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Abstract—Let υ be a weight on (−1, 1), i.e., a measurable integrable nonnegative function
nonzero almost everywhere on (−1, 1). Denote by Lυ(−1, 1) the space of real-valued functions f

integrable with weight υ on (−1, 1) with the norm ‖f‖ =
∫ 1

−1 |f(x)|υ(x) dx. We consider

the problems of the best one-sided approximation (from below and from above) in the space
Lυ(−1, 1) to the characteristic function of an interval (a, b), −1 < a < b < 1, by the set of
algebraic polynomials of degree not exceeding a given number. We solve the problems in the
case where a and b are nodes of a positive quadrature formula under some conditions on the
degree of its precision as well as in the case of a symmetric interval (−h, h), 0 < h < 1, for an
even weight υ.

Keywords: one-sided approximation, characteristic function of an interval, algebraic polyno-
mials.
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1. DISCUSSION OF THE PROBLEM.

A LOWER ESTIMATE FOR THE BEST ONE-SIDED APPROXIMATION

Let υ be a measurable integrable nonnegative function nonzero almost everywhere on (−1, 1);

such a function is called a weight (on (−1, 1)). Denote by Lυ(−1, 1) the space of real-valued

functions f integrable with weight υ on (−1, 1); this space is equipped with the norm

‖f‖ = ‖f‖Lυ(−1,1) =

1∫
−1

|f(x)|υ(x) dx.

For a nonnegative integer n, denote by Pn the set of algebraic polynomials p(x) =
∑n

k=0 akx
k of

degree at most n with real coefficients.

In the present paper, for a pair of measurable functions f and g on the interval (−1, 1), the

inequality f ≤ g means that f(x) ≤ g(x) for almost all x ∈ (−1, 1). For a function f defined and

measurable on the interval [−1, 1], we consider the sets

P−
n (f) = {p ∈ Pn : p ≤ f}, P+

n (f) = {p ∈ Pn : p ≥ f} (1.1)
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BEST ONE-SIDED APPROXIMATION S69

of polynomials from Pn whose graphs lie under or over the graph of f, respectively. The function f

is assumed to be bounded from below in the former case and from above in the latter case. We are

interested in the values

E∓
n,υ(f) = inf{‖f − p‖ : p ∈ P∓

n (f)} (1.2)

of the best approximation to the function f from below and from above by the set Pn in the space

Lυ(−1, 1) as well as in extremal polynomials at which the infima in (1.2) are attained.

An important tool for studying problems (1.2) is a result by Bojanic and DeVore [1, proof

of Theorem 2] presented in Theorem A below. However, in Theorem A, it is assumed that the

inequality in (1.1) holds not almost everywhere but everywhere on [−1, 1]. In view of this, let us

impose some constraints on the approximated function f .

For a function f measurable and lower bounded on the interval [−1, 1], consider a function f

defined on [−1, 1] by the relation

f (x) = lim
ε→+0

ess inf{f(t) : t ∈ (x− ε, x+ ε) ∩ [−1, 1]}, x ∈ [−1, 1].

Let R− be the set of functions defined and lower bounded on [−1, 1], belonging to the space

Lυ(−1, 1), and such that f (x) ≤ f(x) for all x ∈ [−1, 1]. Functions f ∈ R− have the property that

if the inequality ϕ ≤ f holds for some continuous function ϕ almost everywhere on [−1, 1], then it

holds everywhere on this interval. As a consequence, for functions f ∈ R− and all n ≥ 0, we have

P−
n (f) =

{
p ∈ Pn : p(x) ≤ f(x), x ∈ [−1, 1]

}
.

Define R+ = −R− = {f : − f ∈ R−}. The sets R∓ contain, for example, functions continuous

on the interval [−1, 1] as well as discontinuous functions having on [−1, 1] only discontinuities of

the first kind at interior points of the interval under the condition that the value at a discontinuity

point is between the right and left limits.

Consider a quadrature formula

1∫
−1

υ(x)p(x) dx =
M∑
k=1

λkp(xk), p ∈ Pn, (1.3)

with nodes −1 ≤ x1 < x2 < · · · < xM ≤ 1 and positive weights λk > 0, 1 ≤ k ≤ M .

Such formulas are called positive. An important role in studying the problems of one-sided

approximation of functions by polynomials is played by positive quadrature formulas exact on

the set of polynomials Pn. The highest degree n of polynomials for which formula (1.3) holds

is called its algebraic degree of precision. Depending on the situation, some nodes in (1.3) can

be fixed while the others are assumed to be free; more exactly, the latter are chosen so that the

formula has the highest degree of precision (see, e.g., [2, Sect. 7.1]). One of the most known positive

quadrature formulas is the Gauss quadrature formula (1866), in which all M nodes are free; its

degree of precision is 2M − 1 (see, e.g., [2, Sect. 7.1]).

The following assertion is a special case of a more general result contained in [1, proof of

Theorem 2] (see also [3, Theorem 1.7.5]).

Theorem A. Assume that a positive quadrature formula (1.3) holds on the set Pn. Then the

following estimates are valid for functions f ∈ R∓, respectively :

E−
n (f) ≥

1∫
−1

υ(x)f(x) dx−
M∑
k=1

λkf(xk), E+
n (f) ≥

M∑
k=1

λkf(xk)−
1∫

−1

υ(x)f(x) dx. (1.4)
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S70 DEIKALOVA, TORGASHOVA

If an inequality in (1.4) turns into an equality, then the quadrature formula (1.3) is extremal in

the corresponding problem (1.2).

