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Abstract—We consider an optimal control problem for a hybrid system whose continuous
motion alternates with discrete variations (switchings) under which the dimension of the state
space changes. The moments and the number of switchings are not specified in advance. They
are determined as a result of minimizing a functional that incorporates the cost of each switch-
ing. The state space may change, for example, when the number of control objects varies, which
is typical, in particular, of control problems for groups of a variable number of aircraft. We
obtain sufficient optimality conditions for such systems and derive equations for the synthesis
of optimal trajectories. The application of optimality conditions is demonstrated in academic
examples.
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1. INTRODUCTION

Continuous motion of hybrid systems of variable dimension (HSVDs) is described by differential
equations, while instantaneous changes of state (switchings) are described by recurrence equations or
inclusions. At the moment of switching, the state space of the system (in particular, its dimension)
varies. Control systems with variable state space have been investigated under different names:
composite systems [21, 2], systems of variable dimension [14], systems with branching structures [13],
stepped systems [16], complex (multistage) processes [12], systems with change of the phase space [4],
and hybrid systems with intermediate conditions [18, 9]. Most papers pertain to linear systems and
address the issues of stability, controllability, and observability [2, 13]. As a rule, in optimal control
problems [21, 16, 4, 18, 9] the moments of change of the state space are either fixed or determined
by intermediate conditions, and the switchings of states are uncontrolled. The number of switchings
is predetermined; and in the first papers [21, 16, 4] on this subject there was only one switching.
For hybrid systems with intermediate conditions, necessary conditions generalizing the maximum
principle [17] were obtained in [18, 9]. In these papers, the number of switchings is predetermined
and the switchings themselves are uncontrolled.

In the present study, we consider problems in which the number and the moments of switchings
are not predetermined, and the switchings themselves are controlled. Here we do not rule out
processes with multiple instantaneous switchings [6, 7], which have not been analyzed in problems
with a change of the state space. Therefore, the problem of synthesis of optimal HSVDs generalizes
similar optimal control problems for continuous–discrete, logical–dynamical, composite, and stepped
systems as well as systems with intermediate conditions [2, 18, 9, 20] and systems with a variable
or branching structure [14, 13, 11, 5].

As a rule, sufficient optimality conditions for dynamical control systems are related to deter-
mining the value function (Hamilton–Jacobi–Bellman (HJB) function). To find the synthesis of
optimal HSVDs, we propose to seek auxiliary functions, namely, generators of the value function
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and a two-position value function [8]. We derive differential and recurrence equations for these aux-
iliary functions using the dynamic programming method [3]; in this case, the ordinary value function
turns out to be generally unnecessary. The application of optimality conditions is demonstrated in
academic examples of time-optimal problems of group performance.

2. STATEMENT OF THE PROBLEM

On a time interval T = [t0, tF], consider a dynamical system with N switchings at times t1, . . . , tN
that form a nondecreasing finite sequence T = {t1, . . . , tN}:

t0 ≤ t1 ≤ . . . ≤ tN ≤ tF. (2.1)

Between unequal consecutive moments of switching, the state of the system changes continuously
according to the differential equation

ẋi = fi(t, xi(t), ui(t)), t ∈ Ti, i ∈ N . (2.2)

At the switching moments, it varies discretely according to the recurrence equation

xi(ti) = gi(ti, xi−1(ti), vi), i = 1, . . . , N. (2.3)

In (2.2) we use the following notation: N � {i = 0, 1, . . . , N | ti < ti+1} is the set of the numbers
of nonzero (positive-length) partial intervals Ti = [ti, ti+1] of continuous evolution of the system;
xi(t) is the state of the system at time t ∈ Ti, xi(t) ∈ Xi = R

ni ; ui(t) is a control of continuous
evolution of the system at time t ∈ Ti, with ui(t) ∈ Ui ⊂ R

pi , where Ui is a given set of admissible
control values, i ∈ N . If ti = ti+1, then the differential equation (2.2) is omitted (i �∈ N ), the
function x(·) is defined at a single point as xi(ti), and the value u(ti) of the control at this point
is inessential. In equation (2.3), the notation has the following meaning: vi is the control of
the switching of the system at time ti ∈ T , vi ∈ Vi ⊂ R

qi , and Vi is a given set of admissible
control values for switchings, i = 1, . . . , N . The function fi : T × Xi × Ui → R

ni , i = 1, . . . , N ,
is continuous on the whole domain of definition together with its derivative ∂fi/∂xi; the function
gi : T ×Xi × Vi → R

ni , i = 1, . . . , N , is bounded. We assume that equation (2.3) does not contain
so-called fictitious switchings, at which the state of the system is preserved, i.e., xi(ti) = xi−1(ti),
and there is no actual switching. The possible equality of consecutive moments in (2.1) means that
the system undergoes multiple instantaneous switchings [6, 7].

