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Abstract—In this review paper, we outline and exemplify the general method of constructing
the superfield low-energy quantum effective action of supersymmetric Yang–Mills (SYM) the-
ories with extended supersymmetry in the Coulomb phase, grounded upon the requirement of
invariance under the non-manifest (hidden) part of the underlying supersymmetry. In this way
we restore the N = 4 supersymmetric effective actions in 4D, N = 4 SYM, N = 2 supersym-
metric effective actions in 5D, N = 2 SYM and N = (1, 1) supersymmetric effective actions
in 6D, N = (1, 1) SYM theories. The manifest off-shell fractions of the full supersymmetry
are, respectively, 4D, N = 2, 5D, N = 1 and 6D, N = (1, 0) supersymmetries. In all cases
the effective actions depend on the corresponding covariant superfield SYM strengths and the
hypermultiplet superfields. The whole construction essentially exploits a power of the harmonic
superspace formalism.
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1. INTRODUCTION

Supersymmetry is still a source of various surprises in theoretical and mathematical physics. It
is sufficient to say that supersymmetry allows one to construct completely finite models of quantum
field theory, to formulate phenomenologically attractive models beyond the Standard Model, to
eliminate ghosts in the spectrum of string theory, to obtain exact results in quantum mechanics and
in the classical and quantum field theory, etc. Among a lot of works on supersymmetry, we wish to
distinguish the papers by A. A. Slavnov [55, 72–74], which are directly or indirectly related to the
problem of effective action.

Quantum effective action is a central object of quantum field theory, and it is used in the
study of numerous aspects of the latter, such as renormalization, calculation of S-matrix ampli-
tudes, finding the quantum corrections to the classical equations of motion, dynamical symmetry
breaking, symmetries of quantum non-abelian gauge theories (they are described by Slavnov–Taylor
identities [71, 75]), and many others (see, e.g., [78]).

The low-energy effective action plays an important role in supersymmetric gauge theories, pro-
viding a link between superstring/brane theory and quantum field theory. On the one hand, such
an effective action can be calculated in the quantum field theory setting and, on the other, it can be
derived within the brane stuff. As a result, the low-energy effective action allows one, in principle,
to describe the low-energy string effects by methods of quantum field theory and vice versa (see the
reviews [10, 22, 23]).

The most elegant way to study the quantum structure of supersymmetric field theories is through
their formulations in terms of unconstrained superfields, which secure a manifest supersymmetry at
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all stages of calculations. Such a formulation is well developed for 4D, N = 1 supersymmetry (see,
e.g., [26]). However, for higher dimensional and extended supersymmetric theories the formulation
in terms of unconstrained superfields faces some problems, and it has been worked out only for a
few special cases. One of these cases is 4D, N = 2 supersymmetry, where the successful formulation
in terms of unconstrained superfields was realized in terms of harmonic superspace [46]. Using this
approach allows one to formulate the four-dimensional maximally extended N = 4 gauge theory
in such a way that two supersymmetries are manifest and two others are on-shell and hidden
(non-manifest). As a result, we arrive at N = 4 supersymmetric formulation of the theory under
consideration in terms of N = 2 harmonic superfields.

Extended supersymmetry imposes severe constraints on the classical and effective quantum
superfield actions of gauge theories. A good example is the four-derivative term in the low-energy
4D, N = 4 supersymmetric Yang–Mills (SYM) effective action (in the Coulomb phase), which, in the
sector of N = 2 gauge multiplet, is accommodated by a non-holomorphic superfield potential [39].
An N = 4 supersymmetric completion of this potential by the hypermultiplet terms in N = 2
harmonic superspace was constructed for the first time in our paper [13] on the purely symmetry
grounds. It was further reproduced in [21] from the quantum N = 2 supergraph techniques. The
origin of non-renormalizability of the N = 4 SYM low-energy effective action against higher-loop
quantum corrections was established, and links with the leading terms in the effective action of
D3-brane on the AdS5 × S5 background were indicated (see also [1, 32] and [23] for a review).

The key observation of [13] consisted in that the constraints of the second, hidden, N = 2
supersymmetry completing the manifest N = 2 supersymmetry to the total (on-shell) N = 4 one
are so strong that they fix the form of the relevant superfield potential up to an overall coefficient,
which further has to be calculated from quantum considerations (like in [21]).1

Later on, a similar approach was applied in 3D gauge theories, where it allowed one to determine
the leading quantum corrections in N = 4 SYM theory [35, 36] and to construct the N = 3 superfield
ABJM action [14]. It also turned out to be useful for revealing the structure of the leading terms
of the effective action in 2D gauge theories with extended supersymmetry [69]. As the latest
application of the method invented in [13], the complete structure of the leading terms in the low-
energy effective actions of 5D, N = 2 and 6D, N = (1, 1) SYM theories was established [15, 24].

In this review paper we explain the basics of our method from the single point of view, starting
from the original example of [13] and then proceeding to the recent results of [15, 24]. We point
out the decisive role of the harmonic superspace approach [43–46] for the derivation of the com-
plete superfield effective actions in the situations when the superfield description with all relevant
supersymmetries manifest and off-shell is still unknown.

The paper is organized as follows.
In Section 2 we discuss the N = 4 supersymmetric low-energy effective action in 4D, N = 4

SYM theory. This theory is formulated in harmonic superspace in terms of the gauge multiplet
and hypermultiplet superfields. The theory exhibits the manifest off-shell N = 2 supersymmetry,
as well as the second additional N = 2 supersymmetry, which is non-manifest (hidden) and forms,
together with the manifest N = 2 supersymmetry, the whole N = 4 supersymmetry only on-shell.
Then we construct a quantum low-energy effective action in such a theory in the Coulomb phase.
We start from the effective potential in the gauge multiplet sector calculated earlier in a series of
papers [11, 12, 27, 30, 37, 38, 48, 49, 59, 60, 64, 65, 68] and show how this result can be completed
by the hypermultiplet terms to the effective potential depending on all fields of the N = 4 gauge
multiplet. This completion is derived algebraically, solely on the basis of the extra on-shell N = 2
supersymmetry, and so demonstrates the power of hidden supersymmetry for such calculations.

1Earlier, the importance of taking into account the total supersymmetry for studying the effective action of
extended supersymmetric gauge theories was pointed out in [30].
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Section 3 is devoted to the derivation of the low-energy effective action in 5D, N = 2 super-
symmetric gauge theory. As in Section 2, we begin with the classical formulation of the theory in
harmonic superspace, where half of the supersymmetries is realized manifestly and another half in a
hidden way. Then we study the structure of the low-energy effective action using both manifest and
hidden supersymmetries. Here it is worth discussing an important point. The 5D, N = 1 gauge
theory admits a classical Chern–Simons action; however, its N = 2 supersymmetric generalization
does not exist since in the N = 1 case the Chern–Simons action respects the invariance under the 5D,
N = 1 superconformal algebra F (4), which is unique and possesses no higher N extension. It is pos-
sible to show, by direct quantum computations in 5D, N = 1 superspace [34], that the two-derivative
contributions (the Chern–Simons term) to the N = 2 SYM effective action coming from the hyper-
multiplet and from the ghost superfields precisely cancel each other. This cancelation is analogous
to the well-known phenomenon in the 3D case [35, 36], where the Chern–Simons term cannot arise
as a quantum correction to the effective action in supersymmetric gauge theories with N > 2.

