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Abstract—A generalization of the Yang–Mills equations is proposed. It is shown that any
solution of the Yang–Mills equations (in the Lorentz gauge) is also a solution of the new gener-
alized equation. It is also shown that the generalized equation has solutions that do not satisfy
the Yang–Mills equations.
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The Yang–Mills equations (introduced in 1954) are a class of equations that depend on the
gauge Lie group. In theoretical physics, as gauge groups one mainly uses unitary gauge groups or
more general semisimple gauge groups. It is well known that the Maxwell equations (1862) can
be viewed as a particular case of the Yang–Mills equations with abelian gauge group U(1). The
Standard Model (1970s) uses the Yang–Mills equations with gauge groups U(1), SU(2), and SU(3)
to describe the interactions of elementary particles.

In the present study, we propose a generalization of the Yang–Mills equations (4.6) (in the
pseudo-Euclidean space R

r,s). We show that any solution of the Yang–Mills equations (in the
Lorentz gauge) is also a solution of the new generalized equation. We also show that the generalized
equation has solutions that do not satisfy the Yang–Mills equations.

Section 1 shows how the Maxwell equations for the potential and strength of an electromagnetic
field can be expressed using the technique of differential forms (using the operators of exterior dif-
ferentiation d and codifferentiation δ). We propose a method for generalizing the Maxwell equations
that consists in replacing each of the operators d and δ by d+ δ and discuss the equations obtained.

In Section 2, we consider the Yang–Mills equations and discuss the possibility of expressing these
equations using the technique of differential forms with values in a Lie algebra.

In Section 3, we introduce the technique of genforms, which can be viewed as a generalization of
the technique of differential forms. For genforms, not only the operation of exterior multiplication
but also the operation of Clifford multiplication is defined.

In Section 4, we write the Yang–Mills equations using the technique of genforms and, on this
basis, propose a generalization of the Yang–Mills equations.

In Section 5, we consider the question of internal consistency of the new equations in some
particular cases. Namely, we consider the generalized Maxwell equations in the pseudo-Euclidean
spaces R1,1, R1,2, and R

1,3. The well-posedness of the Cauchy problem is proved by the symmetriza-
tion method, i.e., by reducing the Cauchy problem for the generalized system of Maxwell equations
to the Cauchy problem for a Friedrichs symmetric hyperbolic system of first-order equations.

1. MAXWELL EQUATIONS

Pseudo-Euclidean space R
r,s. Let r and s be nonnegative integers and n = r + s ≥ 1.

Denote by R
r,s the n-dimensional (pseudo-)Euclidean space [16] with Cartesian coordinates xμ, μ =

1, . . . , n (the tensor indices of the space R
r,s will be denoted by lowercase Greek letters μ, ν, α, . . .
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158 N. G. MARCHUK

running through the values 1, . . . , n), and with the metric tensor defined by a diagonal matrix

η = ‖ημν‖ = ‖ημν‖

with r ones and s minus ones on the diagonal.
In R

r,s, we consider the changes of coordinates from the (pseudo)orthogonal group O(r, s),

xμ → x́μ = pμνx
ν , (1.1)

where

P = ‖pμν‖ ∈ O(r, s) and O(r, s) =
{
P = ‖pμν‖ ∈ GL(n,R) : PTηP = η

}
,

with PT the transposed matrix.
In the space R

r,s, we will consider tensors (and tensor fields) defined in the coordinates xμ by
their real or complex components uμ1...μk

ν1...νl ; under the change of coordinates (1.1), the components
of the tensor (tensor field) are transformed according to the standard rule of tensor analysis

uμ1...μk
ν1...νl

→ úμ1...μk
ν1...νl

= pμ1
α1

. . . pμk
αk
qβ1
ν1 . . . q

βl
νl
uα1...αk
β1...βl

, (1.2)

where
Q = ‖qβν ‖ = P−1.

Denote the set of tensors with k contravariant and l covariant indices by Tk
l . We will write u ∈ Tk

l

or uμ1...μk
ν1...νl ∈ Tk

l .

Maxwell equations. In modern theoretical and mathematical physics, the Maxwell equa-
tions, which underlie electromagnetism, are often expressed in terms of the potential aμ and
strength fμν of the electromagnetic field as the following equations [14] in the Minkowski space1

R
1,3:

∂μaν − ∂νaμ − fμν = 0, ∂μf
μν = jν , (1.3)

where the real tensor fields aμ ∈ T1, fμν ∈ T2, and jν ∈ T1 depend smoothly on x ∈ R
1,3 and

∂μ = ∂/∂xμ are partial derivatives. To raise or lower tensor indices, we use the metric tensor. The
vector jν is called the current vector. Equations (1.3) imply the following equality (vanishing of the
4-divergence of the current vector):

∂νj
ν = 0. (1.4)

Equations (1.3) are invariant under the following gauge transformation :

aμ → aμ + ∂μλ, fμν → fμν , jν → jν ,

where λ = λ(x) is a scalar smooth real function.
Equations (1.3) are invariant under those changes of coordinates of the Minkowski space that

belong to the Lorentz group O(1, 3).
Note also that equations (1.3) can be naturally viewed as equations in the pseudo-Euclidean

space R
r,s.

Substituting fμν from the first equation in (1.3) into the second, we obtain an equation for the
potential aμ:

(∂μ∂μ)aν − ∂ν(∂
μaμ) = jν . (1.5)

1For simplicity, we use a system of units in which the speed of light is equal to 1. In addition, we use Einstein’s
convention on summation over repeated indices.
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A GENERALIZATION OF THE YANG–MILLS EQUATIONS 159

Differential forms [3]. The Maxwell equations (1.3) can be expressed in terms of differential
forms (see [14]). Every covariant skew-symmetric tensor field with components aμ1...μk

in R
r,s with

Cartesian coordinates xμ can be assigned a differential form

A =
1

k!
aμ1...μk

dxμ1 ∧ . . . ∧ dxμk

of degree k, where dxμ are the differentials of the coordinates xμ. Denote the set of differential
forms of degree k by Λk(R

r,s), 0 ≤ k ≤ n.

Given a family of n+ 1 differential forms
k
A ∈ Λk(R

r,s) of degrees from 0 to n, we can consider
an inhomogeneous differential form

A =
n∑

k=0

k
A ∈ Λ(Rr,s) =

n⊕

k=0

Λk(R
r,s).

The set of differential forms Λ(Rr,s) is equipped with the operations of addition and multiplica-
tion by a scalar field (these operations are defined pointwise, at every point x ∈ R

r,s). For differential
forms, there is also an operation of exterior multiplication. If A ∈ Λk(R

r,s) and B ∈ Λl(R
r,s), then

A ∧B = (−1)klB ∧A ∈ Λk+l(R
r,s).

For differential forms in Λk(R
r,s), one introduces the operator of exterior differentiation (gener-

alized gradient)
d : Λk(R

r,s) → Λk+1(R
r,s)

and the operator of codifferentiation (generalized divergence)

δ : Λk(R
r,s) → Λk−1(R

r,s).

These operators can be related to each other by the Hodge operator (see [14])

∗ : Λk(R
r,s) → Λn−k(R

r,s),

namely,
δ = ε∗d∗,

where ε = ±1 depending on k, r, and s. An important property of the operators d and δ is that

d2 = 0 and δ2 = 0. (1.6)

Note that
(dδ + δd) = ∂μ∂μ = �

is the d’Alembertian. The operators d and δ are discussed in greater detail in Section 3.

Maxwell equations in terms of differential forms. It is well known [14] that the Maxwell
equations in the pseudo-Euclidean space R

r,s (in particular, in the Minkowski space R
1,3) can be

expressed in terms of the differential forms

A = aμdx
μ ∈ Λ1(R

r,s), J = jμdx
μ ∈ Λ1(R

r,s), F =
1

2
fμν dx

μ ∧ dxν ∈ Λ2(R
r,s) (1.7)

as the equalities
dA− F = 0, δF = J, (1.8)
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and condition (1.4) turns into
δJ = 0.