The initial state x0(t0) = x0 of the system is fixed, while the terminal state is determined by
the first reach of the terminal surface,

(tF, xN (tF)) ∈ ΓN , (2.4)

defined by the equation ΓN (t, xN ) = 0, where ΓN : [t0,+∞) × XN → R
lN is a continuous vector

function. Similar terminal conditions can be imposed on the left end of the trajectory [15, 1], or on
both ends of the trajectory simultaneously (for example, the periodicity condition).

The set of admissible processes D0(t0, x0) is formed by quadruples d = (T , x(·), u(·), {v}) con-
sisting of a nondecreasing sequence T of switching moments (2.1), a sequence x(·) � {xi(·)}Ni=0

of absolutely continuous functions xi : Ti → Xi, a sequence u(·) � {ui(·)}Ni=0 of bounded mea-
surable functions ui : Ti → Ui, and a sequence v(·) � {vi}Ni=1 of vectors vi ∈ Vi such that the
pairs (xi(·), ui(·)), i = 0, 1, . . . , N , satisfy equation (2.2) almost everywhere on the interval Ti, the
triples (xi−1(ti), xi(ti), vi), i = 1, . . . , N , on T satisfy the recurrence equation (2.3), the condition
x0(t0) = x0 holds at the initial moment of time, and the terminal condition (2.4) holds at the
terminal moment. We stress that the number N = |T | of switchings and the switching moments
T = {t1, . . . , tN} are not fixed and may not coincide in different admissible processes.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 308 2020



SUFFICIENT OPTIMALITY CONDITIONS 81

On the set D0(t0, x0) of admissible processes, we introduce an objective functional

I0(t0, x0, d) =

N∑

i=0

ti+1∫

ti

f0
i (t, xi(t), ui(t)) dt +

N∑

i=1

g+i (ti, xi−1(ti), vi) + FN (tF, xN (tF)), (2.5)

where the functions f0
i : T ×Xi ×Ui → R and FN : [t0,+∞)×XN → R are continuous and bounded

from below and the functions g+i : T × Xi × Vi → R+ are nonnegative, g+i ≥ 0, i = 1, . . . , N .
The latter condition allows one to consider each term g+i (ti, xi−1(ti), vi) in (2.5) as the cost of (or
“penalty” for) switching xi−1(ti) → xi(ti). In (2.5), the terminal moment tF is also denoted by tN+1.

It is required to find the minimum value of the functional (2.5) and an optimal process d∗ =
(T ∗, x∗(·), u∗(·), {v∗}) for which this value is attained:

I0(t0, x0, d
∗) = min

d∈D0(t0,x0)
I0(t0, x0, d). (2.6)

If the minimum value (2.6) does not exist, then we can address the problem of finding a minimiz-
ing sequence of admissible processes [15]. The number of switchings in the processes of a minimizing
sequence may either remain finite or indefinitely increase. An infinite number of switchings in an
optimal process becomes impossible if we strengthen the nonnegativity condition imposed on the
functions g+i in (2.5) by requiring that g+i (ti, xi, vi) ≥ const > 0. The application of such “penalties”
in the objective functional excludes fictitious switchings as well as sequences of processes with an
indefinitely increasing number of switchings, because they are certainly nonminimizing.

3. GENERATORS OF THE VALUE FUNCTION

The application of the dynamic programming method [3] is based on the concept of value
function (HJB function), which is defined as the minimum value of the functional of remaining
losses. Denote by Di(t, xi) the set of admissible processes after the ith switching that satisfy
the condition xi(t) = xi. The remaining switchings occur at times ti+1, . . . , ti+k, which form a
nondecreasing sequence on the interval [t, tF]:

t � ti ≤ ti+1 ≤ . . . ≤ ti+k ≤ ti+k+1 � tF.

The number k of remaining switchings and the switching moments ti+1, . . . , ti+k themselves are not
fixed and may not coincide in different admissible processes.

