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Abstract—A problem of pursuing a group of evaders by a group of pursuers with equal
capabilities of all the participants is considered in a finite-dimensional Euclidean space. The
system is described by the equation

D(α)zij = azij + ui − vj , ui, vj ∈ V,

whereD(α)f is the Caputo fractional derivative of order α of the function f , the set of admissible
controls V is strictly convex and compact, and a is a real number. The aim of the group of
pursuers is to capture at least q evaders; each evader must be captured by at least r different
pursuers, and the capture moments may be different. The terminal set is the origin. Assuming
that the evaders use program strategies and each pursuer captures at most one evader, we obtain
sufficient conditions for the solvability of the pursuit problem in terms of the initial positions.
Using the method of resolving functions as a basic research tool, we derive sufficient conditions
for the solvability of the approach problem with one evader at some guaranteed instant. Hall’s
theorem on a system of distinct representatives is used in the proof of the main theorem.

Keywords: differential game, group pursuit, multiple capture, pursuer, evader, fractional
derivative.
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INTRODUCTION

An important direction in the modern theory of differential games is associated with the devel-

opment of solution methods for game problems of pursuit and evasion with several objects [1–4]. In

this area, not only are the classical solution methods deepened, but also new problems are sought to

which the existing methods are applicable. In particular, in [5,6], problems of pursuing two objects

described by equations with fractional derivatives were considered and sufficient conditions of a

capture were obtained. Recently, Gomoyunov [7] proved the existence of the value of a nonlinear

differential game with fractional derivatives.

We consider a linear problem of pursuing a group of evaders by a group of pursuers provided

that all the participants have equal capabilities. The problem of simple pursuit of a single evader

by a group of pursuers was considered by Pshenichnyi [8], who obtained necessary and sufficient
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S106 PETROV, NARMANOV

conditions of a capture. A multiple capture of an evader in a simple group pursuit problem was

studied by Grigorenko in [9]. The problem of capturing a given number of evaders in a simple

pursuit problem under the conditions that the set of admissible controls is a unit ball centered

at zero, the terminal sets are the origins, the evaders use program strategies, and each pursuer

captures at most one evader, is presented in [10], where necessary and sufficient conditions for the

solvability of the pursuit problem were obtained. The general case of the problem of capturing a

given number of evaders in the case of simple pursuit was considered in [11]. The problem on a

multiple capture of an evader in Pontryagin’s example was presented in [12–14]. A multiple capture

in linear differential games was studied in [15]. The problem on a multiple capture of an evader in

a differential game with fractional derivatives was investigated in [16] (where a more detailed list

of references on these problems is also presented). Sufficient conditions for the capture of a given

number of evaders in Pontryagin’s stationary example and linear recurrent differential games were

obtained in [17,18].

In the present paper, the problems of multiple capture and capture of a given number of evaders,

which were earlier considered separately, are combined into one problem. The aim of the group of

pursuers is to capture at least q evaders, and each evader must be captured by at least r pursuers.

Under the assumptions that the evaders use program strategies and each of the pursuers captures

at most one evader, sufficient conditions for the solvability of the pursuit problem are obtained.

Note that, in the case of simple motion, the problem in this statement was studied in [19].

1. PROBLEM STATEMENT

Definition 1 [20]. Suppose that p is a positive integer, α ∈ (p − 1, p), and a function f :

[0,∞) → R
k is such that f (p) is absolutely continuous on [0,∞). The Caputo derivative of f of

order α is the function

(
D(α)f

)
(t) =

1

Γ(p− α)

t∫

0

f (p)(s)

(t− s)α+1−p
ds, where Γ(β) =

∞∫

0

e−ssβ−1 ds.