2. ONE-SIDED APPROXIMATION FROM BELOW

TO THE CHARACTERISTIC FUNCTION OF A HALF-OPEN INTERVAL (a, 1]

For −1 ≤ a < b ≤ 1, we introduce the universal notation for (half-)open intervals

J = J(a, b) =

⎧⎪⎪⎨
⎪⎪⎩
(a, b), −1 < a < b < 1,

(a, 1], −1 < a < b = 1,

[−1, b), a = −1 < b < 1.

(2.1)

Consider the problem on the one-sided approximation from below to the characteristic function

1J(t) =

{
1, t ∈ J,

0, t ∈ [−1, 1] \ J,
(2.2)

of an interval (2.1) by algebraic polynomials of a given degree n ≥ 0 in the space Lυ(−1, 1). The

problem consists in finding the value

E−
n (1J) = E−

n,υ(1J ) = inf
{
‖1J − pn‖Lυ(−1,1) : pn ∈ P−

n (1J )
}
. (2.3)

The characteristic functions (2.2) of intervals (2.1) belong to the sets R∓; hence, the first inequality

in (1.4) holds for (2.3).

Problems of weighted one-sided integral approximation to the characteristic functions of inter-

vals and related functions by algebraic or trigonometric polynomials arise in various branches of

mathematics and have a rich history. In this subject area, there are exact results (some of which will

be discussed later), order results, studies of asymptotic behavior (see [4–6] and references therein),

and various applications (see [3, 5, 7, 8] and references therein).

Let us outline only a few exact results on problem (2.3) closely related to the present paper; for

a more complete presentation of the topic, see [9]. In [5], the problem of one-sided approximation

to the periodic extension of the characteristic function of an interval (a, b) by trigonometric poly-

nomials in the integral metric with the Jacobi weight on the period was studied. An exact solution

was found in [5, Theorem 3] for some values a and b satisfying special conditions. In the case of the

unit weight, the problem was solved in [8] for an arbitrary interval located on the period; after the

cosine change, this result gives a solution to problem (2.3) for J = (a, 1] for all a ∈ (−1, 1) with the

Chebyshev weight of the first kind υ(t) = (1 − t2)−1/2. In [7], problem (2.3) of one-sided integral

approximation to the characteristic function of an arbitrary half-open interval (a, 1], −1 < a < 1,

by algebraic polynomials on [−1, 1] with the unit weight was solved and the whole class of extremal

polynomials was described. This problem in the space Lυ(−1, 1) with an arbitrary weight was

solved in [9]. Let us describe the main result of [9] in a form convenient for us.

In the study of problems (2.3) of one-sided approximation to the characteristic function of an

interval by polynomials, M -point quadrature formulas (1.3) are used, in which the set u of fixed

nodes either is empty or contains one, two, or three nodes of a specific form:

∅, {−1}, {1}, {−1, 1}, (2.4)
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BEST ONE-SIDED APPROXIMATION S71

{θ}, {−1, θ}, {θ, 1}, {−1, θ, 1}, where θ ∈ (−1, 1), (2.5)

and the other M−|u| nodes are chosen so as to maximize the algebraic degree of precision; here, |u|
is the cardinality of the set u, i.e., the number of points in it. It is known (see, e.g., [2, Sect. 7.1])

that the degree of precision of this formula is n = 2M − 1− |u|. Formulas (1.3) take the form

1∫
−1

υ(x)p(x)dx =

M∑
k=1

λkp
(
xk

)
, p ∈ P2M−1−|u|; (2.6)

in what follows, we sometimes use more precise (in comparison with (1.3)) notation for the nodes

{xk = xuk = xk(u, v,M)}Mk=1 and weights (coefficients) {λk = λu
k = λk(u, v,M)}Mk=1 in formula (2.6).

In the case of the empty set u (there are no fixed nodes), formula (2.6) is the classical Gauss

quadrature formula (see [2, Sect. 7.1]). In the case of one fixed node coinciding with one of the

end points of the interval [−1, 1], i.e., in the case where u = {−1} or u = {1}, formula (2.6) is the

left and right Radau quadrature formula, respectively; in the case u = {−1, 1}, (2.6) is the Lobatto
quadrature formula. It is known (see the references in [7,9,10]) that formula (2.6) is positive in all

these cases.

For each of the sets u of fixed nodes from (2.5), the set Θu
M of values of the parameter θ ∈ (−1, 1)

for which quadrature formula (2.6) has positive weights was described in [7,10]. Such formulas are

called quasi Gauss, quasi (left and right) Radau, and quasi Lobatto positive quadrature formulas.

In what follows, we consider formula (2.6) with fixed nodes (2.5) only for θ ∈ Θu
M .

Thus, a quadrature formula of the form (2.6) with fixed nodes (2.4) and with fixed nodes (2.5) is

positive. The degree of precision of formula (2.6) with fixed nodes (2.4) and with fixed nodes (2.5)

is N = 2M − 1 − |u|. Moreover, for each n ∈ N and a ∈ (−1, 1), there exists [10, Theorem 1.1,

Corollary 1.2, Remark 1.3] a specific positive quadrature formula of the form (2.6).

The value of the best approximation from below

E−
n,υ(1(a,1]) = min{‖1(a,1] − pn‖Lυ(−1,1) : pn ∈ P−

n (1(a,1])} (2.7)

and an extremal polynomial pan = pυn,a at which the minimum in (2.7) is attained were found for

all values a ∈ (−1, 1) and n ≥ 1 in the case of the unit weight υ ≡ 1 in [7] and in the case of an

arbitrary weight υ in [9]. The results of several statements from [9, Sect. 3] containing the solution

of problem (2.7) are collected in the following theorem in a form convenient for us.

Theorem B [9, Sect. 3]. The following statements hold for M ∈ N, M ≥ 3.

