

1/p′
1,τ (G(f),μ)

,

where the corresponding constants depend only on the parameter p, q, and τ .
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From condition (5.4), we have

‖T (fχGs(f)
)‖

M
1/q′

0
1,∞ (H(Tf),ν)

= sup
t>0

t−1/q′
∫

Gt(Tf)

∣∣(T (fχGs(f)

))
(x)
∣∣ dμ

≤ sup
t>0

t−1/q′ sup
μ(e)=2t

∫

e

∣∣(T (fχGs(f)

))
(x)
∣∣ dμ ≤ sup

t>0
t−1/q′

2t∫

0

(
T
(
fχGs(f)

))∗
(t) dt

�
∥∥T (fχGs(f)

)∥∥
Lq0,∞(D,ν)

≤ M0

∥∥fχGs(f)

∥∥
Lp0,σ(U,μ)

� M0

∥∥fχGs(f)

∥∥
M

1/p0
1,σ (G(f),μ)

= M0‖f‖M1/p0
1,σ ( qGs(f),μ)

.

According to inequalities (2.4) and (2.5), by Lemma 2 we obtain
∥∥T (f(1− χGs(f)

))∥∥
M

1/q1
1,∞ (H(Tf),ν)

≤
∥∥T (f(1− χGs(f)

))∥∥
Lq1,∞(V,ν)

≤ M1

∥∥f(1− χGs(f)

)∥∥
Lp1,σ(U,μ)

≤ M1

⎛
⎝

∞∫

0

(
t1/p1f∗(t+ s)

)σ dt

t

⎞
⎠
1/σ

≤ M1

⎛
⎝

∞∫

0

⎛
⎝t1/p1

1

s+ t

s+t∫

0

f∗(ξ) dξ

⎞
⎠
σ

dt

t

⎞
⎠

1/σ

� M1

⎛
⎝

∞∫

0

⎛
⎝t1/p1

1

t+ s

∫

Gt+s(f)

|f(x)| dμ

⎞
⎠
σ

dt

t

⎞
⎠
1/σ

≤ M12
(1/σ−1)+

×

⎛
⎝
⎛
⎝

s∫

0

⎛
⎝t1/p1

1

t+ s

∫

Gt+s(f)

|f(x)| dμ

⎞
⎠
σ

dt

t

⎞
⎠
1/σ

+

⎛
⎝

∞∫

s

⎛
⎝t1/p1

1

t+ s

∫

Gt+s(f)

|f(x)| dμ

⎞
⎠
σ

dt

t

⎞
⎠
1/σ⎞
⎠

≤ M12
(1/σ−1)+

⎛
⎝

∫

G2s(f)

|f(x)| dμ

⎛
⎝

s∫

0

(
t1/p1

1

t+ s

)σ dt
t

⎞
⎠
1/σ

+

⎛
⎝

∞∫

s

⎛
⎝t1/p1 1

t

∫

G2t(f)

|f(x)| dμ

⎞
⎠
σ

dt

t

⎞
⎠
1/σ⎞
⎠.

Taking into account that
⎛
⎝

∞∫

s

⎛
⎝t−1/p′1

∫

G2t(f)

|f(x)| dμ

⎞
⎠
σ

dt

t

⎞
⎠
1/σ

= 21/p
′
1

⎛
⎝

∞∫

2s

⎛
⎝t−1/p′1

∫

Gt(f)

|f(x)| dμ

⎞
⎠
σ

dt

t

⎞
⎠
1/σ

≤ 21/p
′
1‖f‖

M
1/p′

1
1,σ ( ̂Gs,μ)

,

⎛
⎝

s∫

0

(
t1/p1

1

t+ s

)σ dt
t

⎞
⎠
1/σ

= s−1/p′1

⎛
⎝

1∫

0

(
t1/p1

1

t+ 1

)σ dt
t

⎞
⎠
1/σ

and

s−1/p′1‖f‖L1(G2s(f),μ) ≤ 21/p
′
1

(
σ

p′1

)1/σ⎛
⎝

∞∫

2s

⎛
⎝t−1/p′1

∫

Gt(f)

|f(x)| dμ

⎞
⎠
σ

dt

t

⎞
⎠
1/σ

≤ 21/p
′
1

(
σ

p′1

)1/σ
‖f‖

M
1/p′

1
1,σ ( ̂Gs,μ)

,
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we find ∥∥T (f(1− χGs(f)

))∥∥
M

1/q1
1,∞ (G(Tf),ν)

� M1‖f‖
M

1/p′1
1,σ ( ̂Gs,μ)

.

