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Abstract—In a previous paper, we developed an analysis in associative commutative algebras
and in modules over them, which may be useful in problems of contemporary mathematical
and theoretical physics. Here we work out similar methods in the noncommutative case.
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1. INTRODUCTION

In [15] we presented an analysis in the associative commutative algebras and in modules over
them, which is adapted to the problems of contemporary mathematical and theoretical physics.
Here we develop a similar analysis in the noncommutative case. We keep the exposition as close
as possible to that in [15] in order to demonstrate the differences and similarities between the
commutative and noncommutative cases and to make the paper self-contained.

All linear operations are considered over the number field F = R,C. As a rule, we assume
summation over repeated upper and lower indices. If objects under study have natural topologies,
then we assume that the corresponding mappings are continuous (for example, if S and S ′ are
topological spaces, then Hom(S;S ′) is the set of all continuous mappings from S to S ′).

We freely use the general notation and definitions introduced in [15].

2. PRELIMINARIES

In this paper by an algebra we will mean an associative noncommutative algebra over the number
field F, and by a module, a left module over an algebra, unless explicitly stated otherwise.

Let A be an algebra. We will use the following notation:

• ̂A = A⊕F F, the unital extension of A; in particular, ̂A = A if the algebra A is unital, i.e., if
it contains a unit element;

• cenA = {A ∈ A | [A,B] = 0 for all B ∈ A}, the center of A;

• annA = {A ∈ A | A · B = B · A = 0 for all B ∈ A}, the annihilator of A (here and below,
the dot is the multiplication sign).

Clearly,

• cenA is a commutative subalgebra of A; in particular, cenA = A if the algebra A is commu-
tative;

• annA is an ideal (i.e., a two-sided ideal) of A; in particular, annA = 0 if the algebra A is
unital.
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ANALYSIS IN NONCOMMUTATIVE ALGEBRAS AND MODULES 91

Let M be an ̂A-module (i.e., a left ̂A-module).1 Then
• annA S = {A ∈ A | A · S = 0} = {A ∈ A | A · M = 0 for all M ∈ S}, the annihilator of a

subset S ⊂ M;
• annM E = {M ∈ M | E ·M = 0} = {M ∈ M | A ·M = 0 for all A ∈ E}, the annihilator of a

subset E ⊂ A.
Clearly,

• annA S is a left ideal of A;
• annM E is a submodule of the A-module M if E · A ⊂ E (i.e., if A · B ∈ E for all A ∈ E and
B ∈ A);

• annM E ⊂ annM(A · E); in particular, annM E = annM(A · E) if the algebra A is unital.
Let M and M′ be ̂A-modules. Then

• Hom
̂A(M;M′) is the cen ̂A-module of all ̂A-linear mappings from M to M′;

• End
̂A(M) = Hom

̂A(M;M) is the cen ̂A-algebra of all ̂A-linear mappings over M.

3. MULTIPLIERS IN ALGEBRAS AND MODULES

3.1. Multipliers in algebras. Let A be an algebra.
Definition 1. A linear mapping R ∈ EndF(A) is called a multiplier of the algebra A if the

following multiplier rule holds:

R(A · B) = RA ·B = A · RB for all A,B ∈ A.

Let M(A) be the set of all multipliers of an algebra A.
Proposition 1. The following statements hold :
• the set M(A) is a unital subalgebra of the algebra EndF(A);

• the exact sequence of algebras

0 → annA → cen ̂A ad−→ M(A)

is defined, where the adjoint action ad ∈ Homalg(cen ̂A;M(A)) is specified by the rule C �→
adC : A → A, adC A = C ·A;

• the algebra M(A) is a cen ̂A-algebra;
• for any R ∈ M(A) the kernel KerR = {A ∈ A | RA = 0} and the image ImR = {A = RB |
B ∈ A} are ideals (i.e., two-sided ideals) of the algebra A;

• for any R ∈ M(A) the image R(annA) is contained in annA and the image R(cenA) is
contained in cenA;

• the commutator [R′, R′′] belongs to HomF(A; annA) for all R′, R′′ ∈ M(A); in particular, the
algebra M(A) is commutative if annA = 0 (for example, if the algebra A is unital).