As we demonstrate in this section, the four-derivative term, on the contrary, admits a unique
hypermultiplet completion under the requirement of an implicit 5D, N = 1 on-shell supersym-
metry alongside with the manifest off-shell N = 1 one. The procedure of constructing such a
hypermultiplet completion is quite analogous to the one in [13].

In Section 4 we address the problem of constructing the low-energy effective action in 6D,
N = (1, 1) SYM theory. Such a theory is formulated in 6D, N = (1, 0) harmonic superspace
as the theory of interacting N = (1, 0) gauge multiplet and hypermultiplet, both in the adjoint
representation of the gauge group. The theory possesses a manifest N = (1, 0) supersymmetry
and an additional hidden N = (0, 1) supersymmetry. On-shell they close on the full N = (1, 1)
supersymmetry. Exploiting the hidden supersymmetry, we find the effective action in the gauge
multiplet sector basically on the symmetry grounds.

In Section 5 we list the basic results and discuss some further possible developments.

2. LOW-ENERGY EFFECTIVE ACTION OF 4D, N = 4 SYM THEORY

It is known that D3-branes are related to 4D, N = 4 SYM theory (see, e.g., [5, 47]). The
interaction of D3-branes is described in the abelian bosonic sector by the Born–Infeld action, the
leading low-energy correction being of the form ∼F 4/X4, where F 4 denotes a structure of the fourth
degree in an abelian field strength Fmn and X stands for the scalar fields of 4D, N = 4 gauge
(vector) multiplet. The one-loop calculation of such an effective action in the Coulomb branch of
N = 4 SYM theory, both in the component approach and in terms of N = 1, 2 superfields, has
been accomplished in [11, 12, 27, 30, 37, 48, 49, 59, 60, 65, 68]. The complete N = 4 structure
of the one-loop low-energy effective action has been found in [13, 21]. The two-loop contributions
to the low-energy effective actions of N = 4 SYM theory have been considered in [31, 56, 61].
The structure of the low-energy effective action in the mixed Coulomb–Higgs branch was a subject
of [33]. A review of the results related to the calculations of low-energy effective actions in 4D
extended supersymmetric gauge theories can be found, for example, in [10, 22].2

Studying the low-energy effective action3 of N = 4 SYM models was initiated in [39]. In the
N = 2 superfield formulation, the full N = 4 gauge multiplet is constituted by the N = 2 gauge
multiplet and hypermultiplet. The authors of [39] studied the effective action of N = 4 SYM theory
with the gauge group SU(2) spontaneously broken to U(1) and considered that part of this action
which depends only on the fields of massless U(1) N = 2 gauge multiplet. The requirements of scale
invariance and R-invariance specify this part of the effective action up to a numerical coefficient.

2Various aspects of N = 2 harmonic superfield models were also discussed in [2, 3, 25, 28, 29].
3By the low-energy effective action we always mean the leading (in the external momenta) piece of the full quantum
effective action.
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The result can be given in terms of the non-holomorphic effective potential

H(W,W ) = c ln
W

Λ
ln

W

Λ
, (2.1)

where W and W are the N = 2 superfield strengths, Λ is an arbitrary scale, and c is an arbitrary
real constant. The effective action defined as an integral of H(W,W ) over the full N = 2 superspace
with the coordinates z = (xm, θαi, θ

i
α̇) is independent of the scale Λ. It is worth pointing out that

the result (2.1) was obtained in N = 4 SYM theory entirely on the symmetry grounds.4

Equation (2.1) provides the exact form of the low-energy effective action of N = 4 SYM theory in
the N = 2 gauge superfield sector. Any quantum corrections can be absorbed into the coefficient c.
One can show [39, 65] that the non-holomorphic effective potential (2.1) receives neither perturbative
nor non-perturbative contributions beyond one loop. As a result, the construction of the exact low-
energy effective action for SU(2) SYM theory in the Coulomb branch (i.e., with SU(2) broken down
to U(1)) is reduced to computing the coefficient c in the one-loop approximation.

The direct derivation of the potential (2.1), computation of the coefficient c, and hence the final
reconstruction of the full exact low-energy U(1) effective action in the gauge field sector from the
quantum N = 4 SYM theory were undertaken in [27, 49, 68]. In particular, it was found that
c = (4π)−2. Further studies showed that the result (2.1) for the gauge group SU(2) spontaneously
broken to U(1) can be generalized to the group SU(N) broken to its maximal abelian subgroup [11,
37, 48, 65]. The relevant one-loop effective potential is given by

H(W,W ) = c
∑

I<J

ln
W I −W J

Λ
ln

W I −W J

Λ
, (2.2)

with the same coefficient c as in (2.1) for the SU(2) group. Here I, J = 1, 2, . . . , N , W =
∑

I W
IeII

belongs to the Cartan subalgebra of the algebra su(N),
∑

I W
I = 0, and eIJ is the Weyl basis in

the su(N) algebra (for details see [11]).

2.1. Action of N = 4 SYM theory in N = 2 harmonic superspace. The “microscopic”
action of N = 4 SYM theory in the formulation through N = 2 harmonic superfields can be
written as

S[V ++, q+] =
1

8

(∫
d8ζL trW 2 +

∫
d8ζR trW 2

)
− 1

2

∫
dζ(−4) tr q+a

(
D++ + igV ++

)
q+a . (2.3)

The real analytic superfield V ++ is the harmonic gauge potential of N = 2 SYM theory, and
the analytic superfields q+a , a = 1, 2, describe the hypermultiplets (they satisfy the pseudo-reality
condition q+a ≡ q̃+

a = εabq+b , with the generalized conjugation ∼ defined in [43]). The N = 2

superfield strengths W and W are expressed in terms of V ++. The superfields V ++ and q+a belong
to the adjoint representation of the gauge group, g is a coupling constant, d8ζL = d4x d2θ+d2θ− du,
d8ζR = d4x d2θ+d2θ− du, and dζ(−4) = d4x d2θ+d2θ− du are the measures of integration over chiral,
anti-chiral, and harmonic analytic N = 2 superspaces, and du is the measure of integration over
the harmonic variables u±i, u+iu−i = 1. Any further details regarding the action (2.3), including
the precise form of the analyticity-preserving harmonic derivative D++, can be found in [43–46].
We will basically follow the notation of the book [46].

Either term in (2.3) is manifestly N = 2 supersymmetric. Moreover, the action (2.3) possesses
an extra hidden N = 2 supersymmetry which mixes up W and W with q+a (see [11, 44–46]). As a
result, the model under consideration is actually N = 4 supersymmetric. Our aim is to examine the

4Non-holomorphic potentials of the form (2.1) as possible contributions to the effective action in N = 2 SYM
theories were earlier considered in [38].
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possibility of constructing N = 4 supersymmetric functionals whose q+-independent parts would
have the form of (2.1), (2.2).

The effective potentials (2.1) and (2.2) involve the chiral and anti-chiral abelian strengths W
and W satisfying the free classical equations of motion (D+)2W = (D+)2W = 0, where the
harmonic projections of the spinor N = 2 derivatives Di

α and Di
α̇ are defined as D±

α = Di
αu

±
i

and D±
α̇ = Di

α̇u
±
i . So, in order to construct the above functionals, we need to know the hidden

N = 2 supersymmetry transformations only for on-shell W and W and, respectively, for on-shell q+a

(D++q+a = 0). For further use, it is instructive to write down the complete set of equations for the
involved quantities, both on- and off-shell. Off-shell we have

D±
α̇ W = D±

αW = 0, (D±)2W = (D±)2W, D+
α q

+a = D+
α̇ q

+a = 0.