On the set Di(t, xi) of admissible processes after the ith switching, we define the functional of
remaining losses as

Ii(t, xi, d) =
i+k∑

j=i

tj+1∫

tj

f0
j (t, xj(t), uj(t)) dt+

i+k∑

j=i+1

g+j (tj , xj−1(tj), vj) + Fi+k(tF, xi+k(tF)). (3.1)

The value function ϕi(t, xi) after the ith switching is by definition equal to the functional of remain-
ing losses (3.1) calculated on an optimal process satisfying the initial condition xi(t) = xi. In other
words, the value function is equal to the minimum value of the functional of remaining losses (3.1)
on the set of admissible processes Di(t, xi):

ϕi(t, xi) = min
d∈Di(t,xi)

Ii(t, xi, d). (3.2)

For problem (2.6), we define a generator of the value function. The value ϕk
i (t, xi) of a generator

is equal to the value of the functional of remaining losses (3.1) calculated on an optimal process
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among all admissible processes that start from the initial position (t, xi) after the ith switching and
have k (possibly, fictitious) switchings after the ith switching. If we denote by Dk

i (t, xi) the set of
admissible processes among Di(t, xi) that have k (possibly, fictitious) switchings and by Iki (t, xi, d)
the functional (3.1) with a fixed number k of remaining switchings, then

ϕk
i (t, xi) = min

d∈Dk
i (t,xi)

Iki (t, xi, d). (3.3)

The value function is determined by its generators as

ϕi(t, xi) = min
k∈Z+

ϕk
i (t, xi). (3.4)

An important role in finding the generators is played by the so-called [8] two-position value
function ψi(θ, xiθ|τ, xiτ ), i = 0, 1, . . . , N . It is defined as a solution to the Lagrange problem for
system (2.2) with fixed ends of the trajectory:

ẋi = fi(t, xi(t), ui(t)), θ ≤ t ≤ τ, xi(θ) = xiθ, xi(τ) = xiτ ,

τ∫

θ

f0
i (t, xi(t), ui(t)) dt → min.

(3.5)

This function as a function of the initial position, (t, xi) → ψi(t, xi|τ, xiτ ), satisfies the HJB equation
with zero terminal conditions

min
u∈Ui

[
∂ψi(t, xi|τ, xiτ )

∂t
+

∂ψi(t, xi|τ, xiτ )
∂xi

fi(t, xi, ui) + f0
i (t, xi, ui)

]
= 0,

ψi(τ, xiτ |τ, xiτ ) = 0.

(3.6)

Taking account of the “symmetry” ψi(τ, xiτ |θ, xiθ) = −ψi(θ, xiθ|τ, xiτ ), we can write the “opposite”
equation for the function (t, xi) → ψi(θ, xiθ|t, xi) of the terminal position. Minimizing the left-hand
side of the HJB equation (3.6), we obtain a so-called optimal two-position control

ui(t, xi|τ, xiτ ) = argmin
u∈Ui

[
∂ψi(t, xi|τ, xiτ )

∂t
+

∂ψi(t, xi|τ, xiτ )
∂xi

fi(t, xi, ui) + f0
i (t, xi, ui)

]
. (3.7)

We assume that the function ψi(θ, xiθ|τ, xiτ ) is defined for all pairs of positions (θ, xiθ) ∈ T ×Xi,
(τ, xiτ ) ∈ T ×Xi, θ < τ . If a solution to problem (3.5) does not exist, then we set the value of the
two-position value function to be +∞: ψi(θ, xiθ|τ, xiτ ) = +∞.

4. EQUATIONS FOR THE GENERATORS OF THE VALUE FUNCTION

To derive equations for the generators of the value function, we apply the Bellman optimality
principle modified for problems with switchings. According to this principle, an optimal process
with k remaining switchings becomes an optimal process with k − 1 switchings after the first
switching. We assume that there exist two-position value functions ψi(θ, xiθ|τ, xiτ ) and controls
ui(t, xi|τ, xiτ ) that satisfy the initial problem (3.6).

Each zero generator ϕ0
i (t, xi), i = 0, 1, . . . , is determined by the value of the functional (3.1) on

an optimal process without jumps. These functions satisfy the HJB equation

min
u∈Ui

[
∂ϕ0

i (t, xi)

∂t
+

∂ϕ0
i (t, xi)

∂xi
fi(t, xi, ui) + f0

i (t, xi, ui)

]
= 0 (4.1)
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with the terminal condition

ϕ0
i (tF, xi) = Fi(tF, xiF ), (tF, xiF ) ∈ Γi. (4.2)

To find the other generators, we use a recurrent procedure. Suppose that for a positive inte-
ger k the generators ϕk−1

i , i ∈ Z+, are known. Then, according to the optimality principle, the
generators ϕk

i , i ∈ Z+, satisfy the equation

ϕk
i (t, xi) = min

t≤τ≤tF
min
x̂i∈Xi

{
ψi(t, xi|τ, x̂i) + min

v∈Vi+1

[
ϕk−1
i+1 (τ, gi+1(τ, x̂i, v)) + g+i+1(τ, x̂i, v)

]}
. (4.3)