In the space R
k (k ≥ 2), we consider an (n + m)-person differential game G(n,m) with n

pursuers P1, . . . , Pn and m evaders E1, . . . , Em. Each of the pursuers Pi moves according to a law

D(α)xi = axi + ui, xi(0) = x0i , . . . , x
(p−1)
i (0) = xp−1

i , ui ∈ V. (1.1)

The motion law of each evader Ej has the form

D(α)yj = ayj + vj , yj(0) = y0j , . . . , y
(p−1)
j (0) = yp−1

j , v ∈ V. (1.2)

Here xi, yj, ui, vj ∈ R
k, V is a strictly convex compact subset of Rk, a ∈ R

1, i ∈ I = {1, . . . , n},
and j ∈ {1, . . . ,m}. In addition, x0i �= y0j for all i and j.

Instead of systems (1.1) and (1.2), we consider the system

D(α)zij = azij + ui − vj, ui, vj ∈ V, (1.3)

with the initial conditions

zij(0) = z0ij = x0i − y0j , . . . , z
(p−1)
ij (0) = zp−1

ij = xp−1
i − yp−1

j . (1.4)
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MULTIPLE CAPTURE OF EVADERS S107

Here the solution of system (1.3), (1.4) is understood in the standard way (see, e.g., [21, Sect. 3]).

The aim of the group of pursuers is to capture at least q evaders so that each evader is captured

by at least r pursuers (r ≥ 1 and 1 ≤ q ≤ m) provided that first the evaders choose their controls on

the whole semiaxis [0,∞) and then the pursuers, using the information on the choice of the evaders,

choose their controls; in addition, each pursuer can capture at most one evader. We assume that

n ≥ rq and m ≥ q.

Denote by z0 = {z0ij , . . . , z
p−1
ij , i ∈ I, j ∈ J} the vector of initial positions, and let zp−1

ij �= 0 for

all i and j.

A measurable function v : [0,∞) → R
k is called admissible if v(t) ∈ V for all t ≥ 0.

Definition 2. An r-multiple capture (capture for r = 1) of an evader Eβ occurs in the game

G(n,m) if there exists an instant T > 0 such that, for any admissible control vβ(t), t ∈ [0,∞),

of the evader Eβ , there exist admissible controls ui(t) (i ∈ I) of the pursuers Pi (i ∈ I), instants

τ1, . . . , τr ∈ [0, T ], and pairwise different positive integers i1, . . . , ir ∈ I such that zisβ(τs) = 0 for

all s = 1, . . . , r, where zisβ(t) are the solutions of system (1.3), (1.4).

Definition 3. An r-multiple capture (capture for r = 1) of at least q evaders occurs in the

game G(n,m) if there exists T > 0 such that, for any set of admissible controls vj(t), t ∈ [0,∞),

of the evaders Ej , j ∈ J , there exist admissible controls ui(t) = ui(t, z
0
ij , vj(s), s ∈ [0,∞), j ∈ J) of

the pursuers Pi, i ∈ I, that possess the following property: there exist sets

M ⊂ J, |M | = q, {Nl, l ∈ M}, Nl ⊂ I, |Nl| = r for all l ∈ M, Nl ∩Ns = ∅ for all l �= s,

such that the group of pursuers {Pl, l ∈ Nβ} performs the r-multiple capture of the evader Eβ

not later than the instant T ; if a pursuer Pl captures an evader Eβ, then all the other evaders are

considered not caught by Pl.

Introduce the following notation. For a finite set K of positive integers, define

ΩK(s) = {(i1, . . . , is) | i1, . . . , is ∈ K are pairwise different}, Dε(a) = {z ∈ R
k | ‖z − a‖ < ε},

λ(h, v) = sup{λ ≥ 0 | − λh ∈ V − v}, ξij(t) =

p−1∑
l=0

zlij
Γ(l + 1)

tl, ξ1ij(t) = t1−pξij(t).

2. MULTIPLE CAPTURE OF ONE EVADER FOR a = 0

In this section, we take m = 1. Therefore, the second index can be omitted.

Lemma 1. Suppose that V is a strictly convex compact set, b1, . . . , bn ∈ R
k, bi �= 0 for all

i ∈ I, and

min
v∈V

max
Λ∈ΩI (r)

min
i∈Λ

λ(bi, v) > 0.

Then there exists ε > 0 such that, for any z1, . . . , zn ∈ R
k such that zi ∈ Dε(bi) for i ∈ I, the

following inequality holds: min
v∈V

max
Λ∈ΩI(r)

min
i∈Λ

λ(zi, v) > 0.