(1) If the number a ∈ (−1, 1) coincides with one of the nodes of an M-point positive quadrature

formula (2.6) different from the maximum node, i.e., a = xuν , 1 ≤ ν ≤ M − 1, then

E−
n,υ(1(a,1]) =

∫
(a,1]

υ(x)dx −
M∑

k=ν+1

λu
k

for n = 2M−2−|u| and n = 2M−1−|u| in the case of fixed nodes (2.4) and for n = 2M−1−|u| in
the case of fixed nodes (2.5). Moreover, the corresponding quadrature formula is extremal, and the

polynomial of the best approximation from below is the polynomial pan ∈ P−
n (1(a,1]) that interpolates

the function 1(a,1] at the nodes of the quadrature formula; the degree of this polynomial is n =

2M − 2− |u| for u from (2.4) and n = 2M − 1− |u| for u from (2.5).
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S72 DEIKALOVA, TORGASHOVA

(2) If the maximum node xuM of formula (2.6) is less than 1, then

E−
n,υ(1(a,1]) =

∫
(a,1]

υ(x) dx

for xuM ≤ a < 1 and all 0 ≤ n ≤ 2M−1−|u|, and p∗ ≡ 0 is the polynomial of the best approximation

from below.

3. ONE-SIDED APPROXIMATION TO THE CHARACTERISTIC FUNCTION

OF AN INTERVAL INTERIOR FOR [−1, 1]

In this section, we discuss the problem of one-sided approximation from below and from above

to the characteristic function 1(a,b) of an interval (a, b) whose end points a and b are nodes of a

positive quadrature formula with some properties specified below. In particular, Theorem B makes

it possible to find solutions of problems (3.1) for intervals (a, b) whose end points are nodes of any

quadrature formulas (2.6). The problem of one-sided approximation from below

E−
n (1(a,b)) = E−

n,υ(1(a,b)) = inf
{
‖1(a,b) − pn‖Lυ(−1,1) : pn ∈ P−

n (1(a,b))
}

(3.1)

will be studied most thoroughly.

3.1. Extremal polynomials in problem (2.7). Let us first discuss the construction and

properties of extremal polynomials in problem (2.7) under the assumption that its solution is

obtained by means of a certain positive quadrature formula.

Let
1∫

−1

υ(x)p(x) dx =

M∑
k=1

λkp(xk), p ∈ PN , (3.2)

be a positive quadrature formula with the nodes {xk}Mk=1 indexed in ascending order, and let N

be its degree of precision. We will assume that the parameter a coincides with one of the nodes

of this formula different from the largest node: a = xk(a), 1 ≤ k(a) < M ; thus, M ≥ 2. We are

interested in the situation when (3.2) is an extremal quadrature formula of problem (2.7), i.e., the

first inequality in (1.4) turns into an equality for the function f = 1(a,1] and the corresponding

degree n. This equality takes the form

E−
n,υ(1(a,1]) =

1∫
a

υ(t)dt−
∑

k(a)<k≤M

λk.

The degree of precision N of formula (3.2) may differ form the degree n in problem (2.7); i.e., in

general, N ≥ n.

The degree of precision of formula (3.2), the degree n in (2.7), and the exact degree of an

extremal polynomial as well as its other properties depend on certain characteristics of the nodes

of the formula. In particular, it is important whether the points ∓1 are the nodes. Following [9],

we introduce parameters s and r, each of which can take only two values {0, 1} in accordance with

the following rule. We set s = 1 if the point −1 is a node of formula (3.2) and s = 0 otherwise.

Similarly, r = 1 if the point 1 is a node of formula (3.2) and r = 0 otherwise.
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Denote by ρ a Hermite polynomial that interpolates the function 1(a,1] at the nodes {xk}Mk=1

with different multiplicity. More precisely, at the point a and at the points ∓1, if they are nodes

of the quadrature formula, the polynomial ρ interpolates only the values of the function 1(a,1];

the number of such nodes is 1 + s + r. At the other M − (1 + s + r) nodes of formula (2.7), the

polynomial ρ interpolates both the values of the function 1(a,1] and the values of its derivative:

ρ(xk) = 1(a,1](xk) and ρ′(xk) = 0. The total number of interpolation conditions is

K = 2(M − (1 + s+ r)) + (1 + s+ r) = 2M − 1− s− r.

A polynomial with such interpolation properties exists; its degree is n0 = K − 1 = 2M − 2− s− r

(see, for example, [11, Ch. 2, Sect. 11] or [12, Lecture 4, Sect. 4.3]). In what follows, we denote

this polynomial by pan0
and call it the Hermite interpolation polynomial of the function 1(a,1] at the

nodes of the quadrature formula (3.2).

Lemma 1. Assume that the parameter a ∈ (−1, 1) is not the largest node of a positive

quadrature formula (3.2); more precisely, a = xk(a), 1 ≤ k(a) ≤ M − 1. Formula (3.2) is extremal

in problem (3.1) if and only if the degree of precision N of formula (3.2) satisfies the condition

N ≥ n0 = 2M − 2− s− r (3.3)

and n0 ≤ n ≤ N . The following statements hold in this situation.

(1) The value (2.7) is the same for all n0 ≤ n ≤ N :

E−
n (1(a,1]) =

1∫
a

υ(t)dt−
∑

k(a)<k≤M

λk. (3.4)

(2) The Hermite interpolation polynomial pan0
of the function 1(a,1] at the nodes {xk}Mk=1

of the quadrature formula (3.2) belongs to the set P−
n0
(1(a,1]) and is an extremal polynomial of

problem (2.7) for all n with the property n0 ≤ n ≤ N .

Proof. The lemma is proved by methods known in this subject area (see, for example, [9]).