Indeed, continuous motion after the ith switching on the interval [t, τ ] preceding the first of the
remaining k switchings is governed, in view of (3.5) and (3.6), by the optimal control (3.7), which
transfers the system from the position (t, xi) to a position (τ, x̂i) in which a jump occurs. The
optimality of the (i+ 1)th switching is guaranteed by the minimization with respect to the control v.
Therefore, the expression in braces is equal to the minimum value of the functional of remaining
losses for the given position (τ, x̂i) of switching. The first two minimization operations in (4.3)
establish the best position for this switching. Thus, the right-hand side of (4.3) yields the minimum
value of the functional (3.1) with k switchings remaining after the ith switching, which determines
the generator (3.3). Then, according to (3.2) and (3.4), one calculates the minimum value of the
functional (3.1) using the generators of the value function:

min
d∈Di(t,xi)

Ii(t, xi, d) = ϕi(t, xi) = min
k∈Z+

ϕk
i (t, xi). (4.4)

The initial conditions for equation (4.3) are given by the zero generators ϕ0
i (t, xi), i ∈ Z+,

i.e., by the value functions for processes without switchings. Each of these functions is sought as
a solution to the HJB equation (4.1) with terminal condition (4.2). However, if the two-position
value function ψi(θ, xiθ|τ, xiτ ) is known, then the generator ϕ0

i (t, xi) can be obtained by solving the
finite-dimensional minimization problem:

ϕ0
i (t, xi) = min

(tF,xF )∈Γi

[
ψi(t, xi|tF, xF ) + Fi(tF, xF )

]
. (4.5)

This equality expresses the relationship between the solutions of the problems with Lagrange and
Bolza functionals.

5. OPTIMAL POSITIONAL CONTROL

When solving equations (4.1) and (4.3), one performs four minimization operations. Minimizing
the left-hand side of (4.1), one determines an optimal positional control of continuous motion
without switchings:

ui(t, xi) = argmin
u∈Ui

[
∂ϕ0

i (t, xi)

∂t
+

∂ϕ0
i (t, xi)

∂xi
fi(t, xi, ui) + f0

i (t, xi, ui)

]
. (5.1)

Minimizing the right-hand side of (4.3) yields an optimal positional control of the switching of the
system,

vk
i+1(τ, xi) = argmin

v∈Vi+1

[
ϕk−1
i+1 (τ, gi+1(τ, xi, v)) + g+i+1(τ, xi, v)

]
, (5.2)

and an optimal position (τ k
i ,x

k
i ) of the first of the remaining k switchings, i.e., an optimal moment

τ k
i (t, xi) = argmin

t≤τ≤tF

min
x̂i∈Xi

{
ψi(t, xi|τ, x̂i) + min

v∈Vi+1

[
ϕk−1
i+1 (τ, gi+1(τ, x̂i, v)) + g+i+1(τ, x̂i, v)

]}
(5.3)
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and an optimal state before the switching,

xk
i (t, xi) = argmin

x̂i∈Xi

min
t≤τ≤tF

{
ψi(t, xi|τ, x̂i) + min

v∈Vi+1

[
ϕk−1
i+1 (τ, gi+1(τ, x̂i, v)) + g+i+1(τ, x̂i, v)

]}
. (5.4)

Notice that the positional constructions (5.2)–(5.4) depend not only on the position (t, xi) ∈ T ×Xi

of the system after the ith switching but also on the number k of remaining switchings. An optimal
number of switchings is determined in (4.4):

ki(t, xi) = argmin
k∈Z+

ϕk
i (t, xi). (5.5)

Another minimization operation is performed when one finds the two-position optimal con-
trol (3.6). This control of the continuous motion of the system does not depend on the number
of remaining switchings. Taking into account the relation (4.5) between the two-position value
function and the zero generator, we can express the control (5.1) in the Bolza problem without
switchings in terms of the two-position control (3.7):

ui(t, xi) = ui(t, xi|τ 0
i ,x

0
i ), (5.6)

where (τ 0
i ,x

0
i ) is an optimal terminal position of the process without switchings that starts from

the position (t, xi):
(τ 0

i ,x
0
i ) = argmin

(tF,xF )∈Γi

[
ψi(t, xi|tF, xF ) + Fi(tF, xF )

]
. (5.7)

Thus, the optimal positional control for the systems under consideration forms a whole “con-
trol complex ” of positional constructions, which consists of the following functions: ui(t, xi) and
ui(t, xi|τ, x̂i), the optimal controls (5.1) and (3.7) of the continuous motion of the system; vk

i+1(τ, xi),
the optimal control (5.2) of the (i+ 1)th switching; τ k

i (t, xi), the optimal moment (5.3) of the first
of the k remaining switchings; xk

i (t, xi), the optimal state (5.4) before this switching; and ki(t, xi),
the optimal number (5.5) of switchings of the process starting from position (t, xi).