Proof. It follows from [2, Lemma 1.3.13] that the function λ(b, v) is continuous on the set

B×V , where B is an arbitrary compact subset of Rk not containing zero. Therefore, the functions

gΛ(z1, . . . , zn, v) = min
α∈Λ

λ(zα, v), g(z1, . . . , zn, v) = max
Λ∈ΩI(r)

gΛ(z1, . . . , zn, v),

f(z1, . . . , zn) = min
v∈V

g(z1, . . . , zn, v)
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are continuous. The continuity of f implies the assertion of the lemma. The lemma is proved.

Corollary. Let {zp−1
l : l ∈ I} be such that

δ0 = min
v∈V

max
Λ∈ΩI(r)

min
l∈Λ

λ
(
zp−1
l /Γ(p), v

)
> 0. (2.1)

Then there exists T0 > 0 such that the following inequality holds for all t > T0:

min
v∈V

max
Λ∈ΩI (r)

min
l∈Λ

λ
(
ξ1l (t), v

)
≥ 0.5 δ0. (2.2)

Proof. This inequality follows from Lemma 1 and the condition lim
t→+∞

ξ1i (t) = zp−1
i /Γ(p).

Lemma 2. Let a = 0 and δ0 > 0, where δ0 is introduced in (2.1). Then there exists T1 > 0

such that, for any measurable function v(·) with values v(t) ∈ V, there exists a set Λ ∈ ΩI(r) such

that the following inequality holds for all l ∈ Λ:

T 1−p
1

T1∫

0

(T1 − s)α−1

Γ(α)
λ(ξ1l (T1), v(s))ds ≥ 1.

Proof. It follows from the corollary that there exists T0 > 0 such that inequality (2.2) holds

for all t > T0. Let T > T0. We consider the functions (for t ∈ [0, T ])

hl(t, T, v(·)) = t1−p

t∫

0

(t− s)α−1

Γ(α)
λ(ξ1l (T ), v(s)) ds.

Then

max
Λ∈ΩI(r)

min
l∈Λ

hl(t, T, v(·)) ≥ max
Λ∈ΩI(r)

t1−p

t∫

0

(t− s)α−1

Γ(α)
min
l∈Λ

λ(ξ1l (T ), v(s))ds. (2.3)

For any nonnegative numbers {aΛ}Λ∈ΩI (r), we have

max
Λ∈ΩI(r)

aΛ ≥ 1

Cr
n

∑
Λ∈ΩI(r)

aΛ.

Hence, (2.3) implies the inequality
(
for t ∈ [0, T ]

)

max
Λ∈ΩI (r)

min
l∈Λ

hl(t, T, v(·)) ≥
t1−p

Cr
n

t∫

0

(t− s)α−1

Γ(α)

∑
Λ∈ΩI(r)

min
l∈Λ

λ(ξ1l (T ), v(s)) ds

≥ t1−p

Cr
n

t∫

0

(t− s)α−1

Γ(α)
max

Λ∈ΩI(r)
min
l∈Λ

λ(ξ1l (T ), v(s)) ds ≥ t1−pδ0
2Cr

nΓ(α)

t∫

0

(t− s)α−1 ds =
tα−p+1δ0
2αCr

nΓ(α)
.

Consequently,

max
Λ∈ΩI(r)

min
l∈Λ

hl(T, T, v(·)) ≥
Tα−p+1δ0
2αCr

nΓ(α)
.

Since α− p+ 1 > 0, the lemma is proved.
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Define the number

T̂ = inf

{
t
∣∣ inf
v(·)

max
Λ∈ΩI(r)

min
l∈Λ

t1−p

t∫

0

(t− s)α−1

Γ(α)
λ(ξ1l (t), v(s)) ds ≥ 1

}
.

By Lemma 2, we have T̂ < ∞.

Theorem 1. Let a = 0 and δ0 > 0, where δ0 is defined in (2.1). Then an r-multiple capture

occurs in the game G(n, 1).