However, in view of some specific aspects, we consider it necessary to present a complete proof.

Assume that formula (3.2) is extremal in problem (2.7). This means that n ≤ N and the first

inequality in (1.4) turns into an equality for the function f = 1(a,1]. Hence, the polynomial

pn ∈ P−
n (1(a,1]) is extremal in problem (2.7) if and only if this polynomial interpolates the function

1(a,1] at the nodes {xk}Mk=1 of the quadrature formula (3.2). The condition pn(x) ≤ 1(a,1](x),

x ∈ [−1, 1], implies that if xk ∈ (−1, 1) and xk 	= a, then, along with the property of the Lagrange

interpolation pn(xk) = 1(a,1](xk), the condition p′n(xk) = 0 must also hold. As noted above, the

degree of such polynomial is n0 = 2M − 2 − s − r. Therefore, n0 ≤ n ≤ N . Property (3.3) is

verified. Let us check that statements (1) and (2) of the lemma also hold.

The polynomial pan0
interpolating the function 1(a,1] at the nodes of the quadrature formula (3.2)

has the property pan0
(x) ≤ 1(a,1](x), x ∈ [−1, 1]; i.e., pan0

∈ P−
n0
(1(a,1]). The proof of this and similar

properties of Hermite interpolation polynomials goes back to A.A.Markov and T.I. Stieltjes and

has a rich history (see [9] and references therein).

For convenience, define ρ = pan0
. Consider zeros of the derivative ρ′ of the polynomial ρ. Let

a = xk(a), 1 < k(a) < M . By Rolle’s theorem, the derivative ρ′ has a zero in each of the intervals

(xk, xk+1), k = 1, 2, . . . , k(a)− 1, k(a) + 1, . . . ,M ; the number of such zeros is M − 2. In addition,

the derivative has M − (1 + s + r) zeros at the nodes of the quadrature formula. As a result, ρ′
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has at least M − 2 + M − (1 + s + r) = 2M − 3 − s − r = n0 − 1 zeros on the interval (−1, 1).

The derivative ρ′ is a polynomial of degree n0 − 1 and, therefore, ρ′ has no other zeros. Hence, the

polynomial ρ increases from 0 to 1 on [xk(a), xk(a)+1]. It is easy to see that the graph of ρ does not

exceed the graph of 1(a,1] on each of the intervals [xk, xk+1], k 	= k(a), and on the intervals [−1, x1]

and [xM , 1]. Thus, indeed, ρ(x) ≤ 1(a,1](x) for x ∈ [−1, 1]; i.e., ρ = pan0
∈ P−

n0
(1(a,1]).

Consequently, the polynomial ρ = pan0
is extremal in problem (2.7) for n = n0. In the case

when the degree of precision N of formula (3.2) is greater than n0, the polynomial pan0
is extremal

in problem (2.7) for all n such that n0 ≤ n ≤ N .

Conversely, assume that condition (3.3) holds. The Hermite interpolation polynomial pan0
of

the function 1(a,1] at the nodes of the quadrature formula (3.2) has degree n0 and, as shown above,

belongs to P−
n0
(1(a,1]). Hence, the quadrature formula (3.2) and the polynomial pan0

are extremal in

problem (2.7) for all n such that n0 ≤ n ≤ N . Indeed, for an arbitrary polynomial pn ∈ P−
n (1(a,1])

with n0 ≤ n ≤ N, we have

‖1(a,1] − pn‖Lυ(−1,1) =

1∫
−1

υ(t)(1(a,1](t)− pn(t))dt =

1∫
a

υ(t)dt −
1∫

−1

υ(t)pn(t)dt.

Applying formula (3.2) and the property pn ≤ 1(a,1] on [−1, 1], we obtain

1∫
−1

υ(t)pn(t)dt =
M∑
k=1

λkp(xk) ≤
M∑
k=1

λk 1(a,1](xk) =
∑

k(a)<k≤M

λk.

Thus,

‖1(a,1] − pn‖Lυ(−1,1) ≥
1∫

a

υ(t)dt−
∑

k(a)<k≤M

λk. (3.5)

The right-hand side of the latter inequality is ‖1(a,1] − pan0
‖Lυ(−1,1). Therefore, (3.5) implies that

‖1(a,1] − pn0‖Lυ(−1,1) ≥ E−
n (1(a,1]) ≥

1∫
a

υ(t)dt−
∑

k(a)<k≤M

λk = ‖1(a,1] − pn0‖Lυ(−1,1).

Consequently, the quadrature formula (3.2) for all n0 ≤ n ≤ N and the polynomial pan0
are extremal

in problem (2.7). Lemma 1 is proved completely. �
The following statement is well known (see, e.g., [9, Proposition 2]); we present it here without

proof.

Proposition A. If the largest node xM of a positive quadrature formula (3.2) is less than 1,

then value (2.7) for all 0 ≤ n ≤ N satisfies the following equality for xM ≤ a ≤ 1:

E−
n (1(a,1]) =

1∫
a

υ(t)dt,

and the polynomial pan ≡ 0 is extremal.

Consider the problem on the best approximation from below

E−
n (1[−1,b)) = E−

n,υ(1[−1,b)) = min
{
‖1[−1,b) − pn‖Lυ(−1,1) : pn ∈ P−

n (1[−1,b))
}

(3.6)
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to the characteristic function 1[−1,b) of the half-open interval [−1, b), −1 < b < 1, by algebraic

polynomials of a given degree. This problem is related to (2.7).