3.2. Multipliers in modules. Let A be an algebra, and let M be an ̂A-module.
Definition 2. A pair R = (ΔR, R) ∈ EndF(M) ×M(A) is called a multiplier of the ̂A-mod-

ule M if the following multiplier rule holds:

ΔR(A ·M) = RA ·M = A ·ΔRM for all A ∈ A, M ∈ M.

Let M(M) be the set of all multipliers of the ̂A-module M.
1Note that by definition the set of all ̂A-modules coincides with the set of all A-modules, but the first notation
emphasizes the fact that the algebra A may be non-unital.
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92 V.V. ZHARINOV

The direct product EndF(M)×M(A) has the structure of a unital algebra with the componen-
twise operations:

• λ′R′ + λ′′R′′ = (λ′ΔR′ + λ′′ΔR′′ , λ′R′ + λ′′R′′) for λ′, λ′′ ∈ F, and
• R′ ◦R′′ = (ΔR′ ◦ΔR′′ , R′ ◦R′′)

for all R′ = (ΔR′ , R′),R′′ = (ΔR′′ , R′′) ∈ EndF(M) × M(A) (here and below, the small circle is
the composition sign). The unit element of this algebra is idM(M) = (idM, idA).

Proposition 2. The following statements hold :
• the set M(M) is a unital subalgebra of the algebra EndF(M)×M(A);
• for any R = (ΔR, R) ∈ M(M) the kernel KerΔR = {M ∈ M | ΔRM = 0} and the image
ImΔR = {M = ΔRN | N ∈ M} are submodules of the ̂A-module M;

• for any R = (ΔR, R) ∈ M(M) the image ImΔR(annM A) is contained in annMA and the
image ImR(annAM) is contained in annAM;

• for any R′ = (ΔR′ , R′),R′′(ΔR′′ , R′′) ∈ M(M) the image [ΔR′ ,ΔR′′ ](A ·M) is zero, so the
commutator [ΔR′ ,ΔR′′ ] belongs to Hom

̂A(M; annM A); in particular, the algebra M(M) is
commutative if the algebra A is unital (here A ·M = {A ·M | A ∈ A, M ∈ M} ⊂ M).

Proposition 3. The adjoint action defines the algebra morphism

ad : cen ̂A → M(M), C �→ adC = (adC , adC),

where adC M = C · M and adC A = C · A for all C,A ∈ A and M ∈ M. The kernel Ker ad
coincides with anncenAM. In other words, the exact sequence of algebras

0 → anncenAM → cen ̂A ad−−→ M(M)

is defined. In particular, M(M) is a cen ̂A-algebra.
Proposition 4. Let M be a free ̂A-module with an ̂A-basis b = {bi ∈ M | i ∈ I} indexed

by a set I, so that M = {M = Ai · bi | Ai ∈ ̂A}. Then an algebra injection M(A) → M(M) is
defined by the componentwise action,

M(A) � R �→ R = (ΔR, R) ∈ M(M), ΔR(A
i · bi) = RAi · bi.

There is another way to treat multipliers of an ̂A-module M. Namely, consider the mapping

π ∈ Homcen ̂A(M(M);M(A)) : R = (ΔR, R) �→ R.

Proposition 5. The set Mπ(A) = Imπ = {R ∈ M(A) | π−1(R) �= ∅} is a subalgebra of the
cen ̂A-algebra M(A).

Theorem 1. For every R ∈ Mπ(A) the inverse image π−1(R) is a cen ̂A-affine space over the
cen ̂A-module Hom

̂A(M; annMA). In particular, the triple π : M(M) → M(A) is a cen ̂A-affine
fiber bundle over the cen ̂A-module Hom

̂A(M; annMA).
Proof. Indeed, let R′ = (Δ′

R, R),R′′ = (Δ′′
R, R) ∈ π−1(R). Then for the difference Δ′

R −Δ′′
R

we have
(Δ′

R −Δ′′
R)(A ·M) = (R −R)A ·M = 0 = A · (Δ′

R −Δ′′
R)M

for all A ∈ A and M ∈ M, i.e., Δ′
R − Δ′′

R ∈ Hom
̂A(M; annM A). On the other hand, let R =

(ΔR, R) ∈ π−1(R) and ρ ∈ Hom
̂A(M; annMA). Then

(ΔR + ρ)(A ·M) = ΔR(A ·M) + ρ(A ·M) = RA ·M +A · ρM = RA ·M + 0 = RA ·M

for all A ∈ A and M ∈ M; i.e., R′ = (ΔR + ρ,R) ∈ π−1(R). �
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Consider the set of all ∗-sections of the bundle π,

S∗(π) =
{

Δ ∈ Hom∗(Mπ(A);M(M))
∣

∣ π ◦Δ = idM(A)

}

, ∗ = F, cen ̂A.