On-shell we have

(D±)2W = (D±)2W = 0, D++q+a = D−−q−a = 0,

q−a ≡ D−−q+a, D++q−a = q+a, D−
α q

−a = D−
α̇ q

−a = 0.

In checking the on-shell relations for the hypermultiplet superfield an essential use of the commuta-
tion relation [D++,D−−] = D0 should be made, with D0 being the operator which counts harmonic
U(1) charges, D0q±a = ±q±a.

It is known that, in the central basis of the harmonic superspace,

q±a = qia(z)u±i , (2.4)

where qia(z) is the on-shell hypermultiplet superfield independent of harmonic variables and defined
on the standard N = 2 superspace with the coordinates z = (xm, θαi, θ

i
α̇). Note that in this on-shell

description, harmonic variables are to some extent redundant, and everything can be formulated in
terms of ordinary N = 2 superfields W (z), W (z), and qia(z). The use of the harmonic superspace
language is still convenient, e.g., because of the possibility to integrate by parts with respect to the
harmonic derivatives in the effective action.

Taking into account these remarks, we can write the on-shell form of the hidden N = 2 trans-
formations as [46]

δW =
1

2
εα̇aD−

α̇ q
+
a , δW =

1

2
εαaD−

α q
+
a ,

δq+a =
1

4

(
εβaD

+
β W + εα̇aD

+
α̇ W

)
, δq−a =

1

4

(
εβaD

−
β W + εα̇aD

−
α̇ W

)
,

(2.5)

where εαa and εα̇a are the Grassmann transformation parameters.

2.2. The Coulomb phase effective action. We start with the calculation of the N = 4
supersymmetric low-energy effective action extending the non-holomorphic N = 2 superfield poten-
tial (2.1). This action is assumed to have the following general form:

Γ[W,W, q+] =

∫
d12z du

[
H(W,W ) + Lq(W,W, q+)

]
=

∫
d12z duLeff(W,W, q+). (2.6)

Here d12z is the full N = 2 superspace integration measure, H(W,W ) is given by (2.1), and
Lq(W,W, q+) is some (for the moment unknown) function which should ensure, together with
H(W,W ), the invariance of the functional (2.6) with respect to the transformations (2.5). Note that
the Lagrangian Lq(W,W, q+), being a function of on-shell superfields, must be in fact independent
of the harmonics u±i .
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The first term in (2.6) is transformed under (2.5) as

δ

∫
d12z duH(W,W ) =

1

2
c

∫
d12z du

q+a

WW

(
εαaD

−
αW + εα̇aD

−
α̇ W

)
. (2.7)

Then Lq(W,W, q+) is to be determined from the condition that its variation cancels the varia-
tion (2.7).

We introduce the quantity

L(1)
q ≡ −c

q+aq−a
WW

(2.8)

and notice that it transforms as

δ
q+aq−a
WW

=
q+a

2WW

(
εαȧD

−
αW + εα̇ȧD

−
α̇ W

)
+ (q+aq−a )δ

(
1

WW

)
+D−−

(
δq+aq+a
WW

)
. (2.9)

Then we consider

L(1)
eff = H(W,W )− c

q+aq−a
WW

= H(W,W ) + L(1)
q . (2.10)

Under the full harmonic N = 2 superspace integral, the variation (2.7) in L(1)
eff is canceled by the first

term in (2.9). The variation of (2.10) generated by the second term in (2.9) remains non-canceled.
After some algebra, it can be brought into the form

δ

∫
d12z duL(1)

eff =
c

2

∫
d12z du

q+bq−b
(WW )2

(
Wεα̇aD−

α̇ q
+
a +WεαaD−

α q
+
a

)

= − c

3

∫
d12z du

q+bq−b
(WW )2

q+a
(
εα̇aD

−
α̇ W + εαaD

−
αW

)
, (2.11)

where we have integrated by parts and used the off- and on-shell relations for W , W , and q±a together
with cyclic identities for the SU(2) doublet indices.

Now let us consider the quantity

L(2)
eff = L(1)

eff +
c

3

(
q+aq−a
WW

)2

≡ L(1)
eff + L(2)

q , (2.12)

where L(1)
eff is given by (2.10). The coefficient in the new term L(2)

q has been picked up so that the
variation of the numerator of this term cancel (2.11). The rest of the full variation of L(2)

q once
again survives, and in order to cancel it, one must add an appropriate term L(3)

q to L(1)
q + L(2)

q , and
so forth.

The above consideration implies that the q+a-dependent part of the full effective action (2.6),
Lq = Lq(W,W, q+), should be of the form

Lq =
∞∑

n=1

L(n)
q = c

∞∑

n=1

cn

(
q+aq−a
WW

)n

(2.13)

with some initially unknown coefficients cn. We have already specified c1 = −1 and c2 = 1/3. The
further analysis proceeds by induction.

Let us consider two adjacent terms in the general expansion (2.13),

cn−1

(
q+aq−a
WW

)n−1

+ cn

(
q+aq−a
WW

)n

, (2.14)

and assume that the variation of the numerator of the first term has been already used to cancel the
remaining part of the variation of the preceding term (under the integral over the total harmonic
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superspace, as in (2.6)). Then we rearrange the rest of the full variation of the first term as in (2.11)
and require this part to be canceled by the variation of the numerator of the second term in (2.14).
This results in the following recursive relation:

cn = −2
(n− 1)2

n(n+ 1)
cn−1 (2.15)

and c1 = −1. This immediately yields

cn =
(−2)n

n2(n+ 1)
. (2.16)

As a result, the full structure of Lq is determined to be

Lq(W,W, q+) ≡ Lq(X) = c

∞∑

n=1

1

n2(n+ 1)
Xn = c

{
(X − 1)

ln(1−X)

X
+

[
Li2(X) − 1

]}
, (2.17)

where X = −2q+aq−a /(WW ) and Li2(X) is the Euler dilogarithm. Let us point out that the
expression for X does not depend on harmonics due to the on-shell representation (2.4),

X = − qiaqia

WW
. (2.18)

Therefore, Lq(X) does not depend on harmonics on-shell either, and the integral over harmonics in
the effective action (2.6) can be omitted.

Thus, the full N = 4 supersymmetric low-energy effective action for the N = 4 SYM model
with gauge group SU(2) spontaneously broken down to U(1) is given by

Γ[W,W, q+] =

∫
d12z Leff(W,W, q+), (2.19)

Leff(W,W, q+) = H(W,W ) + Lq(X), (2.20)

where H(W,W ) and Lq(X) are given by (2.1) and (2.17), respectively, and X, by (2.18).5

The expression (2.17) is the exact low-energy result. Indeed, the non-holomorphic effective
potential H(W,W ) (2.1) is exact, as was argued in [39]. The Lagrangian Lq(X) (2.17) was uniquely
restored from (2.1) by N = 4 supersymmetry, and it is the only one forming, together with H(W,W ),
an invariant of N = 4 supersymmetry. Therefore, the functional (2.19), (2.20) is the exact low-
energy effective action for the theory under consideration.