A statement similar to Lemma 1 holds for problem (3.6) and formula (3.2). Denote by qbn0
the

Hermite polynomial that interpolates the function 1[−1,b) at the nodes {xk}Mk=1 in the same sense

as earlier. Specifically, the polynomial qbn0
interpolates only the values of 1[−1,b) at the point a and

at the points ∓1 if they are nodes of the quadrature formula. The polynomial qbn0
interpolates both

the values of the function 1[−1,b) and the values of its derivative at the other nodes of formula (3.2):

qbn0
(xk) = 1[−1,b)(xk) and (qbn0

)′(xk) = 0. The degree of this polynomial is n0 = 2M − 2 − s − r

again. We will call this polynomial the Hermite interpolation polynomial of the function 1[−1,b) at

the nodes of the quadrature formula (3.2). The following statement is proved by the same scheme

as Lemma 1; we omit its proof.

Lemma 2. Assume that a positive quadrature formula (3.2) has the property N ≥ n0 =

2M − 2− s− r. Then the following statements hold for any node b of this formula lying on (−1, 1)

and different from the first node, i.e., for b = xk(b), 1 < k(b) ≤ M .

(1) The value (3.6) is the same for all n0 ≤ n ≤ N :

E−
n (1[−1,b)) = E−

n0
(1[−1,b)) =

b∫
−1

υ(t)dt −
∑

1≤k<k(b)

λk. (3.7)

In particular, this means that formula (3.2) is extremal in problem (3.6).

(2) The Hermite interpolation polynomial qbn0
of the function 1[−1,b) at the nodes {xk}Mk=1

of the quadrature formula (3.2) belongs to the set P−
n0
(1[−1,b)) and is an extremal polynomial in

problem (3.6) for all n such that n0 ≤ n ≤ N .

The following statement is an analog of Proposition A.

Proposition B. If the smallest node x1 of a positive quadrature formula (3.2) is greater

than −1, then value (2.7) satisfies the following equality for all 0 ≤ n ≤ N and −1 < b ≤ x1:

En(1[−1,b)) =

b∫
−1

υ(t)dt,

and the polynomial qbn ≡ 0 is extremal.

Remark 1. Let us agree that if the set of summation indices in a sum is empty, then the sum

is zero. Then, according to Proposition A and Lemma 1, formula (3.4) is also valid when a is the

largest node of the quadrature formula (3.2). Similarly, according to Proposition B and Lemma 2,

formula (3.7) is also valid when b is the smallest node of the quadrature formula (3.2).

3.2. One-sided approximation from below to the characteristic function of an in-

terval (a, b) ⊂ [−1, 1]. The following statement for problem (3.1) can be proved with the use

of Lemmas 1 and 2.

Theorem 1. Assume that a positive quadrature formula (3.2) has the property N ≥ n0 =

2M − 2− s− r. Then, for any two nodes a, b ∈ (−1, 1) of this formula, specifically, a = xk(a) and

b = xk(b), where 1 ≤ k(a) < k(b) ≤ M, the following statements hold.
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(1) The value (3.1) is the same for all n0 ≤ n ≤ N :

En(1(a,b)) = En0(1(a,b)) =

b∫
a

υ(t)dt−
∑

k(a)<k<k(b)

λk.

In particular, this means that formula (3.2) is extremal in problem (3.1).

(2) The polynomial

	abn0
= pan0

+ qbn0
− 1 (3.8)

of degree n0 has the property

	abn0
(x) ≤ 1(a,b)(x), x ∈ [−1, 1]; (3.9)

i.e., 	abn0
∈ P−

n0
(1(a,b)); it is extremal in problem (3.1) for all n such that n0 ≤ n ≤ N .

Proof. Obviously, 1(a,1] + 1[−1,b) − 1 = 1(a,b). This implies property (3.9). Let us now use

the standard argument that we have already applied above to prove Lemma 1. For an arbitrary

polynomial pn ∈ P−
n (1(a,b)) with n0 ≤ n ≤ N, we have

‖1(a,b) − pn‖Lυ(−1,1) =

1∫
−1

υ(t)(1(a,b)(t)− pn(t))dt =

b∫
a

υ(t)dt−
1∫

−1

υ(t)pn(t)dt.

Applying formula (3.2) and the property pn(x) ≤ 1(a,b)(x), x ∈ [−1, 1], we obtain the estimate

‖1(a,b) − pn‖Lυ(−1,1) ≥
b∫

a

υ(t)dt−
∑

k(a)<k<k(b)

λk. (3.10)

Inequality (3.10) turns into an equality at the polynomial 	abn0
= pan0

+ qbn0
− 1. Indeed,

‖1(a,b) − 	abn0
‖Lυ(−1,1) =

1∫
−1

υ(t)
(
1(a,1](t)− pan0

(t) + 1[−1,b)(t)− qbn0
(t)

)
dt.

Using formulas (3.4) and (3.7), we obtain

‖1(a,b) − 	abn0
‖Lυ(−1,1) =

1∫
a

υ(t)dt+

b∫
−1

υ(t)dt −
( ∑

k(a)<k≤M

λk +
∑

1≤k<k(b)

λk

)

=

1∫
−1

υ(t)dt−
∑

1≤k≤M

λk −
b∫

a

υ(t)dt+
∑

k(a)<k<k(b)

λk.

Formula (3.2) for the polynomial p ≡ 1 takes the form

∫ 1

−1
υ(t) dt =

∑M
k=1 λk. Thus, we indeed

have the equality

‖1(a,b) − 	abn0
‖Lυ(−1,1) =

b∫
a

υ(t)dt −
∑

k(a)<k<k(b)

λk.
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Using this equality, we obtain

‖1(a,b) − 	abn0
‖Lυ(−1,1) ≥ En(1(a,b)) ≥

b∫
a

υ(t)dt −
∑

k(a)<k<k(b)

λk = ‖1(a,b) − 	abn0
‖Lυ(−1,1).