The positional constructions (3.7) and (5.1)–(5.5) allow one to find an optimal process. Indeed,
suppose that the system is in the position (t0, x0), i.e., it satisfies the initial condition x(t0) = x0.
Then, for this position, we determine the optimal number N = k0(t0, x0) of remaining switchings
and the position (t1, x0(t1)) of the first switching: t1 = τN

0 (t0, x0) and x0(t1) = xN
0 (t0, x0). If

t1 = t0, then the system immediately switches to another state, x0(t1) → x1(t1) = g1(t1, x0(t1), v1),
under the control v1 = vN

1 (t1, x0(t1)). If t1 > t0, then the state of the system varies continuously on
the interval [t0, t1] according to equation (2.2) with program control u0(t) = u0(t, x0(t)|t1, x0(t1)),
and at the end of this interval a jump x0(t1) → x1(t1) = g1(t1, x0(t1), v1) occurs. Thus, the system
arrives at a position (t1, x1(t1)), in which one performs the same operations except for finding the
optimal number of switchings, because this number is equal to N − 1. If the optimal number of
switchings in the initial position (t0, x0) is zero (k0(t0, x0) = 0), then there are no switchings and
the state of the system varies continuously all the time according to equation (2.2) under the control
u0(t) = u0(t, x0(t)).

6. SUFFICIENT OPTIMALITY CONDITIONS

Sufficient optimality conditions in classical control problems for dynamical systems [3, 15] are
related to the value function (HJB or Krotov functions). The conditions proposed below do not
involve the value function. Instead, the sequence of generators of the value function and the two-
position value function are used (see Section 3). In this case, the conventional optimal positional
control is replaced by the “control complex” of positional constructions (see Section 5).
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Theorem. If for problem (2.1)–(2.6) there exist sequences of functions ψi and ϕk
i , i ∈ Z+,

k ∈ Z+, that satisfy equations (3.6) and (4.1)–(4.3) on the domain of definition, then, for a process
d = (T , x(·), u(·), {v}) ∈ D0(t0, x0) with switching moments t1, . . . , tN that form a nondecreasing
sequence (2.1) to be optimal, it is sufficient that the following conditions hold :

N = k0(t0, x0), (6.1)

ui(t) = ui

(
t, xi(t)|ti+1, xi(ti+1)

)
, t ∈ Ti, i ∈ N , (6.2)

vi = vN−i+1
i (ti, xi−1(ti)), i = 1, . . . , N, (6.3)

ti = τN−i+1
i−1 (ti−1, xi−1(ti−1)), i = 1, . . . , N, (6.4)

xi−1(ti) = xN−i+1
i−1 (ti−1, xi−1(ti−1)), i = 1, . . . , N, (6.5)

where Ti = [ti, ti+1] and N = {i = 0, 1, . . . , N | ti < ti+1}. For N = 0 formulas (6.3)–(6.5) should
be omitted, and the control (6.2) for i = N ∈ N is replaced by uN (t) = uN (t, xN (t)), t ∈ TN .

Proof. Let us compare the value of the functional I0(t0, x0, d) calculated on an admissible
process d with the value ϕ0(t0, x0) of the value function. Suppose that the process d has switchings
(i.e., N > 0). On the control vi+1 obtained by formula (6.3), the minimum value of the expression
in square brackets in (4.3) is attained for τ = ti+1 and x̂ = xi(ti+1):

min
v∈Vi+1

[
ϕk−1
i+1

(
ti+1, gi+1(ti+1, xi(ti+1), v)

)
+ g+i+1(ti+1, xi(ti+1), v)

]

= ϕk−1
i+1

(
ti+1, gi+1(ti+1, xi(ti+1), vi+1)

)
+ g+i+1(ti+1, xi(ti+1), vi+1)

= ϕk−1
i+1 [ti+1] + g+[ti+1]. (6.6)

Henceforth, the time point in square brackets as an argument of the function means that the value
of this function is calculated on the admissible process d at this point of time. In (6.6), we used the
notation g+[ti+1] � g+(ti+1, x(ti+1), vi+1) and ϕk−1

i+1 [ti+1] � ϕk−1
i+1 (ti+1, xi+1(ti+1)) and the fact that

xi+1(ti+1) = gi+1(ti+1, xi(ti+1), vi+1) according to (2.3).
The position (ti+1, xi(ti+1)) satisfying conditions (6.4) and (6.5) guarantees that the expression

in braces in (4.3) attains its minimum value for τ = ti+1 and x̂ = xi(ti+1). Therefore,

ϕk
i [ti] = ψi

(
ti, xi(ti)|ti+1, xi(ti+1)

)
+ ϕk−1

i+1 [ti+1] + g+[ti+1]. (6.7)