The set SF(π) has the structure of a linear space, and the set Scen ̂A(π) has the structure of a
cen ̂A-module. We will call the elements of the cen ̂A-module Scen ̂A(π) covariant multipliers.

Definition 3. The curvature F (Δ) ∈ Hom
cen ̂A

(⊗2
cen ̂AMπ(A); End

̂A(M)
)

of a covariant mul-
tiplier Δ ∈ S

cen ̂A(π) is defined by the residual rule

ΔR ◦ΔS −ΔR◦S = (F (Δ)R,S , 0) for all R,S ∈ Mπ(A),

where
F (Δ)R,S = ΔR ◦ΔS −ΔR◦S .

Every algebra A has the adjoint structure of an ̂A-module defined as ̂A×A � (A,M) �→ A ·M .
We denote the resulting ̂A-module by A.

Proposition 6. Let A be the adjoint ̂A-module of an algebra A. Then

• there is a natural algebra injection ιM : M(A) → M(A), R �→ R = (R,R);

• the curvature F (ιM) is zero;
• M(A) = Im ιM ⊕Hom

̂A(A; annA), R = (ΔR, R) = (R,R) + (ΔR −R, 0).

4. GAUGE TRANSFORM OF MULTIPLIERS

Let A be an algebra, and let M be an ̂A-module. Let Aut
̂A(M) be the group of all automor-

phisms of the ̂A-module M.
Definition 4. Every automorphism G ∈ Aut

̂A(M) defines the following gauge transform on
the cen ̂A-algebra M(M):

R = (ΔR, R) �→ adG R = (adGΔR, R), adGΔR = G ◦ΔR ◦G−1.

Theorem 2. The gauge transform on the cen ̂A-algebra M(M) defines the action

ad: Aut
̂A(M) → Endalg- cen ̂A(M(M)), G �→ adG.

Proof. Indeed, let G ∈ Aut
̂A(M). Then

adG ΔR(A ·M) = (G ◦ΔR ◦G−1)(A ·M) = A · ((G ◦ΔR ◦G−1)M) = A · adG ΔRM

for all R = (ΔR, R) ∈ M(M), A ∈ A, and M ∈ M. Further,

adGΔR(A ·M) = (G ◦ΔR ◦G−1)(A ·M) = (G ◦ΔR)(A ·G−1M)

= G(RA ·G−1M) = RA · (G ◦G−1M) = RA ·M

for all R = (ΔR, R) ∈ M(M), A ∈ A, and M ∈ M. Next,

adG(R
′ ◦R′′) =

(

G ◦ (ΔR′ ◦ΔR′′) ◦G−1, R′ ◦R′′)

=
(

(G ◦ΔR′ ◦G−1) ◦ (G ◦ΔR′′ ◦G−1), R′ ◦R′′) = adGR′ ◦ adGR′′

for all R′ = (ΔR′ , R′),R′′ = (ΔR′′ , R′′) ∈ M(M). Finally,

adG(C ◦ΔR) = G ◦ C ◦ΔR ◦G−1 = C ◦ (G ◦ΔR ◦G−1) = C ◦ adGΔR
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94 V.V. ZHARINOV

for all C ∈ cen ̂A and R = (ΔR, R) ∈ M(M). Now, let G,H ∈ Aut
̂A(M). Then

adG◦H ΔR = (G ◦H) ◦ΔR ◦ (G ◦H)−1 = G ◦ (H ◦ΔR ◦H−1) ◦G−1

= G ◦ adH ΔR ◦G−1 = (adG ◦ adH)ΔR

for all R = (ΔR, R) ∈ M(M). �
Remark 1. The difference adGΔR −ΔR belongs to Hom

̂A(M; annMA) for all G ∈ Aut
̂A(M)

and R = (ΔR, R) ∈ M(M). Indeed, in this case, π(adGR) = π(R) (see Theorem 1).
Definition 5. Multipliers R′ = (ΔR′ , R′),R′′ = (ΔR′′ , R′′) ∈ M(M) are called gauge equiva-

lent, R′ ∼M R′′, if R′ = adGR′′ for some G ∈ Aut
̂A(M).