Let us elaborate on the component structure of the full effective action (2.19), (2.20). We
consider only its bosonic part, so that

W = ϕ(x) + 4iθ+(αθ
−
β)F

(αβ)(x), W = ϕ(x) + 4iθ+(α̇θ
−
β̇)(x)F

(α̇β̇)(x), qia = f ia(x),

D+
αD

−
β W = −4iF(αβ), D+

α̇ D
−
β̇
W = 4iF(α̇β̇).

(2.21)

Here ϕ(x) is the complex scalar field of the N = 2 gauge multiplet, Fαβ(x) and F α̇β̇(x) are the self-
dual and anti-self-dual components of the abelian field strength Fmn, and f ia(x) collects four scalar
fields of the hypermultiplet qia(z). In this bosonic approximation, the functional argument X (2.18)
becomes

X
∣∣
θ=0

= − f iafia
|ϕ|2 ≡ X0. (2.22)

5The functional (2.19) contains only quantum corrections. To write the whole effective action, we have to add the
classical action to the functional (2.19).
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We ignore all x-derivatives of the involved fields, since we are interested only in the leading part of
the expansion of the full effective action in the external momenta.

The component form of the effective action (2.19) can be straightforwardly computed by per-
forming integration over the θ’s. After some computations we obtain a remarkably simple result in
the bosonic sector,

Γbos = 4c

∫
d4x

F 2F 2

(|ϕ|2 + f iafia)2
, (2.23)

where F 2 = FαβFαβ and F 2 = F α̇β̇Fα̇β̇ . The expression in the denominator is nothing other
than the SU(4)-invariant square of six scalar fields of the N = 4 vector multiplet. After proper
redefinitions, it can be cast in the manifestly SU(4)-invariant form

|ϕ|2 + f iafia ∼ φABφAB , φAB = −φBA, φAB =
1

2
εABCDφ

CD, A,B,C,D = 1, . . . , 4.

This indicates that the effective action (2.19), besides being N = 4 supersymmetric, also possesses
hidden invariance under the R-symmetry group SU(4)R of N = 4 supersymmetry.

The result (2.19) can be generalized to the theory with gauge group SU(N) spontaneously broken
down to [U(1)]N−1. In this case the effective action is given by the general expression (2.17), where
H(W,W ) has the form (2.2) and

Lq(W,W, q+) =
∑

I<J

LIJ
q (W,W, q+), (2.24)

with each LIJ
q being of the form (2.17), in which X should be replaced by

XIJ = −2
q+a
IJ q

−
aIJ

WIJW IJ

= − qiaIJqiaIJ

WIJW IJ

, (2.25)

WIJ = W I −W J , W IJ = W I −W J , q+a
IJ = q+a

I − q+a
J . (2.26)

The hypermultiplet superfields are q+a =
∑

I q
+a
I eII ,

∑
I q

+a
I = 0, and eIJ is the Weyl basis in the

algebra su(N). These hypermultiplet superfields belong to the Cartan subalgebra of su(N). In the
SU(N) case the bosonic effective action is represented by a sum of terms (2.23).

As a final remark we note that the functional arguments X (2.18), (2.25) have the zero dilata-
tion weight and are scalars of the U(1) R-symmetry, since q±a and W have the same dilatation
weights [46] and q±a behave as scalars under the R-symmetry group. So, the full effective ac-
tion (2.19) and its su(N) analog are expected to be invariant under N = 2 superconformal symmetry
like their pure W , W part (2.1) or (2.2) (see [30]). Being also N = 4 supersymmetric, these actions
respect the whole (on-shell) N = 4 superconformal symmetry.

3. LOW-ENERGY EFFECTIVE ACTION OF 5D, N = 2 SYM THEORY

In this section, we study the implications of extended supersymmetry for the low-energy ef-
fective action of 5D SYM theory. This theory is of interest from several points of view. It is
non-renormalizable by power counting because of the dimensionful coupling constant g, [g] = −1/2.
Nevertheless, it was argued that a non-perturbative quantum completion of this model describes 6D,
N = (2, 0) superconformal field theory compactified on a circle [40, 62, 63]. An additional support
to this conjecture came from the exact computations of the partition function in this theory by the
localization technique (see, e.g., the review [23] and the references therein).

In spite of the non-renormalizability of 5D, N = 1 SYM, it is still reasonable to study one-loop
quantum corrections in it, keeping in mind that in the odd-dimensional field theories divergences
can appear (within the dimensional regularization) only at even loops. One-loop contributions to
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the effective action of 5D, N = 1 SYM theory were calculated in [34, 57] for the gauge group
SU(2) spontaneously broken to U(1). The leading contribution is given by the 5D supersymmetric
Chern–Simons term [57], while the next-to-leading one reads [34]

c0

∫
d5|8z duW ln

W

Λ
, (3.1)

where W is the 5D, N = 1 abelian gauge superfield strength, Λ is a scale parameter, [Λ] = 1, and
the integration is over the full N = 1 harmonic superspace with the measure d5|8z du ≡ d5x d8θ du.
It is easy to check that the action (3.1) is Λ-independent. The Chern–Simons term incorporates two-
derivative quantum corrections to the effective action, while (3.1) is an N = 1 superfield extension
of the four-derivative “F 4/φ3”-terms.

Our purpose is to study the leading terms in the low-energy effective action of 5D, N = 2
SYM theory in harmonic superspace. Although such terms might be found by direct quantum
computations in 5D, N = 1 superspace, we determine them here on the symmetry grounds, just
by constructing an N = 2 completion of the 5D, N = 1 SYM effective action by the proper
hypermultiplet terms. The effective action constructed corresponds to the Coulomb branch of 5D,
N = 2 SYM theory, with the gauge group being broken to some abelian subgroup (for example,
the maximal torus), and, in general, involves the massless abelian N = 2 gauge multiplets valued
in the algebra of this subgroup. For simplicity, we focus on the case of the gauge group SU(2) and
only briefly address (in Subsection 3.3) the case of SU(N) gauge symmetry.

An additional motivation for studying the quantum effective action of 5D, N = 2 SYM theory
comes from the D-brane stuff, as in the previous 4D, N = 4 example. The classical action of
5D, N = 1 SYM theory with U(N) gauge group can be interpreted as an action of a stack of N
D4-branes in flat space–time. Then the N = 2 supersymmetric completion of the 5D, N = 1 SYM
effective action can be identified with that of the four-derivative term in the low-energy effective
action of a single D4-brane on the AdS6 × S4 background.

3.1. Classical action. We start our consideration with a brief account of the N = 1 SYM
and hypermultiplet models in 5D harmonic superspace. We follow the notation and conventions
of [34, 58].