Equation (1.5) is expressed as
δdA = J, (1.9)

or, which is the same,
(dδ + δd)A − d(δA) = J.

Consider two systems of equations

(d+ δ)A − F = 0, δF = J (1.10)

and
dA− F = 0, (d+ δ)F = J, (1.11)

which are obtained from equations (1.8) by replacing the operator d or δ with the operator d + δ
(in the case of the system of equations (1.10), one should assume that F ∈ Λ2(R

r,s) ⊕ Λ0(R
r,s)).

Since both systems (1.10) and (1.11) reduce to the same equation (1.9) in view of (1.6), all three
systems of equations (1.8), (1.10), and (1.11) can be assumed to be equivalent to each other and
equivalent to the system of Maxwell equations (1.3).

Now, consider the system of equations

(d+ δ)A− F = 0, (d+ δ)F = J (1.12)

for A, J ∈ Λ1(R
r,s) and F ∈ Λ2(R

r,s) ⊕ Λ0(R
r,s). This system is obtained from system (1.8) by

replacing both operators d and δ with the operator d+ δ. Clearly, this system of equations reduces
to the equation

(dδ + δd)A = J. (1.13)

Such systems of equations (1.12) have been considered by many authors (see, for example, [9, 5]).
Now we consider a few questions related to the above variants of the Maxwell equations written

in terms of differential forms. All these questions are simple, but they are important for us because
they provide a basis for considering more complicated questions related to the Yang–Mills equations.

If we supplement the system of equations (1.12) with the equation δA = 0, then any solution of
the resulting system of equations

(d+ δ)A− F = 0, (d+ δ)F = J, δA = 0 (1.14)

is obviously also a solution of system (1.11), which is equivalent to the system of Maxwell equa-
tions (1.3).

Let us show that in the case of signature (r, s) = (1, n − 1) of the pseudo-Euclidean space, the
condition δA = 0 for all x ∈ R

r,s in the system of equations (1.14) can be replaced by the two
conditions

δJ = 0 for x1 > 0,

δA = 0, ∂1(δA) = 0 for x1 = 0. (1.15)

One of these conditions is a condition on the right-hand side J , and the other is defined on the
hyperplane x1 = 0. To prove this fact, we rewrite system (1.12) in the form (1.13) and act by the
operator δ on both sides of the first equation. We obtain

δdδA = (δd)(δA) = �(δA) = 0.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 306 2019



A GENERALIZATION OF THE YANG–MILLS EQUATIONS 161

Setting b := δA ∈ Λ0(R
1,n−1) and taking into account (1.15), we obtain the Cauchy problem in the

domain x1 > 0 for the function (0-form) b = b(x) with the initial data specified for x1 = 0:

�b = 0 for x1 > 0,

∂1b = 0, b = 0 for x1 = 0.

(1.16)

It is well known from the theory of partial differential equations that the Cauchy problem (1.16) for
the hyperbolic equation �b = 0 has a unique solution, and hence b ≡ 0 for all x1 > 0 (changing x1

to −x1, we obtain the same result for x1 < 0). The statement is proved.
Let us show that system (1.12) can be viewed as a generalization of the system of Maxwell

equations. It is obvious that if A, J ∈ Λ1(R
r.s) is a solution of the Maxwell equations (1.8) in the

Lorentz gauge δA = 0, then these 1-forms are also a solution of equations (1.12).
Let us show that under the conditions J �= 0 and δJ = 0, among the solutions of equations (1.12),

there are solutions that do not satisfy the Maxwell equations (1.8) (but satisfy the additional
condition δdδA = 0, δA �= 0). Indeed, from the condition δJ = 0 we obtain

δJ = δ(dδ + δd)A = δdδA = 0. (1.17)

Now, take two functions (0-forms) j = j(x) and a = a(x) that satisfy the system of equations

�a = j, �j = 0, (1.18)

which can be rewritten in terms of differential forms as

δda = j, δdj = 0.

The following statement is valid: if the functions a and j satisfy equations (1.18), then the 1-forms

A = da, J = dj

satisfy the system of equations
dδA = J, dA = 0 (1.19)

subject to the condition δJ = 0. This solution (A, J) gives a particular subclass of solutions to the
system of equations

(dδ + δd)A = J, δJ = 0.

It remains to show that such a solution to system (1.18) for J = dj �= 0 does not satisfy the Maxwell
equations

δdA = J.

This is obvious, since for dA = 0 we have δdA = 0, and if the right-hand side J is nonzero, this
yields a contradiction:

0 = δdA = J �= 0.

The statement is proved.
We call the system of equations (1.12) a generalized system of Maxwell equations (expressed in

the technique of differential forms).
Thus, we have proved the following propositions.
Proposition 1. If we supplement the system of equations (1.12) with the equation δA = 0,

then any solution of the resulting system of equations (1.14) is also a solution to the system of
equations (1.11), which is equivalent to the system of Maxwell equations (1.3).
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Proposition 2. In the case of signature (r, s) = (1, n − 1) of the pseudo-Euclidean space, the
condition δA = 0 from Proposition 1 can be relaxed to condition (1.15). In this case, the condition
δJ = 0 on the right-hand side is additionally required.

Proposition 3. Any solution of the Maxwell equations (1.8) in the Lorentz gauge δA = 0
is also a solution to the system of equations (1.12) with the right-hand side satisfying the condi-
tion δJ = 0.

Proposition 4. The system of equations (1.12) subject to the additional condition δJ = 0 has
certain solutions that do not satisfy the Maxwell equations (1.8).

2. YANG–MILLS EQUATIONS

Let K be a semisimple Lie group and L be the real Lie algebra of the Lie group K. The Lie
algebra L is a real vector space of dimension N with basis t1, . . . , tN . Multiplication of elements in L
is defined by a Lie bracket [a, b] = −[b, a] satisfying the Jacobi identity. Multiplication of the basis
elements is defined by real structure constants crsl = −csrl , r, s, l = 1, . . . , N , of the Lie algebra L:

[tr, ts] = crsl tl. (2.1)

In this study, we represent the elements of the Lie algebra L and the Lie group K by square matrices
of appropriate size or by elements of the Clifford algebra C	(p, q). In both cases, the Lie bracket is
given by the commutator [a, b] = ab− ba, with either the matrix multiplication or multiplication of
elements of the Clifford algebra on the right-hand side.

Denote by LTa
b the set of tensor fields of the pseudo-Euclidean space R

p,q of type (a, b) and
rank a+ b with values in the Lie algebra L.

In the pseudo-Euclidean space R
p,q, consider the equations

∂μaν − ∂νaμ − ρ[aμ, aν ]− fμν = 0, ∂μf
μν − ρ[aμ, f

μν ] = jν , (2.2)

in which aμ ∈ LT1, jν ∈ LT1, fμν = −fνμ ∈ LT2, and ρ is a real constant. These equations
are called Yang–Mills equations (system of Yang–Mills equations). Usually, it is assumed that aμ
and fμν are unknowns and jν is a known vector with values in the Lie algebra L.

Equations (2.2) are said to define the Yang–Mills field (aμ, fμν). In this case, aμ is the potential
and fμν is the strength of the Yang–Mills field. The vector jν is called a nonabelian current (in the
case of abelian group K, the vector jν is called a current).