Under the control (6.2), the minimum in equation (3.6) is attained for τ = ti+1 and x̂ = xi(ti+1).
Hence, taking into account (2.2), we obtain the following equality for the derivative of the function
ψk
i [t] � ψk

i (t, xi(t)|ti+1, xi(ti+1)):

d

dt
ψk
i [t] + f0

i (t, xi(t), ui(t)) = 0. (6.8)

Integrating equation (6.8) over the interval Ti = [ti, ti+1], for the zero terminal condition ψk
i [ti+1] = 0

we obtain

ψk
i [ti+1]− ψk

i [ti] +

ti+1∫

ti

f0
i (t, xi(t), ui(t)) dt = 0 ⇒ ψk

i [ti] =

ti+1∫

ti

f0
i [t] dt, (6.9)

where f0
i [t] � f0

i (t, xi(t), ui(t)). Substituting (6.9) into (6.7), we arrive at the equality

ϕk−1
i+1 [ti+1]− ϕk

i [ti] + g+[ti+1] +

ti+1∫

ti

f0
i [t] dt = 0. (6.10)
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Let us transform equation (4.1) for the function ϕ0
N (t, xN ) in a similar way. Under the control

uN (t) = uN (t, xN (t)), the minimum in (4.1) is attained, and according to (2.2) the equation can be
rewritten as

d

dt
ϕ0
N (t, xN (t)) + f0

N (t, xN (t), uN (t)) = 0. (6.11)

Integrating equation (6.11) over the interval TN = [tN , tF] and taking into account the terminal
condition (4.2), we obtain

FN [tF]− ϕ0
N [tF] +

tF∫

tN

f0
N [t] dt = 0. (6.12)

Here FN [tF] � FN (tF, xN (tF)), f0
N [t] � f0

N(t, xN (t), uN (t)), and ϕ0
N [tF] � ϕ0

N [tF]. Summing equal-
ities (6.10) over i = 0, 1, . . . , N − 1 (with k = N − i) and adding equality (6.12) to the sum, we
arrive at the relation

N∑

i=0

ti+1∫

ti

f0
i [t] dt+

N∑

i=1

g+i (ti, xi−1(ti), vi) + FN (tF, xN (tF))− ϕN
0 [t0] = 0. (6.13)

Here, as before, tN+1 � tF. Comparing relation (6.13) with the functional (2.5), we conclude that
ϕN
0 [t0] = I0(t0, x0, d). Then conditions (6.1) and (5.5) imply that ϕ0(t0, x0) = ϕN

0 [t0] = I0(t0, x0, d),
i.e., the functional (2.5) on the admissible process d is equal to the value function. According to (3.2),
this means that the process d is optimal. Thus, the theorem is proved for N > 0.

In the absence of switchings (in the case of N = 0), taking into account the terminal condi-
tion (4.2), from equation (4.1) with the control u0(t) = u0(t, x0(t)) we obtain

F0[tF]− ϕ0
0[tF] +

tF∫

t0

f0
0 [t] dt = 0 ⇔ ϕ0

0[t0] = I0(t0, x0, d). (6.14)

Since N = k0(t0, x0) = 0, we have ϕ0
0[t0] = ϕ0(t0, x0). Therefore, ϕ0(t0, x0) = I0(t0, x0, d). Thus,

the value of the functional on the process d is equal to the value function. This implies the optimality
of the process d. The theorem is proved. �

7. TIME-OPTIMAL PROBLEM

Consider a particular case of problem (2.1)–(2.6):

0 ≤ t1 ≤ . . . ≤ tN ≤ T,

ẋi = fi(xi(t), ui(t)), ti ≤ t ≤ ii+1,

xi(ti) = gi(xi−1(ti), vi), i = 1, . . . , N,

x0(0) = x0, xN (T ) = xNT ,

I = T +

N∑

i=1

g+i (xi−1(ti), vi) → min.

(7.1)

The initial x0 and terminal xNT states of the system are fixed. It is required to find the minimum
value of the functional and an optimal control on which it is attained. The number of switchings N
and the switching times t1, . . . , tN are not predetermined and are to be found under minimiza-
tion (7.1).
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Comparing this with the general statement, we conclude that the system is stationary, the
terminal state is specified, and the final time of the process is free. It is required to minimize
the time T of reaching the terminal state, penalized by the total cost of switchings. For g+i = 0,
we obtain a time-optimal problem [17, 15, 1]. In such a statement, the generators of the value
function depend only on the state ϕk

i (t, xi) = ϕk
i (xi), and the two-position function has the form

ψi(θ, xiθ|τ, xiτ ) = τ − θ. Denote the minimum value of this difference by ψi(xiθ|xiτ ). This function
is a solution of the classical time-optimal problem