The N = 2 gauge multiplet in 5D, N = 1 harmonic superspace is described by a pair of
analytic superfields (V ++, q+a ), where V ++ is the N = 1 gauge multiplet and q+a ≡ (q+,−q+) is
the hypermultiplet. The classical action of V ++ is written as an integral over the full harmonic
superspace [80]:

SYM =
1

2g2

∞∑

n=2

(−i)n

n
tr

∫
d5|8z du1 . . . dun

V ++(z, u1)V
++(z, u2) . . . V

++(z, un)

(u+1 u
+
2 )(u

+
2 u

+
3 ) . . . (u

+
n u

+
1 )

, (3.2)

g being a coupling constant of dimension −1/2. The V ++ equation of motion reads

(D+)2W = 0, (3.3)

where (D+)2 ≡ D+α̂D+
α̂ and W is a superfield strength of the gauge N = 1 multiplet:

W =
i

8
(D+)2V −−. (3.4)

Here, the connection V −− is related to V ++ through the harmonic flatness condition

D++V −− −D−−V ++ + i[V ++, V −−] = 0. (3.5)

The classical action of the hypermultiplet in the adjoint representation of the gauge group is
written as [43–45]

Sq =
1

2g2
tr

∫
dζ(−4) q+a D++q+a, (3.6)
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where dζ(−4) is the measure of integration over the analytic superspace and D++ = D++ + iV ++

is the gauge-covariant harmonic derivative. The equation of motion for q+a is

D++q+a = 0. (3.7)

The action of the N = 2 gauge multiplet in the N = 1 harmonic superspace formulation is just
the sum of (3.2) and (3.6),

SN=2 = SYM + Sq. (3.8)

This action is invariant under an implicit N = 1 supersymmetry

δq+a = − 1

2
(D+)4

[
εaα̂θ

−α̂V −−], δV ++ = εaα̂θ
+α̂q+a , (3.9)

where εaα̂ is the relevant anticommuting parameter. Although equation (3.3) is modified for the
total action (3.8) by the hypermultiplet source term on the right-hand side, this is not the case for
the massless Cartan-subalgebra valued abelian superfields, which we will be interested in. In the
abelian case, the equations of motion for the N = 1 gauge multiplet (3.3) and hypermultiplet (3.7)
are simplified to the form

(D+)2W = 0, D++q+a = 0. (3.10)

It is straightforward to show that on these equations the implicit supersymmetry transforma-
tions (3.9) are reduced to

δq±a =
i

2
εα̂a
(
D±

α̂W
)
, δW = − i

8
εaα̂D

−α̂q+a +
i

8
εaα̂D

+α̂q−a . (3.11)

3.2. N = 2 effective action. In this subsection, we construct the complete low-energy effec-
tive action of 5D, N = 2 SYM theory with the gauge group SU(2) and both the gauge N = 1 SYM
and the hypermultiplet sectors taken into account.

The part of the superfield N = 1 SYM effective action containing the component four-derivative
term reads [34]

S0 = c0

∫
d5|8z duW ln

W

Λ
, (3.12)

where W is the abelian gauge superfield strength, Λ is a scale parameter, c0 is a dimensionless
constant, and the integration is performed over the full N = 1 harmonic superspace with the measure
d5|8z du ≡ d5x d8θ du. The representation (3.4) implies

∫
d5|8z duW = 0, so the action (3.12) is

independent of the scale Λ, dS0/dΛ = 0.
The precise value of the constant c0 in the effective action (3.12) depends on the gauge group

representation content of the hypermultiplet matter [34]. Here, we do not fix this constant and
construct an N = 2 supersymmetric generalization of (4.1), keeping c0 arbitrary. This construction
follows the same steps as in [13] (and in the previous Section 2).

The variation of the action (3.12) under the hidden supersymmetry transformations (3.11) may
be cast in the form

δS0 =
ic0
4

∫
d5|8z du εaα̂ q

+
a

D−α̂W

W
. (3.13)

In deriving this equation we employed the abelian counterparts of relations (3.4) and (3.5), the
equations of motion (3.10), and integration by parts with respect to the harmonic and covariant
spinor derivatives.

The variation (3.13) may be partly canceled by the variation of the action

S1 = c1

∫
d5|8z du

q+aq−a
W

, (3.14)
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where the coefficient c1 will be defined below. The variation of this action under (3.11) reads

δS1 = ic1

∫
d5|8z du

q+aεα̂a (D
−
α̂W )

W
− i

8
c1

∫
d5|8z du

q+aq−a
W 2

(
εbα̂D

+α̂q−b − εbα̂D
−α̂q+b

)
. (3.15)

The first term on the right-hand side of (3.15) cancels the variation (3.13) if

c1 = − c0
4
, (3.16)

while the last term in (3.15) may be cast in the form

δ(S0 + S1) = − ic0
12

∫
d5|8z du

q+aq−a
W 3

εbα̂ q
+
b D

−α̂W. (3.17)

To cancel this expression, we are led to add the new term

S2 = c2

∫
d5|8z du

(q+aq−a )
2

W 3
, c2 =

c0
24

. (3.18)

Instead of evaluating the variation of the term (3.18), we proceed to the general case and look
for the full N = 2 effective action in the form

SN=2
eff =

∫
d5|8z du

[
c0W ln

W

Λ
+

∞∑

n=1

cn
(q+aq−a )

n

W 2n−1

]
(3.19)

with some coefficients cn. Let us select two adjacent terms in the sum in (3.19):

cn
(q+aq−a )

n

W 2n−1
+ cn+1

(q+aq−a )
n+1

W 2n+1
. (3.20)

It is possible to show that the variation of the denominator in the first term cancels the variation
of the numerator in the second term if the coefficients are related as

(n+ 1)cn+1 = −cn
n(2n− 1)

n+ 2
. (3.21)

Taking into account equation (3.16), we find from this recurrence relation the generic coefficient

cn =
(−1)n(2n − 2)!

2n n! (n+ 1)!
c0. (3.22)

This allows us to sum up the series in (3.19) and to represent the effective action in the closed form

SN=2
eff = c0

∫
d5|8z duW

[
ln

W

Λ
+

1

2
H(Z)

]
, (3.23)

where

Z ≡ q+aq−a
W 2

(3.24)

and

H(Z) = 1 + 2 ln
1 +

√
1 + 2Z

2
+

2

3

1

1 +
√
1 + 2Z

− 4

3

√
1 + 2Z. (3.25)

It is easy to check that H(0) = 0 and H ′(0) = −1/2, in agreement with (3.22). The result (3.23)
was derived in the work [24].
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The action (3.23) is an N = 2 supersymmetric extension of the effective action (3.12). It would
be interesting to reproduce this result from the perturbative quantum computations in 5D harmonic
superspace, as it was done in the 4D, N = 4 case in [1, 21, 32].

It is worth pointing out that the term (3.1) we have started with (as well as its analogs for the
higher-rank gauge groups) may arise in quantum theory only as a one-loop quantum correction to the
effective action. Indeed, it is scale-invariant and so is independent of the gauge coupling constant g.
On the other hand, within the background field method in harmonic superspace [12, 34], all higher-
loop Feynman graphs involve a gauge superfield vertex with the coupling constant g. Thus, all
higher-loop quantum contributions to the effective action are not scale-invariant and for this reason
cannot give rise to a renormalization of the coefficient c0 in equation (3.1). However, in contrast to
the 4D case, this coefficient is not protected against non-perturbative corrections. Such corrections
will be discussed elsewhere.

It is straightforward to generalize this result to a higher-rank gauge group. For instance, for the
SU(N) gauge group spontaneously broken to the maximal torus [U(1)]N−1 we obtain

SN=2
eff = c0

N∑

I<J

∫
d5|8z duWIJ

[
ln

WIJ

Λ
+

1

2
H(ZIJ)

]
, (3.26)

where ZIJ = (q+a)IJ(q
−
a )IJ/W

2
IJ and WIJ = WI −WJ , (q±a)IJ = q±a

I − q±a
J . The superfields WI

and q±a
I obey the constraints

∑
I WI = 0 and

∑
I q

±a
I = 0 and span the Cartan directions in the

algebra su(N). The function H(ZIJ) for each argument ZIJ is given by the expression (3.25).