Proposition 7. The gauge transform on the cen ̂A-algebra M(M) defines a gauge equivalence
relation ∼M in M(M).

We call the corresponding quotient space M(M)/∼M the moduli space of M(M).
Definition 6. Every automorphism G ∈ Aut

̂A(M) defines the following pointwise gauge trans-
form on the cen ̂A-module S

cen ̂A(π):

Δ �→ adGΔ : M(A) → M(M), R �→ adGΔR = (adGΔR, R).

Proposition 8. The gauge transform on the cen ̂A-module S
cen ̂A(π) defines the action

ad: Aut
̂A(M) → Endalg- cen ̂A(Scen ̂A(π)),

G �→ adG : Scen ̂A(π) → Scen ̂A(π), Δ �→ adG Δ.

Definition 7. Covariant multipliers Δ′,Δ′′ ∈ScenA(π) are called gauge equivalent, Δ′∼MΔ′′,
if Δ′ = adG Δ′′ for some G ∈ Aut

̂A(M).

Proposition 9. The gauge transform on the cen ̂A-module S
cen ̂A(π) defines a gauge equiva-

lence relation ∼M in S
cen ̂A(π).

We call the corresponding quotient space S
cen ̂A(π)/∼M the moduli space of S

cen ̂A(π).
Remark 2. Clearly, instead of the whole group Aut

̂A(M) one can consider a suitable subgroup
G ⊂ Aut

̂A(M).

5. HOCHSCHILD COHOMOLOGY OF MULTIPLIERS

Let A be an algebra, let K and M be ̂A-modules, and let U = A,K and V = A,M.
Definition 8. The ̂A-module C(U ,V) =

⊕

q∈ZC
q(U ,V) of multiplier cochains over M(U)

with coefficients in M(V) is defined by the rule

Cq(U ,V) =

⎧

⎪

⎨

⎪

⎩

0, q < 0,

M(V), q = 0,

Homcen ̂A
(⊗q

cen ̂A
M(U);M(V)

)

, q > 0.

In particular, the set C(U ,V) has the natural structure of a tensor cen ̂A-algebra defined as

(cp ⊗ cq)(η1, . . . , ηp+q) = cp(η1, . . . , ηp) ◦ cq(ηp+1, . . . , ηp+q)

for all cp ∈ Cp(U ,V), cq ∈ Cq(U ,V), and η1, . . . , ηp+q ∈ D(U).
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Definition 9. Let a multiplier κ ∈ C1(U ,V) = Hom
cen ̂A(M(U);M(V)) be fixed. The endo-

morphism δ = δκ ∈ End
cen ̂A(C(U ,V)) is defined by the Hochschild rule

δc(η1, . . . , ηq+1) = κη1 ◦ c(η2, . . . , ηq+1) +
∑

1≤r≤q

(−1)rc(η1, . . . ηr ◦ ηr+1 . . . , ηq+1)

+ (−1)q+1c(η1, . . . , ηq) ◦ κηq+1

for all q ∈ Z+, c ∈ Cq(U ,V), and η1, . . . , ηq+1 ∈ M(U). In particular, the mapping δq = δ|Cq(U ,V) :
Cq(U ,V) → Cq+1(U ,V) is defined.

Theorem 3. Let a multiplier κ ∈ C1(U ,V) be fixed. Then
• the endomorphism δ is an exterior derivation of the tensor cen ̂A-algebra C(U ,V); i.e.,
δ(c′ ⊗ c′′) = (δc′)⊗ c′′ + (−1)qc′ ⊗ (δc′′) for all c′ ∈ Cq(U ,V) and c′′ ∈ C(U ,V);

• if the curvature F (κ) vanishes, then δ ◦ δ = 0 and a differential complex {Cq(U ,V), δq | q ∈ Z}
is defined, with the cohomology spaces Hq(U ,V) = Ker δq/ Im δq−1, where F (κ) ∈ C2(U ,V)
and

F (k)(η′, η′′) = κη′ ◦ κη′′ − κ(η′ ◦ η′′) for all η′, η′′ ∈ M(U).

Proof. The proof is a direct verification. �
Remark 3. We have slightly changed the notation here.