ẋi(t) = fi(xi(t), ui(t)), xi(θ) = xiθ, xi(τ) = xiτ ,

τ∫

θ

dt → min. (7.2)

Taking into account this notation, we write equations (4.1)–(4.3) for the generators of the value
function in the time-optimal problem (7.1):

min
u∈Ui

[
∂ϕ0

i (xi)

∂xi
fi(xi, u) + 1

]
= 0, ϕ0

i (xiT ) = 0, i ∈ N , (7.3)

ϕk
i (xi) = min

x̂i∈Xi

{
ψi(xi|x̂i) + min

v∈Vi+1

[
ϕk−1
i+1 (gi+1(x̂i, v)) + g+i+1(x̂i, v)

]}
, k ∈ Z+. (7.4)

The positional constructions of the “control complex” (see Section 5) are independent of time and
can be expressed in the same way as in (3.7) and (4.1)–(4.5).

8. EXAMPLES

We consider plane motions of a group of a variable number of control objects. Each object moves
along the plane with constant linear velocity and bounded angular velocity, i.e., can be described by
the Dubins model [10]. First, one control object, a carrier, starts a motion. Then, over time, other
control objects separate from it and form a group. The goal of the control is to reach the prescribed
terminal positions in minimum time; i.e., this is a time-optimal problem of group performance.

Example 8.1 (simultaneous separation of control objects). Suppose that the motion of the
carrier is described by the equations

ẋ01(t) = V cos x03(t), ẋ02(t) = V sinx03(t), ẋ03(t) = u0(t), |u0(t)| ≤ Ω, 0 ≤ t ≤ t1, (8.1)

where x01 and x02 are the coordinates of the carrier in the plane, x03 is the angle of inclination of the
trajectory to the abscissa, V is the constant linear velocity, u0 is the angular velocity, and Ω is the
maximum possible angular velocity. The initial state is fixed: x0(0) = x00. At time t1, m control
objects separate from the carrier and move according to the equations

ẋi1(t) = v cosxi3(t), ẋi2(t) = v sinxi3(t), ẋi3(t) = ui(t), |ui(t)| ≤ ω, t1 ≤ t. (8.2)

The linear velocity v and the maximum angular velocity ω of all objects that separated from the
carrier are the same. At the moment of separation, the states of the objects coincide with that of
the carrier:

xi(t1) = x0(t1), i = 1, . . . ,m. (8.3)

The motion of the ith object terminates at time T i when the object reaches a given target zi:

xi1(T
i) = zi1, xi2(T

i) = zi2, i = 1, . . . ,m. (8.4)

At the moment of hitting the target, the angle xi3 of inclination of the trajectory may be arbitrary.
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The quality of the group control is characterized by the time T = max{T 1, . . . , Tm} of hitting
all the targets. It is required to find the minimum time T and a control for which this minimum
time is attained, i.e., it is required to solve the time-optimal problem T → min.

In the formulated problem, there is a single moment of switching t1, i.e., N = 1. There is no
control of the switching. Therefore, we have to find an optimal control of the continuous motion and
a position of separation. Before the switching, there is a single control object. Writing the auxiliary
problem (7.2) for the carrier, we obtain a time-optimal problem of transferring the Dubins machine
from a given initial state x to a given terminal state x̂. A solution of this problem is given, for
example, in [1, 19]. The optimal trajectory is composed either of three arcs of circles of radius V/Ω
or of two arcs of circles connected by a straight line segment. Thus, the optimal two-position control
of the carrier is known. Denote by Ψ(x|x̂) the minimum transfer time of the carrier. This function
satisfies the HJB equation with zero terminal condition:

min
|u|≤Ω

[
Ψx1V cos x3 +Ψx2V sinx3 +Ψx3u+ 1

]
= 0, Ψ(x|x̂) = 0.

After the switching, each object that separated from the carrier should be transferred as fast as
possible from the given initial state (8.3) to the given terminal state (8.4). The optimal trajectory
of such a motion consists either of two arcs of circles of radius v/ω or of a single arc and a straight
line segment. Denote by θ(x|z) the minimum time of motion of such an object from position x to
position z. This function satisfies the HJB equation

min
|u|≤ω

[
θx1v cos x3 + θx2v sinx3 + θx3u+ 1

]
= 0 (8.5)

with zero terminal condition θ(x|z) = 0 for x1 = z1, x2 = z2.
Now we find the generators of the value function. The zero generator has the form

ϕ0
1(x

1, . . . , xm) = max
{
θ(x1|z1), . . . , θ(xm|zm)

}
.