We can substitute the components of the skew-symmetric tensor fμν defined by the first equation
in (2.2) into the second equation to obtain a single second-order equation for the potential of the
Yang–Mills field:

∂μ
(
∂μaν − ∂νaμ − ρ[aμ, aν ]

)
− ρ

[
aμ, ∂

μaν − ∂νaμ − ρ[aμ, aν ]
]
= jν . (2.3)

Let us look at equations (2.2) from another angle. Let aμ ∈ LT1 be an arbitrary given L-valued
covector that depends smoothly on x ∈ R

p,q. Introduce the notation

fμν := ∂μaν − ∂νaμ − ρ[aμ, aν ], jν := ∂μf
μν − ρ[aμ, f

μν ]. (2.4)

Now we can consider the expression ∂νj
ν − ρ[aν , j

ν ] and verify by straightforward calculations that

∂νj
ν − ρ[aν , j

ν ] = 0. (2.5)

This equality is called a nonabelian conservation law (in the case of abelian group K, we have
∂νj

ν = 0, i.e., the divergence of the vector jν is zero).
Thus, the nonabelian conservation law (2.5) is a consequence of the Yang–Mills equations (2.2).
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Suppose that the tensor fields aμ, fμν , and jν satisfy the Yang–Mills equations (2.2). Take a
smooth scalar field with values in a Lie group S = S(x) ∈ K and consider the transformed tensor
fields

áμ = S−1aμS − S−1∂μS, f́μν = S−1fμνS, j́ ν = S−1jνS. (2.6)

Then these tensor fields satisfy the same Yang–Mills equations

∂μáν − ∂ν áμ − ρ[áμ, áν ]− f́μν = 0, ∂μf́
μν − ρ[áμ, f́

μν ] = j́ ν ;

i.e., equations (2.2) are invariant under the transformations (2.6). The transformation (2.6) is
called a gauge transformation (or gauge symmetry), and the group K is called the gauge group of
the Yang–Mills equations (2.2).

Differential forms with values in the Lie algebra L. Considering the tensor product
L ⊗ Λ(Rr,s) of the Lie algebra L and the set of differential forms Λ(Rr,s), we arrive at differential
forms with values in the Lie algebra L. Differential forms of degree k in L ⊗ Λk(R

r,s) can be
written as

A =
1

k!
aμ1...μk

⊗ dxμ1 ∧ . . . ∧ dxμk ,

where aμ1...μk
are the components of a covariant skew-symmetric tensor field with values in the Lie

algebra L.
Consider the Yang–Mills equations (2.2) and introduce the notation

A = aμ ⊗ dxμ ∈ L⊗ Λ1(R
r,s), J = jμ ⊗ dxμ ∈ L⊗ Λ1(R

r,s),

F =
1

2
fμν ⊗ dxμ ∧ dxν ∈ L⊗ Λ2(R

r,s),

where fμν = −fνμ.
It is known that the Yang–Mills equations can be expressed (represented) in terms of differential

forms in L⊗ Λ(Rr,s) as

dA− ρA ∧A− F = 0, d ∗ F − ρ(A ∧ ∗F − ∗F ∧A) = ∗J.

In the next section, we describe the technique of genforms, which allows one to express the Yang–
Mills equations and see the possibility of their generalization.

3. SET OF GENFORMS Λ[h](Rr,s)

Some elements of the technique of genforms have been used by the author since the early 2000s
in a number of publications devoted to the model Dirac equation and other field equations (see [11,
Ch. 6] as well as [10, 12, 17]2).

Clifford algebra C	(r, s). The construction of the Clifford algebra C	(r, s) is discussed in detail
in [11, Ch. 3]. It has generators ea, a = 1, . . . , n, n = r + s, identity e, and two multiplications:
the Clifford multiplication U, V → UV and exterior multiplication U, V → U ∧ V . The generators
satisfy the conditions that define the Clifford multiplication,

eaeb + ebea = 2ηabe, a, b = 1, . . . , n, (3.1)

and the exterior multiplication is defined by the formula (k ≥ 2)

ea1 ∧ ea2 ∧ . . . ∧ eak = e[a1ea2 . . . eak ],

where the square brackets denote the operation of alternation of indices.
2In these papers, the term “h-forms” was used instead of the present term “genforms.”
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The dimension of the Clifford algebra C	(r, s) as a vector space is equal to 2n, and as a basis
of C	(r, s) one can take the elements

e, ea, ea1a2 , . . . , e12...n, a1 < a2 < . . . ,

numbered by ordered multi-indices of length from 0 to n, where the indices a, a1, . . . run through
the values from 1 to n and

ea1...ak = ea1 . . . eak = ea1 ∧ . . . ∧ eak for a1 < . . . < ak. (3.2)

The vector subspace of C	(r, s) spanned by the basis elements ea1...ak numbered by ordered multi-
indices of length k is denoted by C	k(r, s). The dimension of the vector space C	k(r, s) is equal to
(the binomial coefficient) Ck

n. We have

C	(r, s) =
n⊕

k=0

C	k(r, s).

In the Clifford algebra C	(r, s), there are projection operators

πk : C	(r, s) → C	k(r, s), k = 0, 1, . . . , n,

and a reversal operator ∼:

(UV )∼ = V ∼U∼ ∀U, V ∈ C	(r, s), (ea)∼ = ea, a = 1, . . . , n.

Any element U ∈ C	k(r, s) can be expanded in the basis elements with real coordinates ua1...ak
numbered by ordered multi-indices:

U =
∑

a1<...<ak

ua1...ake
a1...ak . (3.3)

Let us extend the system of Ck
n numbers ua1...ak numbered by ordered multi-indices to a system

of nk numbers ua1...ak numbered by arbitrary multi-indices a1, . . . , ak = 1, . . . n by means of the
antisymmetry condition

ua1...ak = u[a1...ak].

In this case, the element (3.3) can be expressed in the following forms (cf. (3.2)):

U =
∑

a1<...<ak

ua1...ake
a1...ak =

1

k!
ua1...ake

a1 . . . eak =
1

k!
ua1...ake

a1 ∧ . . . ∧ eak . (3.4)

In field theory, as a rule, complexified Clifford algebras C⊗ C	(r, s) are used.

Tetrads in R
r,s. Let yμa , a = 1, . . . , n, be n orthonormal vectors in the (pseudo-)Euclidean

space R
r,s, r + s = n, with coordinates xμ. This set of vectors is called a tetrad. Tetrads satisfy the

orthonormality condition
yμay

ν
b η

ab = ημν . (3.5)

One can pass from one tetrad yμa to another ýμa by a (pseudo)orthogonal transformation with respect
to the Latin index,

yμa → ýμa = qbay
μ
b , (3.6)

where Q = ‖qba‖ ∈ O(r, s). In this case, the tetrad ýμa also satisfies condition (3.5). Therefore, we
can speak of a class of tetrads corresponding to the (pseudo)orthogonal Lie group O(r, s).
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Genforms. Let yμa be a tetrad in R
r,s, and let C	(r, s) be the Clifford algebra with generators ea

satisfying conditions (3.1). In R
r,s, define a C	1(r, s)-valued vector

hμ := yμae
a ∈ C	1(r, s)T1,

which we will call a genvector. Note that the components of the genvector hμ, the components of the
tetrad yμa , and the generators ea of the Clifford algebra do not depend on the point x ∈ R

r,s. Using
equalities (3.5) and (3.1), one can easily verify that the components of the genvector hμ satisfy the
same conditions

hμhν + hνhμ = 2ημνe, μ, ν = 1, . . . , n,

as the generators ea (one should replace e by h and the Latin indices a and b by the Greek (tensor) in-
dices μ and ν). Thus, we arrive at a variant of the Clifford algebra C	(r, s) with generators hμ, which
is associated with the (pseudo-)Euclidean space R

r,s with Cartesian coordinates xμ, μ = 1, . . . , n.
By analogy with formulas (3.4), the elements of such a geometrized algebra are written as genforms

U =

n∑

k=0

1

k!
uμ1...μk

hμ1 ∧ . . . ∧ hμk , (3.7)

where uμ1...μk
= u[μ1...μk ] are the components of a covariant skew-symmetric tensor field of rank k

in the space R
r,s.

Thus, in the technique of genforms, a covariant skew-symmetric tensor field of rank k defined
in R

r,s (with coordinates xμ) by components uμ1...μk
is assigned a genform of degree k,

uμ1...μk
→ 1

k!
uμ1...μk

hμ1 ∧ . . . ∧ hμk ,

and a family of covariant skew-symmetric tensor fields of ranks from 0 to n is assigned an (inho-
mogeneous) genform (3.7). Denote the set of genforms of degree k by Λ

[h]
k (Rr,s) and the set of

inhomogeneous genforms by

Λ[h](Rr,s) =

n⊕

k=0

Λ
[h]
k (Rr,s).