Let us apply Theorem 2:

‖Tf‖Lq,τ (D,ν) � ‖Tf‖
M

1/q
1,τ (G(Tf),ν)

� M1−θ
0 Mθ

1 ‖f‖M1/p
1,τ (G(f),μ)

� M1−θ
0 Mθ

1 ‖f‖Lp,τ (U,μ).

In the above considerations, the constants implied by the signs � are independent not only of f
but also of M0 and M1. �

Corollary 5. Let 1 ≤ p0 < p1 < ∞, 1 ≤ q0, q1 < ∞, q0 �= q1, 0 < σ, τ ≤ ∞, and 0 < θ < 1,
and let p and q be defined by (5.3).

Let

(Tf)(y) =

∫

U

K(f(x), x, y) dμ, y ∈ V.

If for some M0,M1 > 0 the inequalities

‖Tf‖Lqi,∞(V,ν) ≤ Mi‖f‖Lpi,σ(U,μ)
(5.6)

hold for all f ∈ Lpi,σ(U, μ), i = 0, 1, then the inequality

‖Tf‖Lq,τ (V,ν) ≤ cM1−θ
0 Mθ

1 ‖f‖Lp,τ (U,μ)

holds for all f ∈ Lp,τ (U, μ), where c > 0 depends only on p0, p1, q0, q1, σ, θ, and τ .
Proof. From condition (5.6), we have

sup
t>0

t1/p0(Tf)∗(t) ≤ M0‖f‖Lp0,1
.

Setting f = 0, we obtain ∫

U

K(0, x, y) dμ = 0

almost everywhere in V ; in this case, as shown in Section 3, the operator T is partially additive.
Hence, we can apply Theorem 5. �

6. STEIN–WEISS–PEETRE TYPE INTERPOLATION THEOREMS

Let μ be a measure on U satisfying the regularity condition (2.2) and w be a positive μ-mea-
surable (weight) function on U .

For 0 < p ≤ ∞, denote by Lp(U,w, μ) the space of all μ-measurable functions on U such that

‖f‖Lp(U,w,μ) =

⎛
⎝
∫

U

(
w(x)|f(x)|

)p
dμ

⎞
⎠
1/p

< ∞.

If w ≡ 1, then Lp(U, 1, μ) ≡ Lp(U, μ); if μ is the Lebesgue measure, then Lp(U,w, μ) ≡ Lp(U,w)
and Lp(U, μ) ≡ Lp(U).

Recall the Stein–Weiss–Peetre theorem.
Theorem 6. Let 1 ≤ p0 ≤ p1 < ∞, 0 < θ < 1, and

1

p
=

1− θ

p0
+

θ

p1
. (6.1)
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Let w0 and w1 be positive μ-measurable functions on U, and let T be a subadditive operator
on Lp0(U,w0, μ) + Lp1(U,w1, μ).

If for some M0,M1 > 0 the inequalities

‖Tf‖Lpi(U,wi,μ) ≤ Mi‖f‖Lpi (U,wi,μ) (6.2)

hold for all f ∈ Lpi(U,wi, μ), i = 0, 1, then the inequality

‖Tf‖Lp(U,w
1−θ
0 wθ

1 ,μ)
≤ cM1−θ

0 Mθ
1 ‖f‖Lp(U,w

1−θ
0 wθ

1,μ)
(6.3)

holds for all f ∈ Lp(U,w
1−θ
0 wθ

1, μ), where c > 0 depends only on p0, p1, and θ.
Remark 6. In the case when T is a linear operator and p0 = p1 = p, Theorem 6 was proved

by Stein and Weiss [27]. In this case, the constant c in inequality (6.3) is equal to 1. In the present
version, the theorem was proved by Peetre [24].

