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Abstract—The study of reachable sets of controlled objects is an important research area
in optimal control theory. Such sets describe in a rough form the dynamical possibilities of
the objects, which is important for theory and applications. Many optimization problems for
controlled objects use the reachable set D(T ) in their statements. In the study of properties
of controlled objects, it is useful to have some constructive estimates of D(T ) from above with
respect to inclusion. In particular, such estimates are helpful for the approximate calculation of
D(T ) by the pixel method. In this paper, we consider two nonlinear models of direct regulation
known in the theory of absolute stability with a control term added to the right-hand side of
the corresponding system of differential equations. To obtain the required upper estimates with
respect to inclusion, we use Lyapunov functions from the theory of absolute stability. Note that
the upper estimates for D(T ) are obtained in the form of balls in the phase space centered at
the origin.
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INTRODUCTION

The problem of estimating the reachable sets D(T ) of controlled objects from above with

respect to inclusion is of certain interest for mathematical control theory and its applications.

Such estimates are useful in the analysis of dynamic possibilities of controlled objects and in the

approximate calculation of D(T ) by the pixel method.

In this paper we consider two nonlinear control systems of general form connected with classical

models of the theory of absolute stability of direct regulation (see [1, 2]).

The first system (case 1 below) contains one nonlinearity, and the second system (case 2)

contains m nonlinearities, m ≥ 2. We estimate from above with respect to inclusion the reachable

set D(T ) (see, for example, [3,4]) using the techniques of Lyapunov functions, which first appeared

in motion stability theory (see, for example, [2, 5, 6] and many other papers). Note that the

techniques of Lyapunov functions were used in earlier papers (see, for example, [6]) not only for

traditional problems of motion stability theory but also for other qualitative problems of the theory

of differential equations.

1. Consider the nonlinear control system

ẋ = Ax+ bϕ(σ(x)) +Mu, (1)
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where x ∈ R
n (n ≥ 1), b ∈ R

n, A is an n × n matrix, M is an n × r matrix (r ≥ 1), ϕ(σ) is a

continuously differentiable scalar function of a variable σ ∈ R
1,

σ(x) = 〈c, x〉 (2)

for c ∈ R
n, and u is a control vector from a compact set U ⊂ R

r. We agree to denote by R
k

(k ≥ 1) the arithmetic Euclidean space whose elements are ordered columns of k numbers with the

standard scalar product 〈·, ·〉. For a vector y ∈ R
k, we denote by |y| the standard length of y.

Note that, setting in (1) u = 0, we obtain the known model of direct regulation, which has long

been studied in the theory of absolute stability of motion (see [1,2]). Thus, the controlled object (1)

can be considered as a controlled variant of the known uncontrolled system of direct regulation.

Fix the initial vector of the control system (1)

x(0) = x0. (3)

For t ≥ 0 consider the set U of all Lebesgue measurable functions u(t) satisfying the condition

u(t) ∈ U, t ≥ 0. (4)

Fix a control ũ(·) ∈ U , substitute it into the system of differential equations (1), and solve the

system under the initial condition (3) for t ≥ 0 in the class of locally absolutely continuous functions.

According to [7, pp. 66, 67, Russian transl.], the corresponding unique locally absolutely continuous

solution x̃(t) = x(t, ũ(·)) is defined on some half-open interval [0, τ(ũ(·))) maximal with respect to

inclusion, where τ(ũ(·)) is either a finite positive number or +∞. Fix T > 0. If τ(ũ(·)) > T ,

then the vector x(T, ũ(·)) is defined. If τ(ũ(·)) ≤ T , then the vector x(T, ũ(·)) is not defined, since
in this case we can prove by contradiction the existence of a numerical sequence ti ∈ (0, τ(ũ(·))),
i = 1, 2, . . ., such that ti → τ(ũ(·)) and |x(ti, ũ(·))| → +∞ as i → +∞. For T > 0 we define the

reachable set D(T ) of the controlled object (1)–(4) by the formula

D(T ) = {x(T, ũ(·))} , (5)

where the union of is taken only over ũ(·) for which τ(ũ(·)) > T . Note that, in the general case,

the set D(T ) can be empty for specific T > 0.