6. DERIVATIONS IN ALGEBRAS AND MODULES

6.1. Derivations in algebras. Let A be an algebra.
Definition 10. A linear mapping X ∈ EndF(A) is called a derivation of the algebra A if the

Leibniz rule holds:
X(A ·B) = XA · B +A ·XB for all A,B ∈ A.

Let D(A) be the set of all derivations of A.
The set D(A) has the natural structure of a Lie algebra with the commutator [X,Y ] =

X ◦ Y − Y ◦X, X,Y ∈ D(A), as a Lie bracket.
Proposition 10. The following statements hold :
• the associated Lie algebra glA is defined, with glA = A as linear spaces and with the Lie

bracket [ · , · ] given by the commutator rule

[A,B] = A ·B −B · A, A,B ∈ A;

• the associated action as ∈ HomLie(glA;D(A)) is defined by the rule A �→ asA : A → A,
B �→ asAB = [A,B]; the derivations asA, A ∈ A, are called inner derivations of the algebra A;

• the set Dinn(A) of all inner derivations of the algebra A is an ideal of the Lie algebra D(A),
because by the Jacobi identity [X, asA] = asXA for all X ∈ D(A) and A ∈ A;

• the sequence
0 → gl cenA → glA as−→ D(A) → D(A)/Dinn(A) → 0

of Lie algebras is exact.

In particular, the quotient Lie algebra D(A) = D(A)/Dinn(A) of proper derivations of the
algebra A is defined.

Proposition 11. The following statements hold :
• the action ◦ : M(A) → EndF(D(A)) of algebras is defined by the composition rule

M(A) � R �→ R ◦ (·) : D(A) → D(A), X �→ R ◦X;
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• the action [ · , · ] : D(A) → D(M(A)) of Lie algebras is defined by the commutator rule

D(A) � X �→ [X, · ] : M(A) → M(A), R �→ [X,R];

• these actions are related by the matching condition

[X,R ◦ Y ] = [X,R] ◦ Y +R ◦ [X,Y ] for all X,Y ∈ D(A), R ∈ M(A).

Thus, the set D(A) has the structure of a Lie algebra and the structure of an M(A)-module,
which are related by the matching condition. Briefly, D(A) is a Lie M(A)-algebra.

Proposition 12. For every derivation X ∈ D(A) the following statements hold :

• the kernel KerX = {A ∈ A | XA = 0} is a subalgebra of the algebra A, and the image
ImX = {A = XB | B ∈ A} is a K̂erX-module;

• the equality X(A · B) = A ·XB holds for all A ∈ K̂erX and B ∈ A; i.e., X ∈ End
K̂erX

(A);

• the image X(annA) belongs to annA.

6.2. Derivations in modules. Let A be an algebra, and let M be an ̂A-module.

Definition 11. A pair X = (∇X ,X) = EndF(M)×D(A) is called a derivation of the ̂A-mod-
ule M if the Leibniz rule holds:

∇X(A ·M) = XA ·M +A · ∇XM for all A ∈ A, M ∈ M.

Let D(M) be the set of all derivations of the ̂A-module M.

The set D(M) has the structure of a Lie algebra with the componentwise commutator [X,Y] =
([∇X ,∇Y ], [X,Y ]) as a Lie bracket.

Proposition 13. Let M be an ̂A-bimodule (i.e., a two-sided ̂A-module). Then the following
statements hold :

• the associated action as ∈ HomLie(glA;D(M)) is defined by the rule A �→ asA = (asA, asA),
where asAM = [A,M ] = A ·M −M · A for all A ∈ A and M ∈ M; we call such derivations
inner derivations of the ̂A-bimodule M;

• the set Dinn(M) of all inner derivations of the ̂A-bimodule M is an ideal of the Lie alge-
bra D(M).

In particular, the quotient Lie algebra D(M) = D(M)/Dinn(M) of proper derivations of the
̂A-bimodule M is defined.

Proposition 14. The following statements hold :

• the action ◦ : M(M) → EndF(D(M)) of algebras is defined by the componentwise composition
rule

M(M) � R �→ R ◦ (·) : D(M) → D(M), X �→ R ◦X,

where R = (ΔR, R), X = (∇X ,X), and R ◦X = (ΔR ◦∇X , R ◦X);

• the action [ · , · ] : D(M) → D(M(M)) of Lie algebras is defined by the componentwise com-
mutator rule

D(M) � X �→ [X, · ] : M(M) → M(M), R �→ [X,R],

where X = (∇X ,X), R = (ΔR, R), and [X,R] = ([∇X ,ΔR], [X,R]);
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• these actions are related by the matching condition

[X,R ◦Y] = [X,R] ◦Y +R ◦ [X,Y]

for all X,Y ∈ D(M) and R ∈ M(M).