Theorem 7. Let 0 < p ≤ q < ∞ and 0 < θ < 1. Let w0 and w1 be positive μ-measurable
functions on U, and let T be a partially quasi-additive operator on Lp(U,w0, μ) + Lp(U,w1, μ) with
partial quasi-additivity constant A.

If for some M0,M1 > 0 the inequalities

‖Tf‖Lq(U,wi,μ) ≤ Mi‖f‖Lp(U,wi,μ)

hold for all f ∈ Lp(U,wi, μ), i = 0, 1, then the inequality

‖Tf‖Lq(U,w
1−θ
0 wθ

1 ,μ)
≤ cAM1−θ

0 Mθ
1 ‖f‖Lp(U,w

1−θ
0 wθ

1,μ)

holds for all f ∈ Lp(U,w
1−θ
0 wθ

1, μ), where c > 0 depends only on q, α0, α1, λ0, λ1, and θ.
Proof. Let 0 < λ0, λ1 < ∞ and 0 < α0 < α1 < ∞. We define nets Gλ0,λ1 = {Gt,λ0,λ1}t>0 and

Fα0,α1 = {Ft,α0,α1}t>0 by setting

Gt,λ0,λ1 =
{
x ∈ U : w

1/(λ1−λ0)
0 (x)w

1/(λ0−λ1)
1 (x) < t

}
, t > 0,

Ft,α0,α1 =
{
x ∈ V : v

1/(α1−α0)
0 (x)v

1/(α0−α1)
1 (x) < t

}
, t > 0,

and let

dμλ0,λ1 =
(
w

λ1/(λ1−λ0)
0 (x)w

λ0/(λ0−λ1)
1 (x)

)p
dμ, dνα0,α1 =

(
v
α1/(α1−α0)
0 (x)v

α0/(α0−α1)
1 (x)

)q
dν.

Then, according to Example 8 and Theorem 7 from [12],

Mλ0
p,1(Gλ0,λ1 , μλ0,λ1) ↪→ Mλ0

p,p(Gλ0,λ1 , μλ0,λ1) = Lp(U,w0, μ),

Mλ1
p,1(Gλ0,λ1 , μλ0,λ1) ↪→ Mλ1

p,p(Gλ0,λ1 , μλ0,λ1) = Lp(U,w1, μ),

Mα0
q,∞(Fα0,α1 , να0,α1) ←↩ Mα0

q,q(Fα0,α1 , να0,α1) = Lq(U,w0, ν),

Mα1
q,∞(Fα0,α1 , να0,α1) ←↩ Mα1

q,q(Fα0,α1 , να0,α1) = Lq(U,w1, ν),

Mλ
p,p(Gλ0,λ1 , μλ0,λ1) = Lp(U,w

1−θ
0 wθ

1, μ), λ = (1− θ)λ0 + θλ0,

Mα
q,q(Fα0,α1 , να0,α1) = Lq(U,w

1−θ
0 wθ

1, ν), α = (1− θ)α0 + θα0.

From the hypotheses of the theorem, we obtain

‖Tf‖Mαi
q,∞(Fα0,α1 ,να0,α1)

≤ c1Mi‖f‖Mλi
p,1(Gλ0,λ1

,μλ0,λ1
)
,

where c1 > 0 depends only on the parameters α0, α1, λ0, and λ1.
To complete the proof, we apply Theorem 2. �
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Lemma 6. Let 0 < p0, p1 < ∞, p0 �= p1, and 0 < θ < 1, and let p be defined by (6.1).
Let w0 and w1 be positive μ-measurable functions on U and

h1(x) =

(
w0(x)

w1(x)

)p0p1/(p1−p0)

, h2(x) =

(
wp0
0 (x)

wp1
1 (x)

)1/(p1−p0)

, x ∈ U, dμ̃ = h1 dμ.

Let f : U → R be a μ-measurable function and G(f) = {Gt(f)}t>0 with

Gt(f) =

{
x ∈ U : |f(x)| > h2(x)

t

}
.