Proof. Let v(s), s ∈ [0, T̂ ], be an arbitrary control of the evader. Consider the function

H(t) = 1− max
Λ∈ΩI(r)

min
l∈Λ

T̂ 1−p

t∫

0

(T̂ − s)α−1

Γ(α)
λ(ξ1l (T̂ ), v(s)) ds.

Denote by T0 > 0 the first root of this function. Note that T0 exists by Lemma 2 and the definition

of T̂ . In addition, there exists a set Λ0 ∈ ΩI(r) such that, for all j ∈ Λ0,

1− T̂ 1−p

T0∫

0

(T̂ − s)α−1

Γ(α)
λ(ξ1j (T̂ ), v(s)) ds ≤ 0.

Therefore, there exist instants τj ≤ T0, j ∈ Λ0, for which

1− T̂ 1−p

τj∫

0

(T̂ − s)α−1

Γ(α)
λ(ξ1j (T̂ ), v(s)) ds = 0. (2.4)

For j /∈ Λ0, denote by τj the instants at which condition (2.4) holds, if such instants exist. Let the

controls of the pursuers Pi, i ∈ I, be given by the formula

ui(s) =

⎧
⎨
⎩
v(s)− λ(ξ1i (T̂ ), v(s))ξ

1
i (T̂ ), s ∈ [0,min{τi, T̂ }],

v(s), s ∈ [min{τi, T̂}, T̂ ].

Then the solution of the Cauchy problem (1.3), (1.4) can be presented in the form [21, formula (19)]

zi(t) = ξi(t) +

t∫

0

(t− s)α−1

Γ(α)
(ui(s)− v(s)) ds.

Hence,

T̂ 1−pzi(T̂ ) = ξ1i (T̂ ) + T̂ 1−p

T̂∫

0

(T̂ − s)α−1

Γ(α)
(ui(s)− v(s)) ds

= ξ1i (T̂ )− T̂ 1−p

T̂∫

0

(T̂ − s)α−1

Γ(α)
λ(ξ1i (T̂ ), v(s))ξ

1
i (T̂ ) ds
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= ξ1i (T̂ )
(
1− T̂ 1−p

τi∫

0

(T̂ − s)α−1

Γ(α)
λ(ξ1i (T̂ ), v(s)) ds

)
= 0

for all i ∈ Λ0. Consequently, zi(T̂ ) = 0 for all i ∈ Λ0. The theorem is proved.

In what follows, let IntA and coA be the interior and the convex hull of the set A, respectively.

Lemma 3 [3, Assertion 1.3]. Let V be a strictly convex compact set with smooth boundary,

and let

0 ∈
⋂

Λ∈ΩI(n−r+1)

Int co {zp−1
j , j ∈ Λ}. (2.5)

Then δ0 > 0 (see (2.1)).

Theorem 2. Suppose that a = 0, V is a strictly convex compact set with smooth boundary,

and condition (2.5) holds. Then an r-multiple capture occurs in the game G(n, 1).

Proof. The validity of this theorem follows from Lemma 3 and Theorem 1.

3. MULTIPLE CAPTURE OF THE EVADERS FOR a < 0

Define the generalized Mittag-Leffler function [22, p. 117]

Eρ(z, μ) =

∞∑
l=0

zl

Γ(lρ−1 + μ)

and the number

δ1 = min
v∈V

max
Λ∈ΩI(r)

min
l∈Λ

λ(z0l , v). (3.1)

Lemma 4. Suppose that a < 0, α ∈ (0, 1), and δ1 > 0, where δ1 is introduced in (3.1). Then

there exists T1 > 0 such that, for any function v(·) with values v(t) ∈ V, there exists a set Λ ∈ ΩI(r)

such that the following inequality holds for all l ∈ Λ:

E1/α(aT
α
1 , 1) −

T1∫

0

(T1 − s)α−1E1/α(a(T1 − s)α−1, α)λ(z0l , v(s)) ds ≤ 0.

Proof. Consider the functions

hl(t, v(·)) = E1/α(at
α, 1) −

t∫

0

(t− s)α−1E1/α(a(t− s)α−1, α)λ(z0l , v(s)) ds.