Consequently, the quadrature formula (3.2) and the polynomial 	abn0
are extremal in problem (3.1)

for all n such that n0 ≤ n ≤ N . Theorem 1 is proved completely. �
Remark 2. The extremal polynomial (3.8) has degree n0 = 2M − 2 − s − r and has prop-

erty (3.9), as seen from its construction. Consider the Hermite polynomial ρ that interpolates

the function 1(a,b) at the nodes {xk}Mk=1; more precisely, the polynomial ρ interpolates only the

values of 1(a,b) at the points a and b and at the points ∓1 if they are nodes of the quadrature

formula, while, at the other nodes xk, it interpolates the values of the function 1(a,b) and of its

derivative, which, in this case, means the property ρ′(xk) = 0. The degree of such polynomial is

n = n0 − 1 = 2M − 3 − s − r. As in the proof of Lemma 1, it is easy to see that ρ(x) ≤ 1(a,b)(x),

x ∈ [x1, xM ]. However, the inequality

ρ(x) ≤ 1(a,b)(x), x ∈ [−1, 1], (3.11)

may not hold on the whole interval [−1, 1]. An example of such situation is the case of the 5-point

Gauss quadrature formula with the nodes

x1 = −x5 = −1

3

√
5 + 2

√
10

7
, x2 = −x4 = −1

3

√
5− 2

√
10

7
, x3 = 0

for a = x1 and b = x3. In this case, the polynomial ρ constructed by the described method has de-

gree 7. Calculations with the Maple package give an approximate value ρ(−1) = 0.1650513613 . . . ;

it only matters that this value is positive. Thus, in some neighborhood of the point −1, the graph

of ρ lies above the graph of 1(a,b), so that property (3.11) is violated in this case.

If property (3.11) holds, then we have E−
n0−1(1(a,b)) = E−

n0
(1(a,b)) for value (3.1). This is exactly

the situation in the example considered in Section 3.3.

We now apply Theorem 1 for problem (3.1) under the assumptions of Theorem B. The degree

of precision of (2.6) is N = 2(M − (s + r))− 1 + (s + r) = 2M − 1 − (s + r)) in the case of fixed

nodes (2.4) and N = 2(M − (1 + s+ r))− 1 + (1 + s+ r) = 2M − 1− (1 + s+ r) in the case (2.5).

The parameter n0 of formula (2.6) is n0 = 2M−2−(s+r) in both cases; thus, the condition n0 ≤ N

holds in both cases. Recall that, for the nodes a and b of the quadrature formula (2.6) different

from the largest and smallest nodes, respectively, the polynomial 	abn0
= pan0

+ qbn0
− 1 of degree n0

is defined, in which pan0
and qbn0

are the polynomials (of degree n0 each) that perform the corre-

sponding Hermitian interpolation of the functions 1(a,1] and 1[−1,b) at the nodes of the quadrature

formula. The following statement follows from the above argument.

Theorem 2. If numbers a and b, −1 < a < b < 1, are nodes of an M -point positive quadrature

formula (2.6), more precisely,

a = xuk(a), b = xuk(b), k(a) < k(b),
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then the following equality holds for n = 2M − 2 − |u| and n = 2M − 1 − |u| in the case of fixed

nodes of the form (2.4) and for n = 2M − 1− |u| in the case of fixed nodes of the form (2.5):

E−
n (1(a,b)) =

b∫
a

υ(x)dx −
∑

k(a)<k<k(b)

λu
k.

The corresponding quadrature formula is extremal and the polynomial of the best approximation from

below is polynomial (3.8) of degree n = 2M − 2 − |u| in the case of fixed nodes of the form (2.4)

and of degree n = 2M − 1− |u| in the case of fixed nodes of the form (2.5).

3.3. A specific example of one-sided approximation to the characteristic function

of an interval. Consider problem (3.1) in the case of the unit weight υ ≡ 1 for the nodes a = x∗1,4
and b = x∗3,4 of the 4-point Gauss quadrature formula

1∫
−1

f(x) dx =

4∑
�=1

λ∗
�,4f(x

∗
�,4), f ∈ P7, (3.12)

whose degree of precision is N = 7. In this case, M = 4 and s = r = 0; hence, n0 = 6. Theorems 1

and 2 can be applied in this situation. However, our aim is to show that, based on Remark 2,

we can also obtain a solution of the problem for n = n0 − 1 = 5. The construction of (3.12) and

justification of Theorem 3 below are carried out with the help of elementary, though cumbersome,

calculations; we will give them here only schematically.

The nodes of formula (3.12) are zeros of the Legendre polynomial (see, for example, [13, Ch. IV])

P4(z) =
1

8
(35z4 − 30z2 + 3);

specifically,

x∗1,4 = −x∗4,4 = − 1

35

√
525 + 70

√
30, x∗2,4 = −x∗3,4 = − 1

35

√
525 − 70

√
30.

The quadrature formula (3.12) is interpolating, and its coefficients are found by the formula

λ∗
�,4 =

1∫
−1

ω(x)

ω′(x∗�,4)(x− x∗�,4)
dx, ω(x) =

4∏
�=1

(x− x∗�,4);

they are positive and have the following values:

λ∗
1,4 = λ∗

4,4 = − 1

36

√
30 +

1

2
, λ∗

2,4 = λ∗
3,4 =

1

36

√
30 +

1

2
.