3.3. Component structure. We will be interested in deriving the term F 4/φ3 from the
effective action (3.23). To this end, it is enough to leave only the following component fields in the
involved superfields:

q+ = f i(x)u+i , q+ = −f i(x)u+i , (3.27)

W =
√
2φ(x)− 2iθ+α̂θ−

̂βF
α̂̂β

(x). (3.28)

Here φ = φ and f i = fi are scalar fields and F
α̂̂β

= F
̂βα̂

is the Maxwell field strength.
Substituting (3.28) into the first term in (3.23), we find

S0 = c0

√
2

3

∫
d5|8z

(
θ+α̂θ−

̂βF
α̂̂β

)4

φ3
=

c0

4
√
2

∫
d5|8z

detF

φ3
(θ+)2(θ+)2(θ−)2(θ−)2, (3.29)

where detF = (1/4!)εα̂
̂βγ̂̂δεμ̂ν̂ ρ̂ σ̂Fα̂μ̂F̂βν̂

Fγ̂ρ̂F̂δσ̂
and (θ±)2 = θ±α̂θ±α̂ . We integrate over the Grass-

mann variables according to the rule
∫

d5|8z (θ+)2(θ+)2(θ−)2(θ−)2f(x) = 4

∫
d5x f(x) (3.30)

for some f(x). Thus the action (3.29) yields the component term

S0 =
c0√
2

∫
d5x

detF

φ3
. (3.31)

In a similar way one can find the contribution of the last term in (3.23):
∫

d5|8z WH(Z) =
√
2

∫
d5x

detF

φ3

[
4z4H(4)(z) + 28z3H ′′′(z) + 39z2H ′′(z) + 6zH ′(z)

]
, (3.32)
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where

z ≡ Z
∣∣
θ=0

=
f ifi
φ2

. (3.33)

Substituting the function (3.25) into (3.32), we find

c0
2

∫
d5|8zWH(Z) =

c0√
2

∫
d5x

detF

(φ2 + f ifi)
3/2

− c0√
2

∫
d5x

detF

φ3
. (3.34)

The last term exactly cancels (3.31). As a result, the total F 4/φ3 term in the component form of
the effective action (3.23) is given by the expression

SN=2
eff =

c0√
2

∫
d5x

detF

(φ2 + f ifi)
3/2

+ . . . , (3.35)

where the dots stand for the remaining terms. It is remarkable that the scalar fields appear in the
denominator in (3.35) just in the SO(5)-invariant combination. This is non-trivial, since the field φ
comes from the gauge N = 1 multiplet, while f i and fi, from the hypermultiplet. In the SU(N)
case (3.26), SN=2

eff is a sum of the appropriate terms (3.35).

4. LOW-ENERGY EFFECTIVE ACTION OF 6D, N = (1, 1) SYM THEORY

Another interesting class of extended objects in superstring/brane theory is presented by D5-
branes (see, e.g., [5, 47]). These objects are related to 6D, N = (1, 1) SYM theory likewise D3-branes
are related to 4D, N = 4 SYM theory. Similarly to the D3-brane case, the interaction of D5-branes
is described by the 6D Born–Infeld action [76] (see, e.g., [4, 41, 50] and the references therein for
aspects of the Born–Infeld action in diverse dimensions). Since the D5-brane is related to 6D,
N = (1, 1) SYM theory, it is natural to expect that the D5-brane interaction in the low-energy limit
can be calculated proceeding from the low-energy quantum effective action of this theory.

In this section we consider quantum aspects of 6D, N = (1, 1) SYM theory. It is the maximally
extended supersymmetric gauge theory in six dimensions, with eight left-handed and eight right-
handed supercharges. An equal number of spinors with mutually opposite chiralities guarantees the
absence of chiral anomaly in this theory. From the point of view of 6D, N = (1, 0) supersymmetry,
the model is built on a gauge (vector) multiplet and a hypermultiplet. Accordingly, its bosonic
sector involves a real 6D gauge field and two complex (or four real) scalar fields.

Although 6D, N = (1, 1) non-abelian SYM theory is non-renormalizable by power counting, it is
on-shell finite at one and two loops [6–8, 42, 51, 52, 66, 67]. Moreover, it was recently shown that this
theory is one-loop finite even off-shell [16–18] and that the two-loop diagrams with hypermultiplet
legs are also off-shell finite [19]. A review of our approach was presented in [20].

To preserve as many manifest supersymmetries as possible, we use the harmonic superspace
approach [43, 46]. The theory under consideration is formulated in terms of N = (1, 0) harmonic
superfields describing the gauge multiplet and the hypermultiplet. Therefore, it possesses the mani-
fest N = (1, 0) supersymmetry and, in addition, a non-manifest (hidden) N = (0, 1) supersymmetry
mixing the N = (1, 0) gauge multiplet and hypermultiplet. These supersymmetries close on-shell
on the total on-shell N = (1, 1) supersymmetry. Such a formulation of N = (1, 1) SYM theory was
described in detail in [9] (see also [53, 79]). An essential difference of our consideration here is the
use of the so-called “ω-form” of the hypermultiplet (see below).

We consider the case when the gauge symmetry SU(N) is broken to SU(N − 1)×U(1) ⊂ SU(N).
Technically, this means that background superfields align through the fixed generator of the Cartan
subalgebra of su(N), which corresponds to an abelian subgroup U(1). In this case the effective action
of the theory depends only on the abelian vector multiplet and hypermultiplet. In the bosonic sector
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we find out the effective action for the single real U(1) gauge field and four real scalar fields. The
same number of bosonic world-volume degrees of freedom is exhibited by a single D5-brane in six
dimensions [70].

4.1. 6D, N = (1, 1) SYM in the N = (1, 0) harmonic formulation with the ω hyper-
multiplet. We start with the formulation of 6D, N = (1, 1) SYM theory in terms of 6D,
N = (1, 0) harmonic analytic superfields V ++ and ω, which represent the gauge multiplet and
the hypermultiplet. The action of N = (1, 1) SYM theory is written as

S0[V
++, q+] =

1

f2

{ ∞∑

n=2

(−i)n

n
tr

∫
d14z du1 . . . dun

V ++(z, u1) . . . V
++(z, un)

(u+1 u
+
2 ) . . . (u

+
n u

+
1 )

− 1

2
tr

∫
dζ(−4) ∇++ω∇++ω

}
, (4.1)

where f is a dimensionful coupling constant ([f] = −1) and the measure of integration over the
analytic subspace dζ(−4) includes the integration over harmonics, dζ(−4) = d6x(an) du (D

−)4. Both
V ++ and ω superfields take values in the adjoint representation of the gauge group. The covariant
harmonic derivative ∇++ acts on the hypermultiplet ω as

∇++ω = D++ω + i[V ++, ω]. (4.2)

The action (4.1) is invariant under the infinitesimal gauge transformations

δV ++ = −∇++Λ, δω = i[Λ, ω], (4.3)

where Λ(ζ, u) = Λ̃(ζ, u) is a real analytic gauge parameter.
Besides the analytic gauge connection V ++, we introduce a non-analytic one V −− (see [46])

which is a solution of the zero curvature condition (3.5). Using V −−, we define one more covariant
harmonic derivative ∇−− = D−− + iV −− and the N = (1, 0) gauge superfield strength