Then

H(t, v(·)) = min
Λ∈ΩI (r)

max
l∈Λ

hl(t, v(·))

= E1/α(at
α, 1) − max

Λ∈ΩI(r)
min
l∈Λ

t∫

0

(t− s)α−1E1/α(a(t− s)α−1, α)λ(z0l , v(s)) ds.
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Since α ∈ (0, 1), it follows from [23, Theorem 4.1.1] that E1/α(z, μ) has no negative roots for

μ ∈ [α,+∞). In addition, E1/α(z, μ) ≥ 0 for all z ≥ 0 and μ ≥ 0. Hence, E1/α(z, μ) ≥ 0 for all

z ∈ R
1 and μ ∈ [α,+∞). Therefore,

max
Λ∈ΩI(r)

min
l∈Λ

t∫

0

(t− s)α−1E1/α(a(t− s)α−1, α)λ(z0l , v(s)) ds

≥ max
Λ∈ΩI(r)

t∫

0

(t− s)α−1E1/α(a(t− s)α−1, α)min
l∈Λ

λ(z0l , v(s)) ds

≥ 1

Cr
n

t∫

0

(t− s)α−1E1/α(a(t− s)α−1, α)
∑

Λ∈ΩI (r)

min
l∈Λ

λ(z0l , v(s)) ds

≥ 1

Cr
n

t∫

0

(t− s)α−1E1/α(a(t− s)α−1, α) max
Λ∈ΩI (r)

min
l∈Λ

λ(z0l , v(s)) ds

≥ δ1
Cr
n

t∫

0

(t− s)α−1E1/α(a(t− s)α−1, α) ds.

According to [22, Ch. 3, formula (1.15)],

t∫

0

(t− s)α−1E1/α(a(t− s)α−1, α) ds = tαE1/α(at
α, α+ 1).

Hence,

min
Λ∈ΩI(r)

max
l∈Λ

hl(t, v(·)) ≤ E1/α(at
α, 1) − δ1

Cr
n

tαE1/α(at
α, α+ 1) = H0(t).

Since a < 0, the following asymptotic bounds [23, formula (1.2.4)] hold as t → +∞:

E1/α(at
α, 1) = − 1

atαΓ(1− α)
+O

( 1

t2α

)
, E1/α(at

α, α+ 1) = − 1

atα
+O

( 1

t2α

)
,

where O(g) as t → +∞ is understood as a specific function G such that the function G/g is bounded

on (A,+∞) for some A > 0. Consequently,

H0(t) = − 1

atαΓ(1− α)
+

δ1
aCr

n

+O
( 1

tα

)
.

Since lim
t→+∞

H0(t) = δ1/aC
r
n < 0, there exists an instant T1 > 0 such that H0(T1) < 0. Therefore,

H(T1, v(·)) < 0. We have hl(0, v(·)) = 1 for all l and min
Λ∈ΩI(r)

max
l∈Λ

hl(T1, v(·)) < 0 for any

function v(·). The lemma is proved.

Define the number

T̂ = inf
{
t > 0 | inf

v(·)
min

Λ∈ΩI(r)
max
l∈Λ

hl(t, v(·)) ≤ 0
}
.
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By Lemma 4, we have T̂ < +∞.

Theorem 3. Suppose that a < 0, α ∈ (0, 1), and δ1 > 0, where δ1 is defined in (3.1). Then

an r-multiple capture occurs in the game G(n, 1).

Proof. Let v(·) be an arbitrary admissible control of the evader E. Consider the function

H(t) = E1/α(aT̂
α, 1) − max

Λ∈ΩI(r)
min
l∈Λ

t∫

0

(T̂ − s)α−1E1/α(a(T̂ − s)α−1, α)λ(z0l , v(s)) ds

and denote by T0 its first root. Note that T0 exists due to Lemma 4 and the definition of T̂ . In

addition, there exists a set Λ0 ∈ ΩI(r) such that, for all l ∈ Λ0,

E1/α(aT̂
α, 1)−

T0∫

0

(T̂ − s)α−1E1/α(a(T̂ − s)α−1, α)λ(z0l , v(s)) ds ≤ 0.