Theorems 1 and 2 contain a solution of problem (3.1) for the interval J =
(
x∗1,4, x

∗
3,4

)
for n = 6

and 7. Now we will give a solution of the problem for n = 5. To construct an extremal polynomial

for the problem, we start with the fifth degree polynomial

ρ(t) = (t− ξ)(t− x∗1,4)(t− x∗3,4)(t− x∗4,4)
2. (3.13)
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We choose the root ξ of polynomial (3.13) from the condition ρ ′(x∗2,4) = 0. An elementary

calculation gives the value

ξ = −−45
√

525 − 70
√
30 + 12

√
525− 70

√
30

√
30 + 15

√
525 + 70

√
30− 2

√
525 + 70

√
30

√
30

−1575 + 280
√
30 +

√
525− 70

√
30

√
525 + 70

√
30

;

(3.14)

this value is approximately −1.161692293 . . . . What we need next is the fact that ξ < −1, which

one can see with the help of elementary transformations, based on (3.14).

Theorem 3. For the unit weight υ ≡ 1, the value E−
n (1J ) of one-sided approximation from

below to the characteristic function of the interval J = (x∗1,4, x
∗
3,4) by polynomials of degree n = 5,

6, and 7 is the same:

E−
n (1J ) = x∗3,4 − x∗1,4 − λ∗

2,4.

In this case, the fifth degree polynomial

p∗(t) =
ρ(t)

ρ(x∗2,4)
, ρ(t) = (t− ξ)(t− x∗1,4)(t− x∗3,4)(t− x∗4,4)

2, (3.15)

in which the point ξ is defined by formula (3.14), is a polynomial of the best approximation of the

function 1J from below ; this polynomial interpolates the function 1J at the nodes of formula (3.12).

Proof. It is seen from (3.13) that the polynomial ρ has the following signs on [−1, 1]:

ρ(t) ≥ 0 for t ∈ [−1, x∗1,4] and t ∈ [x∗3,4, 1]; ρ(t) < 0 for t ∈ (x∗1,4, x
∗
3,4).

The derivative ρ′ of the polynomial ρ can vanish on [x∗1,4, x
∗
3,4] at only one point; by the construction

of ρ, this is the point x∗2,4. Hence, ρ(x∗2,4) < 0, and this is the absolute minimum of ρ on [−1, 1].

Therefore, polynomial (3.15) interpolates the function 1J at the nodes of formula (3.12) and has

the property p∗ ≤ 1J . This polynomial gives an upper estimate for E−
n,1(1J ) for all n ≥ 5.

By Theorem A, the Gauss quadrature formula (3.12) gives a lower estimate for E−
n,1(1J ) for all

n ≤ 7, which coincides with the upper estimate for 5 ≤ n ≤ 7. Theorem 3 is proved. �

3.4. One-sided approximation from above to the characteristic function of an in-

terval (a, b) ⊂ [−1, 1]. Let us now discuss the problem of one-sided approximation

E+
n (1(a,b)) = E+

n,υ(1(a,b)) = inf
{
‖1(a,b) − pn‖Lυ(−1,1) : pn ∈ P+

n (1(a,b))
}

(3.16)

to the characteristic function 1(a,b) of an interval (a, b) from above. For this problem, analogs of all

statements presented above in Sections 3.1 and 3.2 for problem (3.1) of one-sided approximation

from below are valid.

We start with the positive quadrature formula (3.2), whose degree of precision N satisfies the

condition N ≥ n0 = 2M − 2 − s − r. Let a ∈ (−1, 1) be a node of this formula. If it is not the

smallest node, then denote by ρ = pan0
the Hermite polynomial of degree n0 that interpolates the

characteristic function 1[a,1] of the interval [a, 1] at the nodes of formula (3.2); more precisely, it

interpolates only the values of this function at the points ∓1 if they are nodes of the quadrature

formula and at the point a; in particular, ρ(a) = 1. At the other nodes of formula (3.2), the

polynomial ρ interpolates both the values of the function 1[a,1] and the values of its derivative:

ρ(xk) = 1[a,1](xk) and ρ′(xk) = 0. A polynomial with these interpolation properties exists (see,

for example, [11, Ch. 2, Sect. 11] or [12, Lect. 4, Sect. 4.3]). If a ∈ (−1, 1) is the smallest node of
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formula (3.2), then we define pan0
≡ 1; this polynomial again performs the Hermitian interpolation

of the function 1[a,1] at the nodes of formula (3.2).

The polynomial pan0
belongs to the set P+

n0
(1[a,1]) and is extremal in problem (3.6) of ap-

proximation to the characteristic function from above for all n with the property n0 ≤ n ≤ N .

This can be verified in various ways, for example, using the following considerations. Obviously,

the equality E+
n (f) = E−

n (1 − f) holds for every measurable bounded function f for all n ≥ 1

together with the corresponding relation between extremal polynomials. For the function 1[a,1],

we have 1 − 1[a,1] = 1[−1,a). The polynomial 1 − pan0
performs the Hermitian interpolation of the

function 1[−1,a) at the nodes of the quadrature formula (3.2). Hence, it coincides with the extremal

polynomial qan0
of the problem on studying the value E−

n0
(1[−1,a)) defined by formula (3.6). Thus,

pan0
= 1− qan0

. Lemma 2 and Proposition B guarantee all extremal properties of pan0
.

For a node b ∈ (−1, 1) of formula (3.2) different from the largest one, denote by qan0
the Hermite

polynomial of degree n0 that interpolates the characteristic function 1[−1,b] of the interval [−1, b]

at the nodes of formula (3.2). Note that, at the points ∓1 if they are nodes of the quadrature

formula and at the point a, the polynomial qbn0
interpolates only the values of the function 1[a,1];

in particular, qbn0
(b) = 1. At the other nodes of formula (3.2), the polynomial qbn0

interpolates both

the values of the function 1[a,1] and the values of its derivative. If b ∈ (−1, 1) is the largest node of

formula (3.2), then we define qbn0
≡ 1; this polynomial also performs the Hermitian interpolation

of the function 1[−1,b] at the nodes of formula (3.2).