Then the following equalities hold for an arbitrary μ-measurable set e ⊂ U :

‖χe‖Mp0
1,1(G(f),μ̃) = p−1

0 ‖fχe‖
p0
Lp0 (U,w0,μ)

, (6.4)

‖1− χe‖Mp1
1,1(G(f),μ̃) = p−1

1 ‖f(1− χe)‖
p1
Lp1 (U,w1,μ)

, (6.5)

‖1‖Mp
1,1(G(f),μ̃) = p−1‖f‖p

Lp(U,w
1−θ
0 wθ

1,μ)
. (6.6)

Remark 7. The functions h1 and h2 and the sets Gt were used in [12] (see Example 9, Lem-
mas 3 and 4, and Theorem 8 there).

Proof of Lemma 6. Let U0(f) = {x ∈ U : f(x) �= 0}. Then
⋃

t>0 Gt(f) = U0(f) and

‖fχe‖
p0
Lp0 (U,w0,μ)

=

∫

U0(f)

(
|f(x)χe(x)|w0(x)

)p0 dμ

=

∫

U0(f)

(
w0(x)

w1(x)

)p0p1/(p1−p0)(
χe(x)|f(x)|

(
wp0
0 (x)

wp1
1 (x)

)1/(p0−p1))p0
dμ

=

∫

U0(f)

χe(x)h1(x)
(
|f(x)|h−1

2 (x)
)p0 dμ = p0

∫

U0(f)

χe(x)h1(x)

⎛
⎝

∞∫

h2(x)/|f(x)|

t−p0−1 dt

⎞
⎠ dμ

= p0

∞∫

0

t−p0

⎛
⎝

∫

h2(x)/|f(x)|<t

χe(x)h1(x) dμ

⎞
⎠ dt

t
= p0

∞∫

0

t−p0

⎛
⎝

∫

Gt(f)

χe(x)h1(x) dμ

⎞
⎠ dt

t

= ‖χe‖Mp0
1,1(G(f),μ̃),

which implies equality (6.4). Next,

‖f(1− χe)‖
p1
Lp1 (U,w1,μ)

=

∫

U0(f)

(
|f(x)(1− χe(x))|w1(x)

)p0 dμ

=

∫

U0(f)

(
w0(x)

w1(x)

)p0p1/(p1−p0)(
(1− χe(x))|f(x)|

(
wp0
0 (x)

wp1
1 (x)

)1/(p0−p1))p1
dμ

=

∫

U0(f)

(1− χe(x))h1(x)
(
|f(x)|h−1

2 (x)
)p1 dμ = p1

∫

U0(f)

(1− χe(x))h1(x)

⎛
⎝

∞∫

h2(x)/|f(x)|

t−p1−1 dt

⎞
⎠ dμ
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= p1

∞∫

0

t−p1

⎛
⎝

∫

h2(x)/|f(x)|<t

(1− χe(x))h1(x) dμ

⎞
⎠ dt

t
= p1

∞∫

0

t−p1

⎛
⎝

∫

Gt(f)

(1− χe(x))h1(x) dμ

⎞
⎠ dt

t

= ‖χe‖Mp1
1,1(G(f),μ̃)

and

‖1‖Mp
1,1(G(f),μ̃) =

∞∫

0

t−p

∫

Gt(f)

h1(x) dμ
dt

t
=

∫

U0(f)

h1(x)

|f(x)|/h2(x)∫

0

t−p dt

t
dμ

= p−1

∫

U

(
|f(x)|w1−θ

0 wθ
1

)p
dμ. �

Theorem 8. Let 0 < p0 < p1 < ∞ and 0 < θ < 1, and let p be defined by (6.1).
Let the functions w0, w1, h1, and h2 and the measure μ̃ be the same as in Lemma 6, and let T

be a partially quasi-additive operator on Lp0(U,w0, μ) + Lp1(U,w1, μ) with partial quasi-additivity
constant A.

If for some M0,M1 > 0 the inequalities

‖h−1
2 Tf‖Lpi,∞(U,μ̃) ≤ Mi‖f‖Lpi (U,wi,μ) (6.7)

hold for all f ∈ Lpi(U,wi, μ), i = 0, 1, then the inequality

‖Tf‖Lp(U,w
1−θ
0 wθ

1,μ)
≤ cAM1−θ

0 Mθ
1 ‖f‖Lp(U,w

1−θ
0 wθ

1,μ)
(6.8)

holds for all f ∈ Lp(U,w
1−θ
0 wθ

1, μ), where c > 0 depends only on p0, p1, and θ.