For genforms, all the same operations are defined as for the Clifford algebra, namely, the exterior
and Clifford multiplications of genforms U, V → U ∧ V and U, V → UV , the reversal operation
U → U∼, and the projections onto the subspaces of genforms of degrees k = 0, 1, . . . , n:

πk : Λ[h](Rr,s) → Λ
[h]
k (Rr,s).

In this notation, the expression [h] indicates the root symbol of the genvector hμ. If we consider
complexified genforms in C⊗ Λ[h](Rr,s), which are expressed in the form (3.7) with complex-valued
functions uμ1...μk

= uμ1...μk
(x), then for such genforms the operation of (complex) conjugation is

defined,

U → U =
n∑

k=0

1

k!
uμ1...μk

hμ1 ∧ . . . ∧ hμk , (3.8)

where uμ1...μk
are complex conjugate functions. Note that from the viewpoint of conjugation oper-

ation U → U , the generators hμ are assumed to be real (hμ = hμ).
The main difference of the set of genforms from the set of differential forms is in the presence

of the operation of Clifford multiplication of genforms, which defines the structure of the Clifford
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algebra on the set of genforms. An attempt to introduce the Clifford multiplication of differential
forms was made by Kähler [9] in 1962. To incorporate the electromagnetic field potential into the
version of the Dirac equation proposed by him,3 Kähler introduced a special multiplication of 1-forms
by forms of arbitrary degree and established that, as applied to the differentials of coordinates dxμ,
the multiplication introduced by him satisfies the formula

dxμdxν + dxνdxμ = 2gμν . (3.9)

Here the right-hand side contains the components of the metric tensor of a (pseudo-)Riemannian
manifold. In the case of a diagonal metric gμν , formula (3.9) appears in the definition of the Clifford
algebra C	(r, s) under the assumption that dxμ are generators of the Clifford algebra. Therefore,
Kähler called the introduced multiplication the Clifford multiplication of differential forms. Later,
in 1974, the construction of the Clifford multiplication of differential forms was rediscovered by
Atiyah [1], who considered the construction in less detail. Up to now, the construction of the
Clifford multiplication of differential forms has not been part of the mainstream in mathematics
and is familiar only to a narrow circle of specialists. I can guess that such a situation occurs because
formula (3.9) is difficult to accept, since this formula is not consistent with the existing view of the
differentials of coordinates as a basis of the cotangent space to a manifold. The construction of
genforms described here (see also [11]) seems to be more consistent and logical. Note that it does
not coincide with the construction of the Clifford multiplication of differential forms. Rather, the
apparatus of genforms can be viewed as a development of Kähler’s apparatus on a somewhat different
basis: Kähler’s apparatus is based on differential forms, while the apparatus of genforms is based on
Clifford algebras. Note that the Clifford multiplication of differential forms and the related operators
d + δ were used in studies related to the Dirac equation and its modifications [8, 9, 2, 15, 11]. In
the present study, we focus on the Maxwell and Yang–Mills equations and their generalizations.

On the relationship between the Clifford algebra C	(r, s) and the set of genforms
Λ[h](Rr,s). Let R

r,s be a (pseudo-)Euclidean space with Cartesian coordinates xμ. Denote the set
of smooth functions4 of the variable x ∈ R

r,s with values in the Clifford algebra C	(r, s) by C	(Rr,s):

C	(Rr,s) =
{
U : R

r,s → C	(r, s)
}
.

One can add functions in C	(Rr,s) together and multiply them by each other in the Clifford and
exterior ways pointwise (at every point x ∈ R

r,s).
Let us show that an arbitrary tetrad yμa defines a one-to-one correspondence between the elements

of the sets C	(Rr,s) and Λ[h](Rr,s), where hμ = yμaea. Indeed, if real antisymmetric coefficients

ua1...ak = ua1...ak(x) = u[a1...ak]

define an element of the algebra

U = U(x) =
1

k!
ua1...ak e

a1 ∧ . . . ∧ eak ∈ C	(Rr,s),

then we can use the formulas hμ = yμaea and ea = yaμh
μ (where ea are generators of the Clifford

algebra C	(r, s) and hμ are generators of the algebra Λ[h](Rr,s)) to rewrite this element U as

U = U(x) =
1

k!

(
ua1...aky

a1
μ1

. . . yakμk

)
hμ1 ∧ . . . ∧ hμk =

1

k!
uμ1...μk

hμ1 ∧ . . . ∧ hμk ∈ Λ
[h]
k (Rr,s),

3This version of the Dirac equation describes a 16-component wave function. It was proposed (without details)
in 1928 by Ivanenko and Landau [8] and is sometimes called the ILK-equation in the literature.

4We assume that the smoothness of the functions under consideration is sufficient for the validity of the arguments
used. For example, for the results of the present study, it suffices to assume that the functions are three times
continuously differentiable with respect to x ∈ R

r,s. This remark also applies to the tensor fields in question.
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where
uμ1...μk

= uμ1...μk
(x) = u[μ1...μk ] = ua1...aky

a1
μ1

. . . yakμk
.

This correspondence between the elements of the sets C	(Rr,s) and Λ[h](Rr,s) is one-to-one.5

Operator ð. Introduce the differential operator ð : Λ[h](Rr,s) → Λ[h](Rr,s),

ð = hμ∂μ, (3.10)

which acts on genforms U = U(x) ∈ Λ[h](Rr,s) according to the rule ðU = hμ∂μU , where ∂μ = ∂/∂xμ

are partial derivatives. We assume that the components of the vector hμ are independent of x ∈ R
r,s,

i.e., ∂μhν = 0 for all μ, ν = 1, . . . , n.
The differential operator ð plays a key role in our theory. Using the operator ð, below we define

some other differential operators in Λ[h](Rr,s).

Operators d and δ. Note another obvious property of the multiplication of elements of the
Clifford algebra C	(r, s):

1
U

k
V =

k+1
W +

k−1
W ∈ C	k+1(r, s)⊕ C	k−1(r, s) ∀

1
U ∈ C	1(r, s),

k
V ∈ C	k(r, s).

Using this property, we introduce operators6

d, δ : Λ[h](Rr,s) → Λ[h](Rr,s)

such that d : Λ
[h]
k (Rr,s) → Λ

[h]
k+1(R

r,s) and δ : Λ
[h]
k (Rr,s) → Λ

[h]
k−1(R

r,s). By definition, set

d
k
A := πk+1(ð

k
A), δ

k
A := πk−1(ð

k
A),

where
k
A ∈ Λ

[h]
k (Rr,s), k = 0, 1, . . . , n.

Here are the basic properties of these operators:

(1) d+ δ = ð;
(2) d2 = 0 and δ2 = 0;

(3) d
n
A = 0 and δ

0
A = 0.

The operators d and δ are first-order operators, since they contain the first derivatives ∂μ. Now we
define operators of order n ≥ 1 (d(1) = d, δ(1) = δ):

d(n) =

{
(dδ)n/2 if n is even,

(dδ)(n−1)/2d if n is odd,
δ(n) =

{
(δd)n/2 if n is even,

(δd)(n−1)/2δ if n is odd.

Here we use shorthand notation such as (dδ)2 = dδdδ. Note that

d(n) : Λ
[h]
k (Rr,s) → Λ

[h]
k (Rr,s), δ(n) : Λ

[h]
k (Rr,s) → Λ

[h]
k (Rr,s) if n is even,

d(n) : Λ
[h]
k (Rr,s) → Λ

[h]
k+1(R

r,s), δ(n) : Λ
[h]
k (Rr,s) → Λ

[h]
k−1(R

r,s) if n is odd.