Therefore, there exist instants τl ≤ T0, l ∈ Λ0, for which

E1/α(aT̂
α, 1)−

τl∫

0

(T̂ − s)α−1E1/α(a(T̂ − s)α−1, α)λ(z0l , v(s)) ds = 0. (3.2)

For l /∈ Λ0, denote by τj the instants for which condition (3.2) holds, if such instants exist. Let the

controls of the pursuers Pi, i ∈ I, be given by the formula

ui(s) =

⎧
⎨
⎩
v(s)− λ(z0i , v(s))z

0
i , s ∈ [0,min{τi, T̂ }],

v(s), s ∈ (min{τi, T̂}, T̂ ].

The solution of the Cauchy problem (1.3), (1.4) can be presented in the form [21, formula (19)]

zi(t) = E1/α(at
α, 1)z0i −

t∫

0

(t− s)α−1E1/α(a(t− s)α−1, α)(ui(s)− v(s)) ds.

Hence, using (3.2), we obtain

zi(T̂ ) = E1/α(aT̂
α, 1)z0i −

T̂∫

0

(T̂ − s)α−1E1/α(a(T̂ − s)α−1, α)(ui(s)− v(s)) ds

= z0i

(
E1/α(aT̂

α, 1)−
τi∫

0

(T̂ − s)α−1E1/α(a(T̂ − s)α−1, α)λ(z0i , v(s))
)
ds = 0

for all i ∈ Λ0. The theorem is proved.

Theorem 4 [16, Theorem 1]. Suppose that a < 0, α ∈ (1, 2), and

min
{
min
v∈V

max
Λ∈ΩI(r)

min
l∈Λ

λ(z1l , v), min
v∈V

max
Λ∈ΩI (r)

min
l∈Λ

λ(−z1l , v)
}
> 0.

Then an r-multiple capture occurs in the game G(n, 1).
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4. MULTIPLE CAPTURE OF A GIVEN NUMBER OF EVADERS

Conjecture 1. For each s ∈ {0, . . . , q − 1}, the following condition is satisfied : for any set

N ⊂ I, |N | = n− sr, there exists a set M ⊂ J such that |M | = q − s and

δN (β) = min
v∈V

max
Λ∈ΩN (r)

min
l∈Λ

λ
(zp−1

lβ

Γ(p)
, v
)
> 0

for all β ∈ M .

Theorem 5. Suppose that a = 0 and Conjecture 1 holds. Then an r-multiple capture of at

least q evaders occurs in the game G(n,m).

Proof. Let the assumptions of the theorem hold. Let us prove that any n − sr pursuers

perform an r-multiple capture of at least q − s evaders, where s ∈ {0, . . . , q − 1}. For s = 0, we

obtain the assertion of the theorem. The further proof is by induction. Let s = q − 1, N ⊂ I, and

|N | = n − (q − 1)r. By the assumptions of the theorem, there exists β ∈ J such that δN (β) > 0.

It follows from Theorem 1 that the pursuers Pl for l ∈ N perform an r-multiple capture of the

evader Eβ.

Assume that the statement is proved for all s ≥ p + 1. Let us prove the statement for s = p.

Let N ⊂ I and |N | = n− pr. Then there exists a set M ⊂ J such that |M | = q − p and δN (β) > 0

for all β ∈ M .

Let vj(t), t ∈ [0,∞), be the controls of the evaders Ej, j ∈ J . For each β ∈ M , define the set

Jβ =
{
l ∈ N

∣∣ pursuer Pl captures evader Eβ

}
.

By Theorem 1 and the assumptions of this theorem, the inequality |Jβ | ≥ r holds for all β ∈ M .

We can assume that M = {1, . . . , q − p}. Two cases are possible.