Thus, the set D(M) has the structure of a Lie algebra and the structure of an M(M)-module,
which are related by the matching condition. Briefly, D(M) is a Lie M(M)-algebra.

Proposition 15. For every derivation X = (∇X ,X) ∈ D(M) the following statements hold :

• the kernel Ker∇X = {M ∈ M | ∇XM = 0} and the image Im∇X = {M = ∇XN | N ∈ M}
are K̂erX-modules;

• the equality ∇X(A · M) = A · ∇XM holds for all A ∈ KerX and M ∈ M; i.e., ∇X ∈
End

K̂erX
(M);

• the image ∇X(annMA) belongs to annMA, and the image X(annAM) belongs to annAM.

Proposition 16. There is a natural Lie ̂A-algebra injection

I : glA(M) → D(M), ρ �→ (ρ, 0) (i.e., ∇0 = ρ).

Moreover, the image Im I = {X = (ρ, 0) | ρ ∈ End
̂A(M)} is an ideal of the Lie M(M)-alge-

bra D(M); thus the short exact sequence of Lie algebras

0 → glA(M)
I−→ D(M) → D(M)/ Im I → 0

is defined.
In particular, the quotient Lie algebra DI(M) = D(M)/ Im I is defined.
Proposition 17. Let A be an algebra, and let M be a free ̂A-module with an ̂A-basis b =

{bi ∈ M | i ∈ I} indexed by a set I, so that M = {M = M i · bi | M i ∈ ̂A}. Then a Lie algebra
injection D(A) → D(M) is defined by the componentwise action,

D(A) � X �→ X = (∇X ,X) ∈ D(M), ∇X(M i · bi) = XM i · bi.

There is another way to treat derivations of an ̂A-module M. Namely, consider the mapping

Π: D(M) → D(A), X = (∇X ,X) �→ X.

Proposition 18. The following diagram is commutative:

M(M)×D(M) D(M)

M(A)×D(A) D(A)

◦

Ππ Π

◦

where ◦ : M(M)×D(M) → D(M), (R,X) �→ R ◦X.
Clearly, Π ∈ HomLie(D(M);D(A)) ∩ Homcen ̂A(D(M);D(A)), which can be briefly written as

Π ∈ HomLie-cen ̂A(D(M);D(A)).

Theorem 4. For every X ∈ D(A) the inverse image Π−1(X) is an ̂A-affine space over the
̂A-module End

̂A(M). Hence, the triple Π: D(M) → D(A) is an ̂A-affine fiber bundle over the
cen ̂A-module End

̂A(M).
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Proof. Indeed, let X ∈ D(A) and X′ = (∇′
X ,X),X′′ = (∇′′

X ,X) ∈ Π−1(X). Then for the
difference ∇′

X −∇′′
X we have

(∇′
X −∇′′

X)(A ·M) = (X −X)A ·M +A · (∇′
X −∇′′

X)M = A · (∇′
X −∇′′

X)M

for all A∈A and M ∈M, i.e., ∇′
X −∇′′

X ∈ End
̂A(M). On the other hand, let X=(∇X ,X)∈Π−1(X)

and ρ ∈ End
̂A(M). Then (∇X ,X) + (ρ, 0) = (∇X + ρ,X) ∈ Π−1(X), because Π(∇X + ρ,X) = X

and
(∇X + ρ)(A ·M) = ∇X(A ·M) + ρ(A ·M) = XA ·M +A · ∇XM +A · ρM

= XA ·M +A · (∇X + ρ)M

for all A ∈ A and M ∈ M. �
Consider the set of all ∗-sections of the bundle Π,

S∗(Π) =
{

∇ ∈ Hom∗(D(A);D(M))
∣

∣ Π ◦∇ = idD(A)

}

, ∗ = F, cen ̂A,Lie,Lie-cen ̂A.