5One can say that genforms give a representation of the set C�(Rr,s) (the set of functions with values in the Clifford
algebra). This point of view is quite relevant when considering objects of the (pseudo-)Euclidean space R

r,s.
However, when considering manifolds, it turns out that an appropriate generalization of genforms leads to more
natural structures on a manifold compared with Clifford algebras. Therefore, on a manifold, the theory should
be constructed starting from the set of genforms rather than from the Clifford algebra.

6It is easy to see that these operators d and δ are analogous to the operators of exterior differentiation d and
codifferentiation δ in the theory of differential forms (therefore, we keep the same notation d and δ for them).
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Note also that
ð
2 = (d+ δ)2 = dδ + δd = ∂μ∂μ = �,

where � is the n-dimensional d’Alembert operator of signature (r, s). For n ≥ 1, we have

ð
n = (d+ δ)n = d(n) + δ(n) =

{
�n/2 if n is even,

�(n−1)/2(d+ δ) if n is odd.

A remarkable property of the technique of genforms is the fact that in the situations where
Clifford multiplication is not needed and only exterior multiplication is used, the technique of
genforms is actually indistinguishable from the technique of differential forms (one should formally
replace dxμ by hμ). Therefore, the technique of genforms can be viewed as a generalization of the
technique of differential forms.

For example, we expressed the Maxwell equations in terms of the differential forms (1.7) as
equations (1.8). Using the genforms

A = aμh
μ ∈ Λ

[h]
1 (Rr,s), J = jμh

μ ∈ Λ
[h]
1 (Rr,s), F =

1

2
fμνh

μ ∧ hν ∈ Λ
[h]
2 (Rr,s), (3.11)

we can express the Maxwell equations in the same form dA = F , δF = J .
If A, J ∈ Λ

[h]
1 (Rr,s) and F ∈ Λ

[h]
2 (Rr,s) ⊕ Λ

[h]
0 (Rr,s), then the generalized Maxwell equa-

tions (1.12) are expressed in terms of genforms in the same way: (d + δ)A = F , (d + δ)F = J ,
and δJ = 0.

In addition, note that all what has been said above about genforms in Λ[h](Rr,s) is also valid for
complexified genforms in C⊗ Λ[h](Rr,s).

4. YANG–MILLS EQUATIONS AND GENFORMS
WITH VALUES IN THE LIE ALGEBRA L

For the representation of the Yang–Mills equations, we need genforms with values in the Lie
algebra L. Considering the tensor product L ⊗ Λ[h](Rr,s) of the Lie algebra L and the set of
genforms Λ[h](Rr,s), we arrive at genforms with values in the Lie algebra L. Genforms of degree k

in L⊗ Λ
[h]
k (Rr,s) can be written as

A =
1

k!
aμ1...μk

⊗ hμ1 ∧ . . . ∧ hμk ,

where aμ1...μk
are the components of a covariant skew-symmetric tensor field with values in the Lie

algebra L, i.e., aμ1...μk
: Rr,s → L.

We will use the following linear differential operators ð, d, δ : L⊗ Λ[h](Rr,s) → L⊗ Λ[h](Rr,s):

ðA := hμ∂μA, dA := πk+1(ðA), δA := πk−1(ðA),

where A ∈ L ⊗ Λ
[h]
k (Rr,s), k = 0, 1, . . . , n. These operators have the properties d + δ = ð, d2 = 0,

and δ2 = 0. We will also use the reversal operator A → Ã = (−1)k(k−1)/2A and the conjugation
operator

A → A =
1

k!
a†μ1...μk

⊗ hμ1 ∧ . . . ∧ hμk , (4.1)

where a†μ1...μk is the Hermitian conjugate matrix (for every fixed value of the multi-index μ1 . . . μk) or
the Hermitian conjugate element of the Clifford algebra (for the Hermitian conjugation of elements
of the Clifford algebra, see [11]). It is obvious that the conjugation operation (4.1) is a generalization
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of the operation of complex conjugation (3.8) of complexified genforms in C ⊗ Λ[h](Rr,s). Recall
that for the Hermitian conjugation of matrices (or elements of the Clifford algebra) we have the
property (ab)† = b†a†.

Let ρ ∈ R be a constant, aμ be the components of a covector field with values in the Lie
algebra L, and fμν = −fνμ be the components of a covariant skew-symmetric tensor field with
values in the Lie algebra L. Set

A := aμ ⊗ hμ, F :=
1

2
fμν ⊗ (hμhν).

Then the following formulas are valid (where fμν = ∂μaν − ∂νaμ − ρ[aμ, aν ]):

A2 =
1

2
(aμaν − aνaμ)⊗ (hμhν) + aμaμ ⊗ e,

(Ã2) = − 1

2
(aμaν − aνaμ)⊗ (hμhν) + aμaμ ⊗ e,

1

2
(A2 − (Ã2)) =

1

2
(aμaν − aνaμ)⊗ (hμhν),

ðA = hλ∂λA = (d+ δ)A =
1

2
(∂μaν − ∂νaμ)⊗ (hμhν) + ∂μaμ ⊗ e,

dA =
1

2
(∂μaν − ∂νaμ)⊗ (hμhν), δA = ∂μaμ ⊗ e,

F = dA− ρ

2
(A2 − (Ã2)) =

1

2

(
∂μaν − ∂νaμ − ρ[aμ, aν ]

)
⊗ (hμhν),

ðF = (∂μfμν)⊗ hν +
1

2

∑

μ�=λ�=ν

∂λfμν ⊗ (hλhμhν),

AF = (aμfμν)⊗ hν +
1

2

∑

μ�=λ�=ν

aλfμν ⊗ (hλhμhν),

FA = −(fμνa
μ)⊗ hν +

1

2

∑

μ�=λ�=ν

fμνaλ ⊗ (hμhνhλ),

F̃A = −(fμνa
μ)⊗ hν − 1

2

∑

μ�=λ�=ν

fμνaλ ⊗ (hμhνhλ),

AF + F̃A = [aμ, fμν ]⊗ hν +
1

2

∑

μ�=λ�=ν

[aλ, fμν ]⊗ (hλhμhν),

ðF − ρ(AF + F̃A) =
(
∂μfμν − ρ[aμ, fμν ]

)
⊗ hν +

1

2

∑

μ�=λ�=ν

(
∂λfμν − ρ[aλ, fμν ]

)
⊗ (hλhμhν). (4.2)

Lemma (on Bianchi’s differential identity). If fμν = ∂μaν − ∂νaμ − ρ[aμ, aν ], then
∑

μ�=λ�=ν

(
∂λfμν − ρ[aλ, fμν ]

)
⊗ (hλhμhν) ≡ 0. (4.3)

Proof. The assertion of the lemma is a consequence of Bianchi’s differential identity [18, p. 269]

Dμfαβ +Dαfβμ +Dβfμα = 0,

where fμν = ∂μaν − ∂νaμ − ρ[aμ, aν ] and Dμfαβ = ∂μfαβ − ρ[aμ, fαβ].
By the lemma and formula (4.2), we have

ðF − ρ(AF + F̃A) =
(
∂μfμν − ρ[aμ, fμν ]

)
⊗ hν ,
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where fμν = ∂μaν − ∂νaμ − ρ[aμ, aν ]. Therefore, the Yang–Mills equations (2.2) in the technique of
genforms with values in the Lie algebra L are represented by the equations

dA− ρ

2
(A2 − (Ã2))− F = 0, ðF − ρ(AF + F̃A) = J, (4.4)

where
A = aμ ⊗ hμ ∈ L⊗ Λ

[h]
1 (Rr,s), J = jν ⊗ hν ∈ L⊗ Λ

[h]
1 (Rr,s),

F =
1

2
fμν ⊗ (hμhν) ∈ L⊗ Λ

[h]
2 (Rr,s).