W+a = − i

6
εabcdD+

b D
+
c D

+
d V

−− (4.4)

possessing the useful off-shell properties

∇++W+a = ∇−−W−a = 0, W−a = ∇−−W+a. (4.5)

Introducing an analytic superfield F++,

F++ =
1

4
D+

a W
+a = i(D+)4V −−, D+

a F
++ = ∇++F++ = 0, (4.6)

we can write the classical equations of motion corresponding to the action (4.1) as

F++ + [ω,∇++ω] = 0, (∇++)2ω = 0. (4.7)

The N = (1, 0) superfield action (4.1) enjoys the additional N = (0, 1) supersymmetry

δV ++ = (ε+Au+A)ω − (ε+Au−A)∇
++ω = 2(ε+Au+A)ω −∇++

(
(ε+Au−A)ω

)
, (4.8)

δω = −(D+)4
(
(ε−Au−A)V

−−) = i(ε−Au−A)F
++ − i(εAa u

−
A)W

+a, (4.9)
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where A = 1, 2 is the Pauli–Gürsey SU(2) index. To check this, one derives, using (4.8) and (4.9),
the N = (0, 1) transformation law of ∇++ω,

δ(∇++ω) = i
(
(ε−Au+A) + (ε+Au−A)

)
F++ − i(εAa u

+
A)W

+a + i(ε+Au−A)[ω,∇
++ω]. (4.10)

Then one varies the classical action (4.1) with respect to (4.8) and (4.10):

δS =
1

f2

{
tr

∫
d14z duV −−δV ++ − tr

∫
dζ(−4)∇++ω δ(∇++ω)

}
. (4.11)

In the first integral, we pass to the integration over the analytic subspace and use the explicit form
of the variations (4.8) and (4.10):

δS = − i

f2
tr

∫
dζ(−4)

{
2F++(ε+Au+A)ω +∇++ω

(
(ε−Au+A) + (ε+Au−A)

)
F++

− F++∇++
(
(ε+Au−A)ω

)
− εAa u

+
A ∇++ωW+a

}
= 0. (4.12)

The last two terms in (4.12) are the total harmonic derivative ∇++ due to the properties of F++

and W+a, and so they vanish under the analytic integration measure dζ(−4). The first two terms
cancel each other after integration by parts with respect to the harmonic derivative ∇++ in view of
the properties ∇++ε−A = ε−A and ∇++u−A = u+A. Finally, the term tr(∇++ω[ω,∇++ω]) vanishes
due to the cyclic property of trace.

The zero curvature condition (3.5) allows one to express the transformation of the non-analytic
gauge connection δV −− through δV ++,

∇++δV −− −∇−−δV ++ = 0, (4.13)

and to find the transformation law of the strength W+a under the hidden supersymmetry

δW+a = εadbcεAd ∇bc

(
u+Aω − u−A∇

++ω
)
+ iε−A

[
W+a, u+Aω − u−A∇

++ω
]
, (4.14)

where

∇bc = ∂bc −
1

2
D+

b D
+
c V −−. (4.15)

As usual, we make use of the background superfield method. The gauge group of the theory (4.1)
is assumed to be SU(N). For the further consideration, we will also assume that the background
superfields V++ and Ω align in a fixed direction in the Cartan subalgebra of su(N):

V++ = V ++(ζ, u)H, Ω = Ω(ζ, u)H, (4.16)

where H ia a fixed generator in the Cartan subalgebra generating some abelian subgroup U(1).
Our choice of the background corresponds to the spontaneous symmetry breaking SU(N) →
SU(N − 1) × U(1). We should note that the pair of background superfields (V ++,Ω) forms an
abelian vector N = (1, 1) multiplet, which, in the bosonic sector, contains a single real gauge
vector field AM (x) and four real scalars φ(x) and φ(ij)(x), i, j = 1, 2, where φ and φ(ij) are the
scalar components of the Ω hypermultiplet [46]. The abelian vector field and four scalars in six-
dimensional space–time constitute just the bosonic world-volume degrees of freedom of a single
D5-brane [5, 47].

The classical equations of motions (4.7) for the background superfields V ++ and Ω are

F++ = 0, (D++)2Ω = 0. (4.17)
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In that follows we assume that the background superfields solve the classical equation of mo-
tion (4.17). We will also consider the background slowly varying in space–time, i.e.,

∂MW+a = 0, ∂MΩ = 0. (4.18)

Finally, we are left with an abelian background analytic superfields V ++ and Ω, which satisfy
the classical equation of motion (4.17) and conditions (4.18). Under these assumptions the gauge
superfield strength W+a is analytic,6 D+

a W
+b = δbaF

++ = 0. In the further analysis we will use
the N = (0, 1) transformation for the gauge superfield strength W+a (4.14). For the slowly varying
abelian on-shell background superfields, the hidden N = (0, 1) supersymmetry transformations (4.9)
and (4.14) acquire the very simple form

δΩ = −i(εAa u
−
A)W

+a, δW+a = 0. (4.19)

These transformation rules follow from the abelian version of the transformations (4.9) and (4.14),
in which one should take into account conditions (4.18) and (4.17). It is worth pointing out that
these conditions are covariant under N = (0, 1) supersymmetry.

4.2. Effective action with hidden N = (0, 1) supersymmetry. Let us now consider the
simplest N = (1, 1) invariants which can be constructed out of the abelian analytic superfields W+a

and Ω under the assumptions (4.17) and (4.18). It is evident that the gauge-invariant action

I = f2
∫

dζ(−4) (W+)4F(f Ω), (4.20)

where (W+)4 = −(1/24)εabcdW
+aW+bW+cW+d and F(f Ω) is an arbitrary function of Ω, is invari-

ant under the transformation (4.19) due to the nilpotency condition (W+)5 ≡ 0. For our further
consideration, of the main interest is the choice

I1 = c

∫
dζ(−4) (W

+)4

Ω2
, (4.21)

which corresponds to F = 1/(f2Ω2) in (4.20). The coefficient c in (4.21) cannot be fixed only on
the symmetry grounds and should be calculated in the framework of the quantum field theory [15].
In fact, the same concerns the specific choice of the function F(f Ω).

As a result of the exact calculations [15], we arrived at the following expression for the one-loop
effective action:

Γ
(1)
lead =

N − 1

(4π)3

∫
dζ(−4) (W

+)4

Ω2
. (4.22)

As expected, the leading low-energy contribution (4.22) to the effective action in the model (4.1) is
just the N = (1, 1) invariant I1 (4.21). The coefficient c now takes the value [15]

c =
N − 1

(4π)3
. (4.23)

The expression for c is similar to that in the four-dimensional N = 4 SYM theory (see, e.g., [56]
and references therein). In the bosonic sector the effective action (4.22) has the structure

Γ
(1)
bos ∼

∫
d6x

F 4

φ2

(
1 +

φ(ij)φ(ij)

φ2
+ . . .

)
, (4.24)

where F 4 = FMNFMNFPQF
PQ − 4FNMFMRF

RSFSN and FMN is the gauge field strength.
We should note that even in the one-loop approximation there might exist more complicated

contributions to the effective action, which are beyond the scope of our consideration. We hope to
come back to these issues elsewhere.