Remark 8. Note that conditions (6.7) are weaker than conditions (6.2).
Indeed, for example, for i = 0,

‖h−1
2 Tf‖Lpi,∞(U,μ̃) = sup

t>0
t
(
μ̃
(
{x ∈ U : |(Tf)(x)| > th2(x)}

))1/p0

= sup
t>0

t

⎛
⎝

∫

{x∈U : |(Tf)(x)|>th2(x)}

h1(x) dμ

⎞
⎠
1/p0

≤ sup
t>0

⎛
⎝

∫

{x∈U : |(Tf)(x)|>th2(x)}

∣∣∣∣
(Tf)(x)

h2(x)

∣∣∣∣
p0

h1(x) dμ

⎞
⎠
1/p0

≤ ‖Tf‖Lp(U,w0,μ).

Proof of Theorem 8. Let s > 0 and f ∈ Lp(U,w
1−θ
0 wθ

1, μ). We will use the terminology of
Lemma 6. Let G, F , F 0(s), and F 1(s) be the nets defined by the following sets:

Gt =
{
x ∈ U : |f(x)| > th2(x)

}
, Ft =

{
x ∈ U : |(Tf)(x)| > th2(x)

}
, t > 0,

F 0
t (s) =

{
x ∈ U : |(T (fχGs

))(x)| > th2(x)
}
, t > 0, s > 0,

F 1
t (s) =

{
x ∈ U : |(T (f(1− χGs

)))(x)| > th2(x)
}
, t > 0, s > 0.

These nets coincide with the nets considered in Remark 5, where h(x) = h2(x). Therefore, the
condition of partial quasi-additivity of T for these nets implies inclusion (4.5).
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Using conditions (6.7), we obtain

‖1‖Mp0
1,∞(F 0(s),μ̃) = ‖1‖Mp0

1,∞(G(T (fχGs
)),μ̃) = sup

t>0
t−p0‖1‖L1(Gt(T (fχGs

)),μ̃)

= sup
t>0

t−p0μ̃
({

x ∈ U :
∣∣(T (fχGs(f)

))
(x)
∣∣ > t−1h2(x)

})

=

(
sup
t>0

t
(
μ̃
({

x ∈ U :
∣∣(T (fχGs(f)

))
(x)
∣∣ > th2(x)

}))1/p0
)p0

= ‖h−1
2 Tf‖Lp0,∞(U,μ̃)

≤ Mp0
0

∥∥fχGs(f)

∥∥p0
Lp0 (U,w0,μ)

= p0M
p0
0

∥∥χGs(f)

∥∥
M

p0
1,1(G,μ̃)

= p0M
p0
0 ‖1‖

M
p0
1,1(

qGs,μ̃)

and

‖1‖Mp1
1,∞(F 1(s),μ̃) = sup

t>0
t−p1μ̃

({
x ∈ U :

∣∣(T (1− fχGs(f)

))
(x)
∣∣ > t−1h2(x)

})

=

(
sup
t>0

t
(
μ̃
({

x ∈ U :
∣∣(T (1− fχGs(f)

))
(x)
∣∣ > th2(x)

}))1/p1
)p1

= ‖h−1
2 Tf‖Lp1,∞(U,μ̃)

≤ Mp1
1

∥∥f(1− χGs(f)

)∥∥p1
Lp1 (U,w1,μ)

= Mp1
1

∥∥1− χGs(f)

∥∥
M

p1
1,1(G(f),μ̃)

= p1M
p1
1

∞∫

0

t−p1
∥∥1− χGs(f)

∥∥
L1(Gt(f),μ̃)

dt

t
≤ p1M

p1
1

∞∫

s

t−p1‖1‖L1(Gt(f),μ̃)
dt

t

= p1M
p1
1 ‖1‖

M
p1
1,1(

̂Gs,μ̃)
.