Recall that the Yang–Mills equations (2.2) imply the equality (2.5). If the Lie algebra L is the
real Lie algebra of a unitary Lie group (i.e., if the elements of the Lie algebra L are anti-Hermitian
matrices U † = −U), then one can verify that a consequence of equations (4.4) is expressed in the
technique of genforms as

δJ − ρ
(
AJ − J̃A

)
= 0. (4.5)

Note that for the Maxwell equations there are three equivalent expression in the technique of
differential forms (genforms), namely, (1.8), (1.10), and (1.11), while for the Yang–Mills equations
there is only one expression (4.4) in the technique of genforms with values in Lie algebra.

Generalized Yang–Mills equations. Writing the Maxwell equations in the technique of
differential forms (1.8), (1.10), and (1.11) made it possible to see the generalized Maxwell equa-
tions (1.12). We have shown that all solutions of the Maxwell equations (in the Lorentz gauge)
are contained among the solutions of system (1.12). Moreover, we have shown that system (1.12)
subject to the condition δJ = 0 on its right-hand side also has solutions that do not satisfy the
Maxwell equations.

Similar arguments lead to the system of equations

ðA− ρ

2
(A2 − (Ã2))− F = 0, ðF − ρ(AF + F̃A) = J, (4.6)

where A ∈ L⊗ Λ
[h]
1 (Rr,s), F ∈ L⊗

(
Λ
[h]
0 (Rr,s)⊕ Λ

[h]
2 (Rr,s)

)
, and J ∈ L⊗ Λ

[h]
1 (Rr,s), which provides

a basis for further study.
Formula (4.2) and the previous formulas from the same block, as well as the lemma on Bianchi’s

differential identity, allow us to write equations (4.6) in more detail as

F = ðA− ρ

2
(A2 − (Ã2)) =

1

2
(∂μaν − ∂νaμ − ρ[aμ, aν ])⊗ (hμhν) + b⊗ e, (4.7)

J = ðF − ρ(AF + F̃A) =
(
∂μfμν − ρ[aμ, fμν ]

)
⊗ hν +

(
∂νb− ρ(aνb+ baν)

)
⊗ hν , (4.8)

where A = aμ ⊗ hμ, fμν = ∂μaν − ∂νaμ − ρ[aμ, aν ], and b = ∂μaμ.
If we supplement the system of equations (4.6) with the equation δA = 0, then, obviously, any

solution of the resulting system of equations

ðA− ρ

2
(A2 − (Ã2))− F = 0, ðF − ρ(AF + F̃A) = J, δA = 0 (4.9)

is also a solution of system (4.4), which is equivalent to the system of Yang–Mills equations (2.2).
When considering the system of equations (1.14), which arises in the theory of Maxwell equa-

tions, we have proved that in the case of signature (r, s) = (1, n − 1) of the pseudo-Euclidean space,
the condition δA = 0 can be relaxed by replacing it with condition (1.15) and the condition δJ = 0.
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We conjecture that a similar statement also holds for the condition δA = 0 from the system of
equations (4.9). However, the analysis of this problem has not yet been brought to a rigorous proof.

The system of equations (4.6) with the additional condition δJ − ρ(AJ − J̃A) = 0 on the
right-hand side can be viewed as a generalization of the Yang–Mills equations. Indeed, if A, J ∈
L ⊗ Λ

[h]
1 (Rr,s) is a solution to the Yang–Mills equations (4.4) in the Lorentz gauge δA = 0, then

these A and J are also a solution to equations (4.6). On the other hand, among the solutions of
equations (4.6), there are solutions that do not satisfy the Yang–Mills equations (4.4) (this fact
has been proved above for the Maxwell equations, which are a particular case of the Yang–Mills
equations). We will call equations (4.6) a generalized system of Yang–Mills equations (expressed in
the technique of genforms).

In future publications, we are going to consider the possibility of using the system of equa-
tions (4.6) instead of the Yang–Mills equations. We hope that the solutions of the new equations
will be given a physical interpretation.

5. RELATION TO THE THEORY OF FRIEDRICHS SYMMETRIC
HYPERBOLIC SYSTEMS OF FIRST-ORDER EQUATIONS

In the previous section, we introduced a new class of systems of equations (4.6). Equations
in this class (we view them as generalized Yang–Mills equations) depend on the pseudo-Euclidean
space R

r,s and the real Lie algebra L. In this connection, a question arises as to whether the new
equations are internally consistent. Can one ensure that these equations are neither overdetermined
nor underdetermined? How the Cauchy problem is posed for these equations, and is the Cauchy
problem well-posed in the sense of Hadamard (a solution exists, is unique, and depends continuously
on the initial data, the right-hand sides, and the coefficients of the equations)? In this section, we
answer these questions in some particular cases of systems (4.6). Namely, as the real algebra L, we
will consider only the real Lie algebra u(1) of the unitary abelian Lie group U(1) of complex numbers
with unit absolute value; i.e., we restrict the analysis to the generalized Maxwell equations (1.12).
As the pseudo-Euclidean space R

r,s, we consider three spaces R
1,1, R1,2, and R

1,3.
Let us outline the further analysis. We express the Cauchy problem for equations (1.12) as a

Cauchy problem for the so-called (Friedrichs) symmetric hyperbolic systems of equations (SHSEs).
The theory of SHSEs (including the questions of well-posedness of the Cauchy problem for SHSEs)
was developed by Friedrichs [6], Dezin [4], Godunov [7], Mizohata [13], and others. The application
of the theory of SHSEs will allow one to make a conclusion about the consistency of system (1.12)
and about the well-posedness of the Cauchy problem for this system of equations.

Let n ≥ 2 be an integer, Rn be the Euclidean space with Cartesian coordinates x1, . . . , xn, and
Ω ⊂ R

n be a bounded open domain such that Ω ⊂ {x ∈ R
n : x1 > 0}. Consider the Cauchy problem

for the system of linear first-order partial differential equations

n∑

i=1

Hi∂iu+Qu = j, x ∈ Ω, (5.1)

u = ψ, x ∈ S. (5.2)

Here H1, . . . ,Hn and Q are square N × N matrices that depend smoothly on x = (x1, . . . , xn);
u = u(x) is the N -dimensional column vector of unknown functions; j = j(x) is the N -dimensional
column vector of functions on the right-hand side; S is an open domain in the plane x1 = 0 that
is obtained from the (n − 1)-dimensional set Ω ∩ {x1 = 0} by removing the boundary, which is
assumed to be smooth; and ψ = ψ(x2, . . . , xn) is the N -dimensional column vector of the initial
functions (defined for x1 = 0).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 306 2019



172 N. G. MARCHUK

If, for any x ∈ Ω, the matrices H1, . . . ,Hn are symmetric (HT
i = Hi) and the matrix H1 is

positive definite, then the system of first-order equations (5.1) is called a Friedrichs symmetric
x1-hyperbolic system of equations in the domain Ω.

Suppose that the following conditions hold for the Cauchy problem (5.1), (5.2):
(a) the matrices Hi are symmetric, the matrix H1 is positive definite, and there exists a constant

γ > 0 such that (H1ξ, ξ) > γ(ξ, ξ) for all nonzero real N -dimensional vectors ξ and all x ∈ Ω;
(b) for x1 > 0, the domain Ω ⊂ R

n is bounded by a surface ∂Ω such that the matrix
∑n

i=1 Hiτi,
where τ = (τ1, . . . , τn) is the outward normal vector, is positive definite for all points x ∈ ∂Ω;7

(c) the matrix-valued functions

Hi = Hi(x), Q = Q(x), j = j(x), x ∈ Ω,

are smooth (infinitely differentiable)8 functions of x ∈ Ω; the boundary ∂Ω of Ω for x1 > 0
is smooth; and the vector function ψ = ψ(x́) is a smooth function of x́ ∈ S. The boundary
of S is also smooth.