1.
∣∣∣

l⋃
β=1

Jβ

∣∣∣ ≥ lr for all l = 1, . . . , q − p. Then, by the Hall theorem [24, Theorem 5.1.1], there

exists a system of distinct representatives for the sets {Jβ , β ∈ M}; i.e., there exist sets J ′
β , β ∈ M ,

for which

J ′
β ⊂ Jβ, |J ′

β | = r for all β ∈ M, J ′
β1

∩ J ′
β2

= ∅ for all β1 �= β2.

Consequently, each group of pursuers Pl (l ∈ J ′
β) performs an r-multiple capture of the evader Eβ

for all β ∈ M . Therefore, the group of pursuers Pl (l ∈ N) performs an r-multiple capture of at

least q − p evaders.

2. There exists l ∈ {1, . . . , q − p} for which
∣∣∣

l⋃
β=1

∣∣∣ < lr. Let l0 be the smallest positive integer

satisfying this inequality. Note that l0 > 1 and
∣∣∣
n1⋃
β=1

∣∣∣ ≥ n1r for all n1 ∈ {1, . . . , l0 − 1}. Therefore,

for the sets Jβ , β = 1, . . . , l0 − 1, there exists a system J ′
β of distinct representatives such that

J ′
β ⊂ Jβ, |J ′

β | = r for all β = 1, . . . , l − 1, J ′
β1

∩ J ′
β2

= ∅ for all β1 �= β2.

Consequently, each group of pursuers J ′
β performs an r-multiple capture of the evader Eβ. There-

fore, the pursuers
l0−1⋃
β=1

J ′
β perform an r-multiple capture of l0 − 1 evaders. In what follows, we can

assume that J ′
β = Jβ for all β = 1, . . . , l0 − 1.
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Let s0 = p + l0 − 1. In this case, s0 > p and s0 ≤ p + q − p − 1 = q − 1. Consider the set

N1 = N \
l0−1⋃
β=1

J ′
β . For this set, |N1| = n − pr − (l0 − 1)r = n − s0r. By the assumptions of the

theorem, there exists a set M1 such that M1 ⊂ J , |M1| = q − s0, and δN1(β) > 0 for all β ∈ M1.

Note that {1, . . . , l0 − 1} ∩M1 = ∅; otherwise, if β belongs to this intersection, then there exists

an index l ∈ N1 for which Pl captures the evader Eβ, where β ∈ {1, . . . , l0 − 1}, which contradicts

the construction of the set N1. By the induction assumption, the group of pursuers Pl (l ∈ N1)

performs an r-multiple capture of at least q − s0 evaders. Consequently, the pursuers Pl (l ∈ N)

perform an r-multiple capture of at least q− s0 + l0 − 1 = q− p evaders. This completes the proof.

Theorem 6. Suppose that a = 0, V is a strictly convex compact set with smooth boundary,

and the following condition holds for each s ∈ {0, . . . , q−1}: for any set N ⊂ I, |N | = n−sr, there

exists a set M ⊂ J such that |M | = q − s and

0 ∈
⋂

Λ∈ΩN (n−r+1)

Int co
{
zp−1
lβ , l ∈ Λ

}
for all β ∈ M.

Then an r-multiple capture of at least q evaders occurs in the game G(n,m).

Proof. The validity of this theorem follows from Lemma 3 and Theorem 5.

Theorem 7. Suppose that a < 0, α ∈ (0, 1), and Conjecture 1 holds. Then an r-multiple

capture of at least q evaders occurs in the game G(n,m).

Proof. The theorem is proved similarly to Theorem 5 with the use of Theorem 3.

Theorem 8. Suppose that a < 0, α ∈ (1, 2), and the following condition holds for each value

s ∈ {0, . . . , q − 1}: for any set N ⊂ I with |N | = n − sr, there exists a set M ⊂ J such that

|M | = q − s and, for all β ∈ M,

δN (β) = min
{
min
v∈V

max
Λ∈ΩN (r)

min
l∈Λ

λ(z1lβ , v),min
v∈V

max
Λ∈ΩN (r)

min
l∈Λ

λ(−z1lβ , v)
}
> 0.

Then an r-multiple capture of at least q evaders occurs in the game G(n,m).

Proof. The theorem is proved similarly to Theorem 5 with the use of Theorem 4.
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