Thus, all the hypotheses of Theorem 3 are satisfied. Hence, applying Theorem 3 combined with
Lemma 6, we obtain

‖Tf‖Lp(U,w
1−θ
0 wθ

1 ,μ)
≤ cAM

(1−η)p0/p
0 M

ηp1/p
1 ‖f‖Lp(U,w

1−θ
0 wθ

1 ,μ)
,

where η is such that p = (1 − η)p0 + ηp1. In view of (6.1), we have the equalities ηp1/p = θ and
(1− η)p0/p = 1− θ, so we arrive at inequality (6.8). �

Corollary 6. Let the parameters p0, p1, and θ, the functions w0, w1, h1, and h2, and the
measure μ̃ be the same as in Theorem 8.

Let T be the Urysohn integral operator defined as

(Tf)(y) =

∫

U

K(f(x), x, y) dμ.

If for some M0,M1 > 0 the inequalities

‖h−1
2 Tf‖Lpi,∞(U,μ̃) ≤ Mi‖f‖Lpi

(U,wi,μ) (6.9)

hold for all f ∈ Lpi(U,wi, μ), i = 0, 1, then the inequality

‖Tf‖Lp(U,w
1−θ
0 wθ

1 ,μ)
≤ cM1−θ

0 Mθ
1 ‖f‖Lp(U,w

1−θ
0 wθ

1,μ)
(6.10)

holds for all f ∈ Lp(U,w
1−θ
0 wθ

1, μ), where c > 0 depends only on p0, p1, and θ.
Proof. From condition (6.9) we have∫

U

K(0, x, y) dμ = 0

almost everywhere in V . Hence, the operator T is partially additive, which allows us to apply
Theorem 8. �
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7. CRITERION OF QUASIWEAK BOUNDEDNESS
OF THE URYSOHN INTEGRAL OPERATOR

Let (U, μ) and (V, ν) be spaces with measures μ and ν. We say that an operator T is of (p, q)
quasiweak type if it is bounded from Lp,1(U, μ) to Lq,∞(V, ν). If the operator T is bounded from
Lp,τ (U, μ) to Lq,τ (V, ν), then we say that it is of (p, q) strong type.

Let

(Tf)(y) =

∫

U

K(f(x), x, y) dμ, y ∈ V, (7.1)

be an Urysohn integral operator.
It follows from Corollary 5 that if the operator (7.1) is of (p0, q0) and (p1, q1) quasiweak type,

then it is of (p, q) strong type, where p and q are defined by (5.3) with θ ∈ (0, 1). Thus, deriving
weak-type estimates for these operators is of particular interest. In this section, we give necessary
and sufficient conditions for the operator (7.1) to be of (p, q) quasiweak type provided that certain
a priori assumptions on the kernel K hold. We need some lemmas.

Lemma 7. Let f : U → R be a μ-measurable function taking finitely many values,

f(x) =

n∑
k=1

λkχwk
(x),

where wk ⊂ U are μ-measurable sets of finite measure and λk ∈ R with |λ1| > |λ2| > . . . > |λn| > 0.
Then

‖f‖Lp,1(U,μ) = p
n∑

k=1

(|λk| − |λk+1|)
(
μ

(
k⋃

i=1

wi

))1/p

,

where λn+1 = 0.
Proof. Notice that the nonincreasing rearrangement f∗ of f has the form

f∗(t) =
n∑

k=1

|λk|χ[tk−1,tk)
(t),

where t0 = 0 and tk − tk−1 = μ(wk). Then, applying the Abel transformation, we obtain

‖f‖Lp,1(U,μ) =

n∑
k=1

|λk|
tk∫

tk−1

t1/p−1 dt =

n∑
k=1

(|λk| − |λk+1|)
tk∫

0

t1/p−1 dt

= p

n∑
k=1

(|λk| − |λk+1|)
(
μ

(
k⋃

i=1

wi

))1/p

. �

Lemma 8. Suppose that the measure μ satisfies the regularity condition (2.2) and the function
K : U → R is integrable on all μ-measurable subsets of U of finite measure. Then, for any set e of
positive finite measure, there exists a set w ⊂ e such that μ(w) ≥ μ(e)/3 and

∫

e

|K(x)| dμ ≤ 4

∣∣∣∣∣∣

∫

w

K(x) dμ

∣∣∣∣∣∣
. (7.2)

Proof. For an arbitrary set e such that 0 < μ(e) < ∞, define the sets

e+ :=
{
x ∈ e : K(x) ≥ 0

}
and e− :=

{
x ∈ e : K(x) < 0

}
.
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Then
∫

e

|K(x)| dμ =

∫

e+

K(x) dμ −
∫

e−

K(x) dμ ≤ 2max

⎧⎨
⎩
∫

e+

K(x) dμ,

∣∣∣∣∣∣

∫

e−

K(x) dμ

∣∣∣∣∣∣

⎫⎬
⎭ .