According to the theory of SHSEs, under conditions (a)–(c), there exists a classical (continuously
differentiable) solution to the Cauchy problem (5.1), (5.2). Also, there is an a priori estimate
according to which the solution of problem (5.1), (5.2) is unique and stable with respect to small
variations of the functions Hi(x), Q(x), j(x), and ψ(x́) in the appropriate norm. This precisely
means that the Cauchy problem (5.1), (5.2) for SHSEs subject to conditions (a)–(c) is well-posed
in the sense of Hadamard.9

We will prove the well-posedness of the Cauchy problem for the system of equations (1.12) by
reducing it to an equivalent Cauchy problem for an SHSE (thus we can use the above-formulated
general result on the well-posedness of the Cauchy problem for SHSEs). In order not to overload
the exposition, we assume that the initial data of the Cauchy problem for x1 = 0 are defined
by compactly supported functions and that the solution of the Cauchy problem is considered for
all x1 > 0.

Consider the case of n = 2 and the pseudo-Euclidean space R
1,1 with Cartesian coordi-

nates x1, x2. The metric tensor is defined by the diagonal matrix η = diag(1,−1). The set of
genforms Λ[h](R1,1) is regarded (at every point x ∈ R

1,1) as a four-dimensional vector space with
basis e, h1, h2, h12, where h12 = h1h2 and

hμhν + hνhμ = 2ημνe, μ, ν = 1, 2.

Let
A = a1h

1 + a2h
2 ∈ Λ

[h]
1 (R1,1), J = j1h

1 + j2h
2 ∈ Λ

[h]
1 (R1,1),

F = fe+ f12h
12 ∈ Λ

[h]
0 (R1,1)⊕ Λ

[h]
2 (R1,1), ð = h1∂1 + h2∂2.

We have
ðA = (∂1a1 − ∂2a2)e+ (∂1a2 − ∂2a1)h

12, (5.3)

ðF = (∂1f + ∂2f12)h
1 + (∂2f + ∂1f12)h

2. (5.4)

7This means that the domain Ω is a domain of dependence of the solution to system (5.1) on the initial data
defined for x1 = 0 in the (n− 1)-dimensional domain S. The part of the boundary of Ω on which x1 > 0 is called
a Hamilton–Jacobi hat (see [7]).

8The requirement of infinite differentiability of the data appearing in the Cauchy problem (5.1), (5.2) can be
relaxed, and this important question is the subject of study in the theory of SHSEs. In the present paper, we do
not consider this question.

9The existence of a solution to the Cauchy problem was proved in [6, 7] by the finite-difference approximation
method and in [13] by the methods of semigroup theory.
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Consider the following Cauchy problem for system (1.12):

ðA− F = 0, ðF = J for x1 > 0, (5.5)

A = Ȧ = ȧ1h
1 + ȧ2h

2, F = Ḟ = ḟe+ ḟ12h
12 for x1 = 0, (5.6)

where u̇1, u̇2, ḟ , and ḟ12 are given smooth functions of x2. In view of equalities (5.3) and (5.4), the
Cauchy problem (5.5), (5.6) takes the form

∂1a1 − ∂2a2 − f = 0, ∂1f + ∂2f12 = j1, (5.7)

∂1a2 − ∂2a1 − f12 = 0, ∂2f + ∂1f12 = j2. (5.8)

Introducing a column of unknown functions u = u(x) = (a1, a2, f, f12)
T and a column of the right-

hand side j = j(x) = (0, 0, j1, j2)
T, we obtain the following Cauchy problem for an SHSE:

H1∂1u+H2∂2u+Qu = j for x1 > 0,

u = u̇(x2) for x1 = 0,
(5.9)

where H1 is the fourth-order identity matrix,

H2 =

⎛

⎜
⎜
⎝

0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠ , Q =

⎛

⎜
⎜
⎝

0 0 −1 0
0 0 0 −1
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

and u̇ = u̇(x2) = (ȧ1, ȧ2, ḟ , ḟ12)
T is the vector function of initial data.

The well-posedness of the Cauchy problem (5.9) implies the well-posedness of the original Cauchy
problem (5.5), (5.6).

Consider the case of n = 3 and the pseudo-Euclidean space R
1,2 with Cartesian coordinates

x1, x2, x3. The metric tensor is defined by the diagonal matrix η = diag(1,−1,−1). The set of
genforms Λ[h](R1,2) is regarded (at every point x ∈ R

1,2) as an eight-dimensional vector space with
basis e, h1, h2, h3, h12, h13, h23, h123, where

hμhν + hνhμ = 2ημνe, μ, ν = 1, 2, 3.

Let
A = a1h

1 + a2h
2 + a3h

3 ∈ Λ
[h]
1 (R1,2), J = j1h

1 + j2h
2 + j3h

3 ∈ Λ
[h]
1 (R1,2),

F = fe+ f12h
12 + f13h

13 + f23h
23 ∈ Λ

[h]
0 (R1,2)⊕ Λ

[h]
2 (R1,2), ð = h1∂1 + h2∂2 + h3∂3.

Our concern is the Cauchy problem

ðA− F = 0, ðF = J for x1 > 0,

A = Ȧ, F = Ḟ for x1 = 0,
(5.10)

where
Ȧ = ȧ1h

1 + ȧ2h
2 + ȧ3h

3, Ḟ = ḟ e+ ḟ12h
12 + ḟ13h

13 + ḟ23h
23,

and ȧ1, ȧ2, ȧ3, ḟ , ḟ12, ḟ13, and ḟ23 are given smooth functions of x2 and x3 that satisfy the condition

∂2ȧ3 − ∂3ȧ2 − ḟ23 = 0 (5.11)

(below, we will see that this condition follows from the first equation in (5.15)).
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We have

ðA = (∂1a1 − ∂2a2 − ∂3a3)e+ (∂1a2 − ∂2a1)h
12 + (∂1a3 − ∂3a1)h

13 + (∂2a3 − ∂3a2)h
23,

ðF = (∂1f + ∂2f12 + ∂3f13)h
1 + (∂1f12 + ∂2f + ∂3f23)h

2

+ (∂1f13 − ∂2f23 + ∂3f)h
3 + (∂1f23 − ∂2f13 + ∂3f12)h

123.

Let us write the system of equations ðA− F = 0, ðF = J componentwise:

∂1a1 − ∂2a2 − ∂3a3 − f = 0, ∂1f + ∂2f12 + ∂3f13 = j1, (5.12)

∂1a2 − ∂2a1 − f12 = 0, ∂1f12 + ∂2f + ∂3f23 = j2, (5.13)

∂1a3 − ∂3a1 − f13 = 0, ∂1f13 − ∂2f23 + ∂3f = j3, (5.14)

∂2a3 − ∂3a2 − f23 = 0, ∂1f23 − ∂2f13 + ∂3f12 = 0. (5.15)

As a result, we have obtained a system of eight equations in seven unknowns a1, a2, a3, f , f12, f13,
and f23. However, this system is not overdetermined. Indeed, equations (5.13)–(5.15) are dependent,
because the last equation of the system is a consequence of the first equations in (5.13)–(5.15).
Therefore, we could just discard the second equation in (5.15) to obtain a system of seven equations
in seven unknowns. But this variant does not suit us, because the resulting system of seven equations
is not an SHSE. This easily follows from the fact that since the matrix H1 is positive definite, each
equation of the SHSE must contain a term with the partial derivative ∂1, whereas the first equation
in (5.15) does not contain a term with such a derivative.

Our proposal is to obtain an SHSE from system (5.12)–(5.15) by discarding the first equation
in (5.15). As a result, we obtain the following Cauchy problem for an SHSE:

H1∂1u+H2∂2u+H3∂3u+Qu = j for x1 > 0,

u = u̇ for x1 = 0,
(5.16)

where H1 is the seventh-order identity matrix,

H2 =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎜
⎝

0 −1 0 0 0 0 0
−1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 −1 0

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎟
⎠

, H3 =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎜
⎝

0 0 −1 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎟
⎠

,

and u̇ = u̇(x2, x3) = (ȧ1, ȧ2, ȧ3, ḟ , ḟ12, ḟ13, ḟ23)
T is the initial vector function. Although we have

dropped the first equation in (5.15), we require that the initial data of the Cauchy problem (5.16)
should satisfy condition (5.11).