Our goal is to derive upper estimates with respect to inclusion for the reachable set D(T ) of the

controlled object (1)–(4). Among the related earlier results, we mention the results of [3, 4]. Note

that functions v(x) of Lyapunov type have been useful in this area. The main requirement on the

scalar functions v(x) is their continuous differentiability on R
n. The functions must be differentiable

along the motions of the control system. That is why we call these functions Lyapunov functions

regardless of the fulfilment of other properties of Lyapunov functions from motion stability theory

(see, for example, [2, 5, 6] and other papers).

Consider the function (see (1), (2))

v(x) =
|x|2
2

+

σ(x)∫

0

ϕ(r) dr, (6)

which will be used in what follows. Such functions are employed in the theory of absolute stability

(see, for example, [1, 2]). We will require the fulfilment of the following inequality:

ϕ(r)r ≥ 0 ∀r ∈ R
1. (7)
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This inequality implies that the integral term in (6) is a nonnegative function for x ∈ R
n and,

consequently (see (6)), v(x) > 0 for x �= 0; note that v(0) = 0.

Fix a control ũ(·) ∈ U and consider the functions (see (6))

x̃(t) = x(t, ũ(·)), ṽ(t) = v(x̃(t)) (8)

on the interval [0, τ(ũ(·))). It is easy to see that the function x̃(t) is locally Lipschitz on [0, τ(ũ(·)));
hence, ṽ(t) is almost everywhere differentiable on the same interval. The derivative ˙̃v(t) satisfies

the equality (see (1), (2), (6))

˙̃v(t) = 〈∇v(x̃(t)), Ax̃(t) + bϕ(σ(x̃(t))) +Mũ(t)〉 (9)

for almost all t ∈ [0, τ(ũ(·))). Here ∇v(x) is the gradient of v(x); we have

∇v(x) = x+ cϕ(σ(x)). (10)

In connection with formulas (9) and (10), it is useful to consider the function

f(x, σ, u) = 〈x+ cϕ(σ), Ax + bϕ(σ) +Mu〉, (11)

where x ∈ R
n, σ ∈ R

1, and u ∈ R
r. This formula can be written in the form

f(x, σ, u) = g1(x, u) + 〈c, b〉ϕ2(σ) + g2(x, u)ϕ(σ), (12)

where

g1(x, u) = 〈x,Ax+Mu〉, (13)

g2(x, u) = 〈c,Ax +Mu〉+ 〈x, b〉. (14)

In what follows, we will assume that

〈c, b〉 < 0. (15)

Forming the perfect square with respect to ϕ(σ) in (12) and using condition (15), we obtain the

inequality

f(x, σ, u) ≤ g1(x, u) +
1

|〈c, b〉|

(g2(x, u)

2

)2
(16)

for x ∈ R
n and u ∈ R

r. Note that the function ϕ(σ) does not enter the right-hand side of (16).

Using the Cauchy–Bunyakovskii inequality, the boundedness of U , and formulas (12)–(14) and (16),

we can easily derive the inequality

f(x, σ, u) ≤ d1|x|2 + d2|x|+ d3 (17)

for x ∈ R
n, σ ∈ R

1, and u ∈ U , where d1, d2, and d3 are some constructively computable

nonnegative constants. Using the inequality |x| ≤ (|x|2 + 1)/2 and inequality (17), we find for

x ∈ R
n, σ ∈ R

1, and u ∈ U that (see (6), (7))

f(x, σ, u) ≤ αv(x) + β, (18)
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where α and β are nonnegative constructively computable constants. Summing the above, we find

from formulas (8)–(13) and (16)–(18) that

˙̃v(t) ≤ αṽ(t) + β (19)

for almost all t ∈ [0, τ(ũ(·))), where ṽ(t) = v(x̃(t)). Using the known theorem for differential

inequalities (see, for example, [8]), we can prove for t ∈ [0, τ(ũ(·))) that

ṽ(t) ≤ y(t), (20)

where y(t) is the solution of the comparison equation

ẏ = αy + β (21)

with the initial condition

y(0) = v(x0). (22)

Note that, by formulas (6), (7), and (20)–(22), we have

|x̃(t)|2 ≤ 2y(t) (23)

for t ∈ [0, τ(ũ(·))), where

y(t) = eαtv(x0) + β

t∫

0

eαr dr. (24)

Assume that τ(ũ(·)) is a finite number. In this situation, the finite number τ(ũ(·)) is greater than
zero. Then, as mentioned above, there exists a sequence of numbers ti ∈ (0, τ(ũ(·))), i = 1, 2, . . .,

such that ti → τ(ũ(·)) and |x̃(ti)| → +∞ as i → +∞. However, this is impossible because of

relations (23) and (24). Thus, under the above assumptions (see (7), (15)), we have τ(ũ(·)) = +∞.