For definiteness, assume that
∫

e+

K(x) dμ ≥

∣∣∣∣∣∣

∫

e−

K(x) dμ

∣∣∣∣∣∣
.

Two cases are possible: either μ(e+) ≥ μ(e)/2 or μ(e+) < μ(e)/2. In the first case, w = e+.
In the second case, there exists an η ⊂ e− such that μ(η) ≥ μ(e−)/3 and

∣∣∣∣∣∣

∫

η

K(x) dμ

∣∣∣∣∣∣
≤ 1

2

∣∣∣∣∣∣

∫

e−

K(x) dμ

∣∣∣∣∣∣
.

Indeed, according to the regularity condition (2.2) with α = μ(e−)/3, there exists a set η′ ⊂ e−
such that μ(e−)/3 ≤ μ(η′) ≤ 2μ(e−)/3 and, hence, μ(e−)/3 ≤ μ(e− \ η′) ≤ 2μ(e−)/3. Since

∣∣∣∣∣∣

∫

e−

K(x) dμ

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∫

η′

K(x) dμ

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

∫

η′′

K(x) dμ

∣∣∣∣∣∣∣
for η′′ = e− \ η′, at least one of the terms on the right-hand side does not exceed half the left-hand
side. If this is the first term, then η = η′, and if the second, then η = η′′.

Set w = η ∪ e+; then μ(w) = μ(η) + μ(e) ≤ (μ(e−) + μ(e+))/3 = μ(e)/3 and
∣∣∣∣∣∣

∫

w

K(x) dμ

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∫

e+

K(x) dμ +

∫

η

K(x) dμ

∣∣∣∣∣∣
≥

∣∣∣∣∣∣

∫

e+

K(x) dμ

∣∣∣∣∣∣
−

∣∣∣∣∣∣

∫

η

K(x) dμ

∣∣∣∣∣∣
≥ 1

2

∣∣∣∣∣∣

∫

e+

K(x) dμ

∣∣∣∣∣∣
.

Thus, we have
∫

e

|K(x)| dμ ≤ 2

∣∣∣∣∣∣

∫

e+

K(x) dμ

∣∣∣∣∣∣
≤ 4

∣∣∣∣∣∣

∫

w

K(x) dμ

∣∣∣∣∣∣
. �

Theorem 9. Let 1 < p, q < ∞, (U, μ) and (V, ν) be spaces with measures μ and ν satisfying
the regularity condition (2.2), and K : R× U × V → R.

Suppose that the Urysohn operator (7.1) is continuous from Lp,τ (U, μ) to Lq,∞(V, ν) and, for
some B > 0 and for an arbitrary ν-measurable set e ⊂ V,

∣∣∣∣∣∣

∫

e

K(z, x, y) dν

∣∣∣∣∣∣
≤ B|z|

∣∣∣∣∣∣

∫

e

K(1, x, y) dν

∣∣∣∣∣∣
(7.3)

for a.e. x ∈ U and any z ∈ R.
Then, for any 0 < τ < 1,

‖T‖Lp,τ (U,μ)→Lq,∞(V,ν) 	 ‖T‖Lp,1(U,μ)→Lq,∞(V,ν)

	 sup
ν(e)>0, μ(w)>0

1

(ν(e))1/q′ (μ(w))1/p

∣∣∣∣∣∣

∫

e

∫

w

K(1, x, y) dμ dν

∣∣∣∣∣∣
≡ Fp,q(K).
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Proof. Since 0 < τ < 1 and so Lp,τ (U, μ) ↪→ Lp,1(U, μ), we have

‖T‖Lp,τ (U,μ)→Lq,∞(V,ν) � ‖T‖Lp,1(U,μ)→Lq,∞(V,ν).