6In general this is not true and F++ �= 0.
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5. SUMMARY AND OUTLOOK

In this paper we have reviewed a hidden-supersymmetry based approach to constructing the low-
energy effective actions for extended and higher dimensional supersymmetric gauge theories. We
considered the 4D, N = 4 SYM, 5D, N = 2 SYM, and 6D, N = (1, 1) SYM theories formulated
in harmonic superspace. All these theories are characterized by some number of manifest off-shell
supersymmetries and some number of hidden on-shell supersymmetries. The complete supersym-
metry of the theories under consideration is due to a combination of the manifest and hidden ones.
The low-energy effective actions were analyzed on the purely algebraic grounds and can be obtained
in a general form up to numerical coefficients. To fix these coefficients, one needs to carry out
concrete quantum field-theoretical calculations. This approach has been completely accomplished
for all three theories under consideration.

In 4D, N = 4, SU(N) SYM theory we begun with the known manifestly N = 2 supersymmetric
non-holomorphic effective potential in the gauge multiplet sector and, using the hidden supersym-
metry transformations, completed it by hypermultiplet terms to the full N = 4 supersymmetric
low-energy effective potential in the Coulomb phase [13]. The result was later confirmed by the
one-loop supergraph calculations [1, 21, 32].

Generalizing the approach of [13] to the 5D case, we constructed the leading term in the low-
energy effective action of 5D, N = 2 SYM theory as the appropriate sum of the effective action
of 5D, N = 1 SYM theory and the interaction with the hypermultiplet. This interaction is fixed,
up to an overall coupling constant c0, by the requirement of the implicit on-shell 5D, N = 1
supersymmetry extending the manifest off-shell N = 1 supersymmetry to an on-shell 5D, N = 2
one. We discussed in detail the case of the gauge group SU(2) spontaneously broken to U(1), in
which case the effective action depends on a single pair of abelian 5D, N = 1 gauge multiplet and
hypermultiplet, and then considered a more general situation with the SU(N) gauge group broken
to its maximal torus, with N − 1 pairs of such abelian multiplets [24].

The next obvious problem is to reproduce the 5D effective actions found in [24] from the appro-
priate set of quantum 5D, N = 1 supergraphs involving the interacting hypermultiplet and N = 1
gauge superfields. Also, it would be interesting to establish manifest links with the relevant D-brane
dynamics and the 4D and 6D cousins of the 5D effective action constructed. Finding out an explicit
form of the next-to-leading corrections to this effective action, also based on the demand of implicit
5D, N = 1 supersymmetry, is another interesting task.

In 6D, N = (1, 1) SYM theory we dealt with its formulation in terms of N = (1, 0) harmonic
superfields as the theory of interacting N = (1, 0) gauge multiplet and hypermultiplet, both in the
adjoint representation of the gauge group. This theory is characterized by manifest N = (1, 0)
supersymmetry and hidden on-shell N = (0, 1) supersymmetry. The low-energy effective action has
been constructed by combining the gauge multiplet superfield strengths and hypermultiplet, so as
to achieve invariance under the hidden supersymmetry. The result has been actually confirmed by
a direct quantum computation [15].

The results concerning the low-energy effective actions and the roles of hidden supersymme-
tries in the above three theories can be generalized along many directions. First, in all cases we
found only the leading low-energy effective actions, omitting all the superspace derivative-dependent
terms. However, such terms could in principle be essential for establishing the precise links with
superstring/brane low-energy effective actions. Second, it would be interesting to sum up all super-
field strength-dependent terms without derivatives and to obtain in this way the Heisenberg–Euler
or Born–Infeld type effective actions possessing both manifest and hidden supersymmetries. The
third interesting direction is related to exploring the quantum structure of the higher-derivative su-
persymmetric theories, for example, of 6D renormalizable higher-derivative supersymmetric gauge
theory [54, 77].
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64. U. Lindström, F. Gonzalez-Rey, M. Roček, and R. von Unge, “On N = 2 low energy effective actions,” Phys.
Lett. B 388 (3), 581–587 (1996); arXiv: hep-th/9607089.

65. D. A. Lowe and R. von Unge, “Constraints on higher derivative operators in maximally supersymmetric gauge
theory,” J. High Energy Phys. 1998 (11), 014 (1998); arXiv: hep-th/9811017.

66. N. Markus and A. Sagnotti, “A test of finiteness predictions for supersymmetric theories,” Phys. Lett. B
135 (1–3), 85–90 (1984).

67. N. Markus and A. Sagnotti, “The ultraviolet behavior of N = 4 Yang–Mills and the power counting of extended
superspace,” Nucl. Phys. B 256, 77–108 (1985).

68. V. Periwal and R. von Unge, “Accelerating D-branes,” Phys. Lett. B 430 (1–2), 71–76 (1998); arXiv: hep-
th/9801121.

69. I. B. Samsonov, “Low-energy effective action in two-dimensional SQED: A two-loop analysis,” J. High Energy
Phys. 2017 (07), 146 (2017); arXiv: 1704.04148 [hep-th].

70. N. Seiberg, “Notes on theories with 16 supercharges,” Nucl. Phys. B, Proc. Suppl. 67 (1–3), 158–171 (1998); arXiv:
hep-th/9705117.

71. A. A. Slavnov, “Ward identities in gauge theories,” Theor. Math. Phys. 10 (2), 99–104 (1972) [transl. from Teor.
Mat. Fiz. 10 (2), 153–161 (1972)].

72. A. A. Slavnov, “Renormalization of supersymmetric quantum electrodynamics,” Theor. Math. Phys. 23 (1),
305–310 (1975) [transl. from Teor. Mat. Fiz. 23 (1), 3–10 (1975)].

73. A. A. Slavnov, “Renormalization of supersymmetric gauge theories. II: Non-Abelian case,” Nucl. Phys. B 97 (1),
155–164 (1975).

74. A. A. Slavnov, L. O. Chekhov, and V. K. Krivoshchekov, “SUSY QCD effective action in the large N(c) limit,”
Phys. Lett. B 194 (2), 236–240 (1987).

75. J. C. Taylor, “Ward identities and charge renormalization of the Yang–Mills field,” Nucl. Phys. B 33 (2), 436–444
(1971).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 309 2020



HIDDEN SUPERSYMMETRY 77

76. A. A. Tseytlin, “On non-abelian generalisation of the Born–Infeld action in string theory,” Nucl. Phys. B 501 (1),
41–52 (1997); arXiv: hep-th/9701125.

77. A. A. Tseytlin and L. Casarin, “One-loop β-functions in 4-derivative gauge theory in 6 dimensions,” J. High
Energy Phys. 2019 (08), 159 (2019); arXiv: 1907.02501 [hep-th].

78. S. Weinberg, The Quantum Theory of Fields, Vol. 2: Modern Applications (Cambridge Univ. Press, Cambridge,
1996).

79. B. M. Zupnik, “Six-dimensional supergauge theories in harmonic superspace,” Sov. J. Nucl. Phys. 44 (3), 512–517
(1986) [transl. from Yad. Fiz. 44 (3), 794–802 (1986)].

80. B. M. Zupnik, “The action of the supersymmetric N = 2 gauge theory in harmonic superspace,” Phys. Lett. B
183 (2), 175–176 (1987).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 309 2020