The polynomial qbn0
belongs to the set P+

n0
(1[−1,b]) and is extremal in the problem of approx-

imation to the characteristic function 1[−1,b] of the interval [−1, b] from above for all n with the

property n0 ≤ n ≤ N .

The following statement is proved by the same scheme as Theorem 1.

Theorem 4. Let a quadrature formula (3.2) be positive, and let N ≥ n0 = 2M − 2 − s − r.

Then the following statements hold for every two nodes a, b ∈ (−1, 1) of this formula, a = xk(a) and

b = xk(b), where 1 ≤ k(a) < k(b) ≤ M .

(1) The value (3.16) is the same for all n0 ≤ n ≤ N :

E+
n (1(a,b)) = E+

n0
(1(a,b)) =

k(b)∑
k=k(a)

λk −
b∫

a

υ(t)dt.

(2) The polynomial 	abn0
= pan0

+ qbn0
− 1 of degree n0 has the property

	abn0
(x) ≥ 1(a,b)(x), x ∈ [−1, 1];

i.e., 	abn0
∈ P+

n0
(1(a,b)), and it is extremal in problem (3.16) for all n such that n0 ≤ n ≤ N .

As a consequence of Theorem 4, an analog of Theorem 2 is also valid for problem (3.16).

4. ONE-SIDED APPROXIMATION TO THE CHARACTERISTIC FUNCTION

OF A SYMMETRIC INTERVAL IN THE CASE OF AN EVEN WEIGHT

The results of [9] related to problem (2.7) and described in Theorem B allow us to write a

solution of the problem of best one-sided integral approximation from below and from above to

the characteristic function of a symmetric interval J = (−h, h), 0 < h < 1, in the case of an even

weight.
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We restrict ourselves to the problem (2.3) of approximation from below and start with the

following problem. Let v be a weight on the interval (0, 1). Consider the problem on the best

approximation from below

E−
n (1[0,h2)) = E−

n (1[0,h2))Lv(0,1) = min
{
‖1[0,h2) − pn‖Lv(0,1) : pn ∈ P−

n (1[0,h2))
}

(4.1)

to the characteristic function 1[0,h2) of a half-open interval J = [0, h2) in the space Lv(0, 1) on the

interval (0, 1) by the set of algebraic polynomials of degree n ≥ 1. By a linear change of variable,

this problem reduces to a problem of type (2.3) on (−1, 1) whose solution, as noted above, was

given in [9]. In the following statement, by means of fairly simple considerations, it is shown that

problem (4.1) is equivalent to the problem

E−
2n+1(1(−h,h))Lw(−1,1) = min

{
‖1(−h,h) − q2n+1‖Lw(−1,1) : q2n+1 ∈ P−

2n+1(1(−h,h))
}

(4.2)

for the weight w(t) = v(t2)|t|, t ∈ (−1, 1).

Theorem 5. For 0 < h < 1 and n ≥ 1, problems (4.2) and (4.1) are equivalent ; more

precisely, the following statements hold :

(1)

E−
2n+1(1(−h,h))Lw(−1,1) = E−

n (1[0,h2))Lv(0,1); (4.3)

(2) a polynomial p∗n is extremal in problem (4.1) if and only if the polynomial p∗n(t
2) is extremal

in problem (4.2).

Proof. Assume that pn ∈ P−
n (1[0,h2)) on (0, 1), i.e., pn is a polynomial of degree at most n

with the property pn(t) ≤ 1[0,h2)(t), t ∈ (0, 1). Then the polynomial q2n(t) = pn(t
2) has the

property q2n(t) ≤ 1(−h,h)(t), t ∈ (−1, 1). Making the change η = t2 in the integral

‖1[0,h2) − pn‖Lv(0,1) =

1∫
0

v(η)(1[0,h2)(η) − pn(η))dη,

we get

‖1[0,h2) − pn‖Lv(0,1) = 2

1∫
0

v(t2)t(1[0,h2)(t
2)− pn(t

2))dt

= 2

1∫
0

v(t2)t(1[0,h)(t)− q2n(t))dt =

1∫
−1

v(t2)|t|(1(−h,h)(t)− q2n(t))dt.

Hence, E−
2n+1(1(−h,h))Lw(−1,1) ≤ ‖1[0,h2) − pn‖Lv(0,1), which yields

E−
2n+1(1(−h,h))Lw(−1,1) ≤ E−

n (1[0,h2))Lv(0,1). (4.4)

Conversely, let a polynomial q2n+1 of degree 2n + 1 be such that q2n+1(t) ≤ 1(−h,h)(t) for

t ∈ (−1, 1). The polynomial q2n(t) = (q2n+1(t) + q2n+1(−t))/2 also satisfies the inequality q2n(t) ≤
1(−h,h)(t), t ∈ (−1, 1). The polynomial q2n is even, has degree 2n, and, hence, is representable in

the form q2n(t) = pn(t
2), where pn is a polynomial of degree n with the property pn(t) ≤ 1[0,h2)(t),

t ∈ (0, 1). Hence,

E−
n (1[0,h2))Lv(0,1) ≤ ‖1(−h,h) − q2n‖Lw(−1,1) = ‖1(−h,h) − q2n+1‖Lw(−1,1).
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Consequently,

E−
n (1[0,h2))Lv(0,1) ≤ E−

2n+1(1(−h,h))Lw(−1,1). (4.5)

Inequalities (4.4) and (4.5) imply equality (4.3). The first statement of the theorem is proved. The

second statement is easy to obtain by analyzing the above proof. Theorem 5 is proved. �
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