Note that ũ(·) was an arbitrary admissible control from U and, consequently, for arbitrary T > 0

and u(·) ∈ U , we have

|x(T, u(·))| ≤
√
2y(T ), (25)

where the function y(t) is defined by (24). We obtain the following result.

Theorem 1. For the controlled object (1)–(4), under conditions (7) and (15), for arbitrary

T > 0 and u(·) ∈ U , inequality (25) holds, where the function y(t) is defined by formula (24) with

appropriately chosen nonnegative constants α and β and the value v(x0) is calculated by formula (6).

Remark. If the linear vector function Ax in equation (1) is replaced by a nonlinear continuously

differentiable on R
n function g(x) with values in R

n satisfying the inequality

|g(x)| ≤ μ|x|+ ν, x ∈ R
n,

with nonnegative constants μ and ν, one can employ an argument similar to the above using the

Lyapunov function (6) and obtain in this more general case an upper bound of the form (25) for

vectors x(T, u(·)) for arbitrary T > 0 and u(·) ∈ U .
2. Here we consider a control system (see [7, 10]) of the form

ẋ = Ax+

m∑
i=1

biϕi(σi(x)) +Mu, (26)
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where x ∈ R
n, n ≥ 1; the vectors bi (i = 1, . . . ,m, m ≥ 2) belong to R

n; the matrices A and M

have size n×n and n× r (r ≥ 1), respectively; ϕi(σi) (i = 1, . . . ,m) is a continuously differentiable

scalar function of a variable σi ∈ R
1; and

σi(x) = 〈ci, x〉. (27)

Here ci (i = 1, . . . ,m) is a vector from R
n. Such systems for u = 0 are considered in the theory of

absolute stability (see, for example, [2,10]). The vector u ∈ R
r is subject to a geometric constraint

u ∈ U, (28)

where U is a compact set from R
r. Fix an initial condition

x(0) = x0. (29)

Substitute a measurable control ũ(t) ∈ U , t ≥ 0, into (26) and solve the Cauchy problem for this

equation with initial condition (29) for t ≥ 0 in the class of locally absolutely continuous functions.

According to the results from [7, pp. 66, 67, Russian transl.], the corresponding unique solution

x(t, ũ(·)) is defined on the maximal (with respect to inclusion) interval [0, τ(ũ(·))), where τ(ũ(·)) is
either a finite positive number or +∞. As in case 1, we define the reachable set D(T ) by (5). Note

that, in the general case, the set D(T ) can be empty for specific T > 0. To derive an upper bound

with respect to inclusion for the set D(T ), we will use an analog of the function (6) (see [10]) of

the form (see (27))

v(x) =
|x|2
2

+

m∑
i=1

σi(x)∫

0

ϕi(r) dr. (30)

In what follows, we assume that each function ϕi(r), i = 1, 2, . . . ,m, satisfies the inequality

ϕi(r)r ≥ 0 ∀r ∈ R
1. (31)

This condition provides the nonnegativity of each integral term for x ∈ R
n in formula (30). Define

x̃(t) = x(t, ũ(·)) and ṽ(t) = v(x̃(t)) for t ∈ [0, τ(ũ(·))). It is easy to see that the function ṽ(t) is

locally Lipschitz and, consequently, differentiable almost everywhere for t ∈ [0, τ(ũ(·))). Moreover,

the derivative ˙̃v(t) satisfies almost everywhere on [0, τ(ũ(·))) the formula

˙̃v(t) =
〈
∇v(x̃(t)), Ax̃(t) +

m∑
i=1

biϕi(σi(x̃(t))) +Mũ(t)
〉
, (32)

where

∇v(x) = x+

m∑
i=1

ciϕi(σi(x)). (33)