It satisfies equation (7.3), which can easily be verified using (8.5). The first generator satisfies
equation (7.4), which for k = 1 reads

ϕ1
0(x

0) = min
x̂∈R3

[
Ψ(x0|x̂) + ϕ0

1(x̂, . . . , x̂)
]
.
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We can see that the problem reduces to finite-dimensional minimization, namely, to the search
for an optimal switching position x̂. This problem is solved numerically. Figure 1 demonstrates
optimal trajectories obtained for the following values of the parameters: V = 1, v = 0.5, Ω = ω = 1,
x00 = (3, 6, π), z1 = (−3, 0), z2 = (3, 0), z3 = (−2, 4), and z4 = (3, 3). The minimum value of the
functional is minT = 12.6351. The separation of trajectories occurs at time t1 = 5.098 at the point
x̂ = (−0.0324, 2.1499,−1.4486).

Example 8.2 (sequential separation of control objects). Suppose that the motion of the carrier
and the separating objects is described by equations (8.1) and (8.2). The separation of control
objects from the carrier occurs sequentially at time points t1, . . . , tN . The first object separates
from the carrier at time t1 and should hit the target z1, the second should hit the target z2, and
so on. The motion of the control objects stops when the corresponding targets are hit:

xi1(T
i) = zi1, xi2(T

i) = zi2, i = 0, 1, . . . , N. (8.6)

The quality of the group control is characterized by the time T = max{T 0, T 1, . . . , TN} of hitting
all the targets. It is required to find the minimum time T and a control for which this minimum
time is attained, i.e., it is required to solve the time-optimal problem T → min.

In the formulated problem, the number of switchings is N and there is no control of switchings.
For the carrier and the separating objects, the time-optimal trajectories from a given initial state
to a given terminal state are known, since these are Dubins trajectories [10]. Therefore, we can find
the optimal control of continuous motion if we determine the optimal positions of separation of the
control objects from the carrier. Hence, the problem reduces to finite-dimensional minimization.
Consider its solution for three targets z0, z1, and z2, i.e., for N = 2. Let us find the zero generator.
After the second switching at time t2, the group consists of three elements: the carrier and two
objects that separated from it. Therefore, the position of the group is determined by the state
vectors of the carrier x0 and the two separated objects x1 and x2. The terminal states are defined
by (8.6). Hence, the zero generators have the form

ϕ0
0(x

0) = θ(x0|z0), ϕ0
1(x

0, x1) = max
{
θ(x0|z0), θ(x1|z1)

}
,

ϕ0
2(x

0, x1, x2) = max
{
θ(x0|z0), θ(x1|z1), θ(x2|z2)

}
.

Here, just as in Example 8.1, θ(xi|zi) is the minimum time for the transfer of a control object from
the position xi to the target zi, i = 0, 1, 2. For the first generators, from equation (7.4) we obtain

ϕ1
0(x

0) = min
x̂∈R3

{
Ψ(x0|x̂) + ϕ0

1(x̂, x̂)
}
, ϕ1

1(x
0, x1) = min

x̂∈R3

{
Ψ(x0|x̂) + ϕ0

2(x̂, x
1, x̂)

}
.
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Finally, for the second generator, equation (7.4) has the form

ϕ2
0(x

0) = min
x̂∈R3

{
Ψ(x0|x̂) + ϕ1

1(x̂, x̂)
}
.

These equations were solved numerically for the following values of the parameters: V = 1, v = 0.5,
Ω = ω = 1, x00 = (2, 4, 0), z0 = (−4, 0), z1 = (0, 0), and z2 = (4, 0). The minimum value of
the functional is minT = 9.4759. The first object separates at time t1 = 3.0839 at the point
x0(t1) = (2.1, 1.9,−2.548), and the second object separates at time t2 = 4.6675 at the point
x0(t2) = (0.6, 1.4,−2.8923). The optimal trajectories are shown in Fig. 2.

CONCLUSIONS

We have considered the problem of synthesis of an optimal hybrid control system that operates
with switchings at the moments of which the dimension of the state space may change. The number
of switchings is not specified in advance and is determined as a result of minimizing an objective
functional. Here multiple instantaneous switchings are not excluded. This problem generalizes the
problems of synthesis of various classes of hybrid systems. We have developed a new method for
deriving sufficient optimality conditions that involves auxiliary functions, the so-called generators of
the value function and the two-position value function. Using the dynamic programming method, we
have derived equations for finding these auxiliary functions, from which the ordinary value function
can then be constructed. The recurrent procedure of the synthesis of a system of variable dimension
is more complicated than the synthesis of a continuous–discrete or composite control system. In
the general case, it is difficult to obtain its numerical solution. However, if the optimal control of
continuous motion is known or can be replaced by a control that is rational from the applied point
of view, then the problem becomes finite-dimensional and can be solved relatively easily.
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