Let us show that the resulting Cauchy problem (5.16) is equivalent to the Cauchy problem for
the system of equations (5.12)–(5.15) with the initial data u = u̇ satisfying condition (5.11). Indeed,
let us substitute f12 and f13 from the first equations in (5.13) and (5.14) into the second equation
in (5.15). For k ≡ ∂2a3 − ∂3a2 − f23, we obtain (taking account of condition (5.11)) the Cauchy
problem

∂1k = 0 for x1 > 0,

k = 0 for x1 = 0.

Hence, k = 0 for x1 > 0.
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The equivalence of the Cauchy problems (5.16) and (5.10) is proved; hence, the well-posedness
of the Cauchy problem (5.10) follows from the theory of SHSEs.

Consider the case of n = 4 and the pseudo-Euclidean space R
1,3 (Minkowski space) with

Cartesian coordinates x1, x2, x3, x4. The metric tensor is defined by the diagonal matrix η =
diag(1,−1,−1,−1). The set of genforms Λ[h](R1,3) is regarded (at every point x ∈ R

1,3) as a
16-dimensional vector space with basis

e, h1, h2, h3, h4, h12, h13, h14, h23, h24, h34, h123, h124, h134, h234, h1234, (5.17)

where

hμhν + hνhμ = 2ημνe, μ, ν = 1, 2, 3, 4, hμ1...μk = hμ1 . . . hμk , μ1 < . . . < μk.

Let

A = a1h
1 + a2h

2 + a3h
3 + a4h

4 ∈ Λ
[h]
1 (R1,3), J = j1h

1 + j2h
2 + j3h

3 + j4h
4 ∈ Λ

[h]
1 (R1,3),

F = fe+ f12h
12 + f13h

13 + f14h
14 + f23h

23 + f24h
24 + f34h

34 ∈ Λ
[h]
0 (R1,3)⊕ Λ

[h]
2 (R1,3),

ð = h1∂1 + h2∂2 + h3∂3 + h4∂4.

Our concern is the Cauchy problem

ðA− F = 0, ðF = J for x1 > 0,

A = Ȧ, F = Ḟ for x1 = 0,
(5.18)

where
Ȧ = ȧ1h

1 + ȧ2h
2 + ȧ3h

3 + ȧ4h
4,

Ḟ = ḟ e+ ḟ12h
12 + ḟ13h

13 + ḟ14h
14 + ḟ23h

23 + ḟ24h
24 + ḟ34h

34,

and ȧ1, ȧ2, ȧ3, ȧ4, ḟ , ḟ12, ḟ13, ḟ14, ḟ23, ḟ24, and ḟ34 are given smooth real functions of x2, x3, and x4

satisfying the conditions

∂2ȧ3 − ∂3ȧ2 − ḟ23 = 0, ∂2ȧ4 − ∂4ȧ2 − ḟ24 = 0, ∂3ȧ4 − ∂4ȧ3 − ḟ34 = 0, (5.19)

∂2ḟ34 − ∂3ḟ24 + ∂4ḟ23 = 0 (5.20)

(below we will see that these conditions follow from equations (5.25)–(5.28)).
A direct calculation yields

ðA =
(
∂1a1 − ∂2a2 − ∂3a3 − ∂4a4

)
e+

∑

1≤μ<ν≤4

(∂μaν − ∂νaμ)h
μν ,

ðF =
(
∂1f + ∂2f12 + ∂3f13 + ∂4f14

)
h1 +

(
∂1f12 + ∂2f + ∂3f23 + ∂4f24

)
h2

+
(
∂1f13 − ∂2f23 + ∂3f + ∂4f34

)
h3 +

(
∂1f14 − ∂2f24 − ∂3f34 + ∂4f

)
h4

+
(
∂1f23 − ∂2f13 + ∂3f12

)
h123 +

(
∂1f24 − ∂2f14 + ∂4f12

)
h124

+
(
∂1f34 − ∂3f14 + ∂4f13

)
h134 +

(
∂2f34 − ∂3f24 + ∂4f23

)
h234.
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We write the system of equations ðA − F = 0, ðF = J componentwise with respect to the ba-
sis (5.17):

∂1a1 − ∂2a2 − ∂3a3 − ∂4a4 − f = 0, ∂1f + ∂2f12 + ∂3f13 + ∂4f14 = j1, (5.21)

∂1a2 − ∂2a1 − f12 = 0, ∂1f12 + ∂2f + ∂3f23 + ∂4f24 = j2, (5.22)

∂1a3 − ∂3a1 − f13 = 0, ∂1f13 − ∂2f23 + ∂3f + ∂4f34 = j3, (5.23)

∂1a4 − ∂4a1 − f14 = 0, ∂1f14 − ∂2f24 − ∂3f34 + ∂4f = j4, (5.24)

∂2a3 − ∂3a2 − f23 = 0, ∂1f23 − ∂2f13 + ∂3f12 = 0, (5.25)

∂2a4 − ∂4a2 − f24 = 0, ∂1f24 − ∂2f14 + ∂4f12 = 0, (5.26)

∂3a4 − ∂4a3 − f34 = 0, ∂1f34 − ∂3f14 + ∂4f13 = 0, (5.27)

∂2f34 − ∂3f24 + ∂4f23 = 0. (5.28)

As a result, we have obtained a system of 15 equations in 11 unknown functions a1, a2, a3, a4, f ,
f12, f13, f14, f23, f24, and f34. In this system of equations, only 11 equations are independent. To
get them from system (5.21)–(5.28), we suggest dropping the first equations in (5.25)–(5.27) and
equation (5.28) (note that equation (5.28) is a consequence of the first equations in (5.25)–(5.27)).
As a result, we obtain the following Cauchy problem for an SHSE:

H1∂1u+H2∂2u+H3∂3u+H4∂4u+Qu = j for x1 > 0,

u = u̇ for x1 = 0,
(5.29)

where H1 is the 11th-order identity matrix and Hi, i = 2, 3, 4, are block-diagonal matrices with
two blocks H ′

i and H ′′
i of the fourth and seventh orders, respectively, on the diagonal. These blocks

have the form

H ′
2 =

⎛

⎜
⎜
⎝

0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ , H ′

3 =

⎛

⎜
⎜
⎝

0 0 −1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ , H ′

4 =

⎛

⎜
⎜
⎝

0 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 0

⎞

⎟
⎟
⎠ ,

H ′′
2 =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 −1 0
0 0 −1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 0 0 0

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

, H ′′
3 =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

0 0 1 0 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 −1
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 −1 0 0 0

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

,

H ′′
4 =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

,

and u̇ = u̇(x2, x3, x4) = (ȧ1, ȧ2, ȧ3, ȧ4, ḟ , ḟ12, ḟ13, ḟ14, ḟ23, ḟ24, ḟ34)
T is the initial vector function

satisfying conditions (5.19) and (5.20).
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Let us show that the resulting Cauchy problem (5.29) is equivalent to the Cauchy problem
for the system of equations (5.21)–(5.28) with the initial data u = u̇ satisfying conditions (5.19)
and (5.20). Indeed, let us substitute f12, f13, and f14 from the first equations in (5.22)–(5.24)
into the second equations in (5.25)–(5.27). As a result, we obtain the following Cauchy problem
for k23 ≡ ∂2a3 − ∂3a2 − f23, k24 ≡ ∂2a4 − ∂4a2 − f24, and k34 ≡ ∂3a4 − ∂4a3 − f34 (in view of
conditions (5.19) and (5.20)):

∂1k23 = 0, ∂1k24 = 0, ∂1k34 = 0 for x1 > 0,

k23 = k24 = k34 = 0 for x1 = 0.

Hence, k23 = k24 = k34 = 0 for x1 > 0.
The equivalence of the Cauchy problems (5.29) and (5.18) is proved; hence, the well-posedness

of the Cauchy problem (5.18) follows from the theory of SHSEs.
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