By analogy with case 1, consider the function (compare with (11))

f(x, σ, u) =
〈
x+

m∑
i=1

ciϕi(σi), Ax+

m∑
i=1

biϕi(σi) +Mu
〉
, (34)
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where x ∈ R
n, the vector σ is from R

m, its components are values σi ∈ R
1, and u ∈ R

r. This

formula can be written in the form

f(x, σ, u) = g1(x, u) +

m∑
i,j=1

〈ci, bj〉ϕi(σi)ϕj(σj) +

m∑
i=1

hi(x, u)ϕi(σi), (35)

where

g1(x, u) = 〈x,Ax+Mu〉, (36)

hi(x, u) = 〈ci, Ax+Mu〉+ 〈x, bi〉 (i = 1, . . . ,m). (37)

In connection with (35), consider a quadratic form

W (ξ) = 〈Cξ, ξ〉,

where ξ ∈ R
m and the symmetric matrix C of order m is constructed from a matrix F of order m

with elements Fij = 〈ci, bj〉 by the formula

C =
1

2
(F + F ∗). (38)

Here ∗ means transposition.

We will assume that the following condition holds.

Condition A. The symmetric matrix C is negative definite; i.e., the matrix (−1)C is positive

definite.

It is known (see [11, pp. 210, 211]) that, for the positive definite matrix (−1)C, there exists a

positive constant γ such that ∀ξ ∈ R
m

〈(−1)Cξ, ξ〉 ≥ γ|ξ|2; (39)

i.e., ∀ξ ∈ R
m

〈Cξ, ξ〉 ≤ −γ|ξ|2. (40)

Note that the largest constant γ > 0 in (39) is constructively computable. Thus, we find from

(34)–(38), (40) that

f(x, σ, u) ≤ |g1(x, u)| − γ|ϕ(σ)|2 +
m∑
i=1

|hi(x, u)ϕi(σi)| (41)

for x ∈ R
n, σ ∈ R

m, and u ∈ R
r, where the vector ϕ(σ) with components ϕi(σi), i = 1, . . . ,m,

belongs to Rm.

Denote by l(x, u, σ) the sum over i from 1 to m in the right-hand side of inequality (41). From

the definition of the function l(x, u, σ), formulas (36) and (37), and the Cauchy–Bunyakovskii

inequality, it is easy to obtain for x ∈ R
n, u ∈ U (U is a compact set in R

r), and σ ∈ R
m a bound

of the form

|g1(x, u)| + l(x, u, σ) ≤ d1|x|2 + d2|x|+ (d3|x|+ d4)|ϕ(σ)|, (42)

where di are nonnegative constructively computable constants. In connection with inequalities (41)

and (42), it is useful to consider the function

ξ(x, σ) = −γ|ϕ(σ)|2 + (d3|x|+ d4)|ϕ(σ)|.
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Forming here the perfect square with respect to |ϕ(σ)|, we obtain for x ∈ R
n and σ ∈ R

m the

inequality

ξ(x, σ) ≤ 1

γ

(d3|x|+ d4
2

)2
.

Thus, for the function f(x, σ, u) (see (35)), we obtain the inequality

f(x, σ, u) ≤ d5|x|2 + d6|x|+ d7 (43)

for x ∈ R
n, σ ∈ R

m, and u ∈ U , where d5, d6, and d7 are constructively computable nonnegative

constants. Note that the right-hand side of (43) is independent of σ. Using the inequality |x| ≤
(|x|2 + 1)/2 and (43), we obtain inequality (18) for the function f(x, σ, u) (see (35)) for x ∈ R

n,

σ ∈ R
m, and u ∈ U . The further argument follows the scheme of case 1 (see formulas (19)–(24)).

Thus, for arbitrary T > 0 and u(·) ∈ U , we prove the inequality

|x(T, u(·))| ≤
√
2y(T ), (44)

where the function y(t) is defined in (24). We have established the following result.

Theorem 2. For the controlled object (26)–(29), under condition (31) and the condition of

negative definiteness of the matrix C (see (38)), for arbitrary T > 0 and u(·) ∈ U , inequality (44)

holds, where the function y(t) is defined by (24) with appropriately chosen nonnegative constants α

and β and the value v(x0) is calculated by formula (30).
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