The set SF(Π) has the structure of a linear space, Scen ̂A(Π) has the structure of a cen ̂A-module,
SLie(Π) has the structure of a Lie algebra, and SLie-cen ̂A(Π) has the structure of a Lie cen ̂A-algebra,
where the algebraic operations are defined pointwise. The elements of the cen ̂A-module S

cen ̂A(Π)
are called covariant derivations.

Definition 12. The curvature F (∇) ∈ Hom
cen ̂A

(∧2
cen ̂AD(A); End

̂A(M)
)

of a covariant
derivation ∇ ∈ S

cen ̂A(Π) is defined by the residual rule

[∇X ,∇Y ]−∇[X,Y ] = (F (∇)X,Y , 0) for all X,Y ∈ D(A),

where
F (∇)X,Y = [∇X ,∇Y ]−∇[X,Y ].

Proposition 19. Let A be the adjoint ̂A-module of the algebra A. Then

• there is a natural Lie algebra injection

ιD : D(A) → D(A), X �→ X = (X,X);

• the curvature F (ιD) is zero;
• D(A) = Im ιD ⊕ End

̂A(A), X = (∇X ,X) = (X,X) + (∇X −X, 0).

7. GAUGE TRANSFORM OF DERIVATIONS

Let A be an algebra, and let M be an ̂A-module. Let Aut
̂A(M) be the group of all automor-

phisms of the ̂A-module M.
Definition 13. Every mapping G ∈ Aut

̂A(M) defines the following gauge transform of the
Lie cen ̂A-algebra D(M):

X = (∇X ,X) �→ adG X = (adG ∇X ,X), adG ∇X = G ◦∇X ◦G−1.

Theorem 5. The gauge transforms of the Lie cen ̂A-algebra D(M) define the action

ad: Aut
̂A(M) → EndLie-cen ̂A(D(M)), G �→ adG .
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Proof. Indeed,

(adG ∇X)(A ·M) = (G ◦∇X ◦G−1)(A ·M) = (G ◦∇X)(A ·G−1M)

= G(∇X(A ·G−1M)) = G
(

XA ·G−1M +A · (∇X ◦G−1M)
)

= XA · (G ◦G−1M) +A · (G ◦∇X ◦G−1)M = XA ·M +A · (adG ∇X)M ;

hence, adGX ∈ D(M) for all G ∈ Aut
̂A(M) and X = (∇X ,X) ∈ D(M). Further,

adG(C∇X)M = (G ◦ C∇X ◦G−1)M = C · (G ◦∇X ◦G−1)M = C · adGM

for all C ∈ cen ̂A and X=(∇X ,X)∈D(M), with CX = (C∇X , CX). Hence adG ∈Endcen ̂A(D(M))
for all G ∈ Aut

̂A(M). Finally, let G ∈ Aut
̂A(M) and X′ = (∇X′ ,X ′),X′′ = (∇X′′ ,X ′′) ∈ D(M).

Then
[

adGX′, adGX′′] =
(

[adG∇X′ , adG∇X′′ ], [X ′,X ′′]
)

=
([

G ◦∇X′ ◦G−1, G ◦∇X′′ ◦G−1
]

, [X ′,X ′′]
)

=
(

G ◦ [∇X′ ,∇X′′ ] ◦G−1, [X ′,X ′′]
)

= adG[X
′,X′′];

i.e., adG ∈ EndLie(D(M)). �
Remark 4. The difference adG∇X − ∇X belongs to End

̂A(M) for all G ∈ Aut
̂A(M) and

X = (∇X ,X) ∈ D(M). Indeed, in this case, Π(adGX) = Π(X) (see Theorem 4).
Definition 14. Derivations X′ = (∇X′ ,X ′),X′′ = (∇X′′ ,X ′′) ∈ D(M) are said to be gauge

equivalent, X′ ∼D X′′, if X′ = adGX′′ for some G ∈ Aut
̂A(M). One can check that this relation is

indeed an equivalence relation.
Proposition 20. The gauge transforms of the cen ̂A-algebra D(M) define a gauge equivalence

relation in D(M).
The corresponding quotient space D(M)/∼D is called the moduli space of D(M).
Proposition 21. Let G ∈ Aut

̂A(M), R ∈ M(M), and X ∈ D(M). Then

adG(R ◦X) = adG R ◦ adGX and adG[X,R] = [adGX, adG R].

Remark 5. Clearly, instead of the whole group Aut
̂A(M) one can consider a suitable subgroup

G ⊂ Aut
̂A(M).