Suppose that the operator T : Lp,τ (U, μ) → Lq,∞(V, ν) is bounded. Let e ⊂ V and w ⊂ U be,
respectively, ν- and μ-measurable sets such that 0 < ν(e), μ(w) < ∞. Then

1

(ν(e))1/q′

∣∣∣∣∣∣

∫

e

(Tf)(y) dν

∣∣∣∣∣∣
≤ 1

(ν(e))1/q′

ν(e)∫

0

(Tf)∗(t) dt ≤ q′‖Tf‖Lq,∞

≤ q′‖T‖Lp,τ (U,μ)→Lq,∞(V,ν)‖f‖Lp,τ .

Let f(x) = χw(x). Taking into account that ‖χw(x)‖Lp,τ 	 (μ(w))1/p, we have

‖T‖Lp,τ (U,μ)→Lq,∞(V,ν) ≥
1

(ν(e))1/q
′
(μ(w))1/p

∣∣∣∣∣∣

∫

e

∫

U

K(χw(x), x, y) dμ dν

∣∣∣∣∣∣
.

It follows from (7.3) that
∫

U

∫

e

K(χw(x), x, y) dν dμ =

∫

w

∫

e

K(1, x, y) dν dμ+

∫

U\w

∫

e

K(0, x, y) dν dμ =

∫

w

∫

e

K(1, x, y) dν dμ.

Thus, since the choice of the sets e and w is arbitrary, we obtain

Fp,q(K) � ‖T‖Lp,τ (U,μ)→Lq,∞(V,ν) � ‖T‖Lp,1(U,μ)→Lq,∞(V,ν).

It remains to show that
‖T‖Lp,1(U,μ)→Lq,∞(V,ν) � Fp,q(K).

Let f be an arbitrary function satisfying the hypotheses of Lemma 7:

f(x) =
n∑

k=1

λkχwk
(x).

In view of condition (7.3), for an arbitrary ν-measurable set e we have
∣∣∣∣∣∣

∫

e

(Tf)(y) dν

∣∣∣∣∣∣
≤ B

n∑
k=1

|λk|
∫

wk

∣∣∣∣∣∣

∫

e

K(χwk
, x, y) dν

∣∣∣∣∣∣
dμ.

Let us apply Lemma 7:
∣∣∣∣∣∣

∫

e

(Tf)(y) dν

∣∣∣∣∣∣
�

n∑
k=1

(|λk| − |λk+1|)
∫

⋃k
i=1 wi

∣∣∣∣∣∣

∫

e

K(1, x, y) dν

∣∣∣∣∣∣
dμ

≤ F̃p,q(K)(ν(e))1/q
′

n∑
k=1

(|λk| − |λk+1|)
(
μ

(
k⋃

i=1

wi

))1/p
= p−1F̃p,q(K)(ν(e))1/q

′‖f‖Lp,1 , (7.4)

where λn+1 = 0 and

F̃p,q(K) = sup
ν(e)>0, μ(w)>0

1

(ν(e))1/q′(μ(w))1/p

∫

w

∣∣∣∣∣∣

∫

e

K(1, x, y) dν

∣∣∣∣∣∣
dμ.
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It follows from Lemma 8 that F̃p,q(K) 	 Fp,q(K). According to [15, Lemma 1] (see also [20]),
we have

‖Tf‖Lq,∞ 	 sup
ν(e)>0

1

(ν(e))1/q′

∣∣∣∣∣∣

∫

e

(Tf)(y) dν

∣∣∣∣∣∣
.

Thus, from (7.4) we obtain
‖Tf‖Lq,∞ ≤ Fp,q(K)‖f‖Lp,1 .

The functions satisfying the hypotheses of Lemma 7 form a dense set in the space Lp,1(U, μ).
Due to the continuity of the operator T : Lp,1(U, μ) → Lq,∞(V, ν), inequality (7.4) remains valid for
any function f ∈ Lp,1(U, μ); i.e.,

‖T‖Lp,1→Lq,∞ � Fp,q(K). �

Remark 9. In the case when T is a linear integral operator

(Tf)(y) =

∫

U

K(x, y)f(x) dμ,

the statement of Theorem 9 follows from the results of [15, 20], which, in particular, include nec-
essary and sufficient conditions for the quasiweak boundedness of linear integral operators in net
spaces.
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