8. DE RHAM COHOMOLOGY

Let A be an algebra, let K and M be ̂A-modules, and let U = A,K and V = A,M.
Definition 15. The cen ̂A-module Ω(U ,V) =

⊕

q∈ZΩ
q(U ,V) of differential forms over U with

coefficients in V is defined by the rule

Ωq(U ,V) =

⎧

⎪

⎨

⎪

⎩

0, q < 0,

V, q = 0,

Hom
cen ̂A

(∧q

cen ̂A
D(U);V

)

, q > 0.

In particular, the set Ω(U ,A) has the natural structure of an exterior cen ̂A-algebra, and the set
Ω(U ,M) has the natural structure of an exterior Ω(U ,A)-module.

Definition 16. For any ξ ∈ D(U) the interior product iξ ∈ Endcen ̂A(Ω(U ,V)) is defined by
the contraction rule

(iξω)(ξ1, . . . , ξq−1) = qω(ξ, ξ1, . . . , ξq−1)

for all q ∈ Z+, ω ∈ Ωq(U ,V), and ξ1, . . . , ξq−1 ∈ D(U).
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Proposition 22. The following statements hold :

• iξ′ ◦ iξ′′ + iξ′′ ◦ iξ′ = 0 for all ξ′, ξ′′ ∈ D(U);
• iξ(φ ∧ ω) = (iξφ) ∧ ω + (−1)qφ ∧ (iξω) for all ξ ∈ D(U), φ ∈ Ωq(U ,A), q ∈ Z+, and
ω ∈ Ω(U ,V); i.e., the mapping iξ is an exterior derivation of the exterior algebra Ω(U ,A) and
the exterior Ω(U ,A)-module Ω(U ,M).

Definition 17. Let a mapping κ ∈ Ω1(U ,D(V)) = Hom
cen ̂A(D(U);D(V)) be fixed. For every

ξ ∈ D(U) the Lie derivative Lξ ∈ EndF(U ,V) is defined by the rule

(Lξω)(ξ1, . . . , ξq) = (κξ)(ω(ξ1, . . . , ξq))−
∑

1≤r≤q

ω
(

ξ1, . . . , ξr−1, [ξ, ξr], ξr+1, . . . , ξq
)

for all q ∈ Z+, ω ∈ Ωq(U ,V), and ξ1, . . . , ξq ∈ D(U).
Proposition 23. The following statements hold :
• Lξ(φ ∧ ω) = (Lξφ) ∧ ω + φ ∧ (Lξω) for all φ ∈ Ωq(U ,A), q ∈ Z+, and ω ∈ Ω(U ,V); i.e., the

mapping Lξ is a derivation of the exterior algebra Ω(U ,A) and the exterior Ω(U ,A)-module
Ω(U ,M);

• [Lξ′ , iξ′′ ] = i[ξ′,ξ′′] for all ξ′, ξ′′ ∈ D(U);
• if the curvature F (κ) vanishes, then [Lξ′ , Lξ′′ ] = L[ξ′,ξ′′] for all ξ′, ξ′′ ∈ D(U), where F (κ) ∈
Ω2(U ,D(V)) = Homcen ̂A

(∧2
cen ̂AD(U);D(V)

)

,

F (κ)(ξ′, ξ′′) = [κξ′,κξ′′]− κ[ξ′, ξ′′] for all ξ′, ξ′′ ∈ D(U).

Definition 18. The endomorphism d = dκ ∈ EndF(Ω(U ,V)) is defined by the Cartan formula

dω(ξ0, . . . , ξq) =
1

q + 1

{

∑

0≤r≤q

(−1)r(κξr)
(

ω(ξ0, . . . ξ̌r . . . , ξq)
)

+
∑

0≤r<s≤q

(−1)r+sω
(

[ξr, ξs], ξ0, . . . ξ̌r . . . ξ̌s . . . , ξq
)

}

for all ω ∈ Ωq(U ,V) and ξ0, . . . , ξq ∈ D(U), where the “checked” arguments are assumed to be
omitted; in particular, dq = d|Ωq(U ,V) : Ω

q(U ,V) → Ωq+1(U ,V).
Theorem 6. The following statements hold :

• d(φ ∧ ω) = dφ ∧ ω + (−1)qφ ∧ dω for all φ ∈ Ωq(U ,A), q ∈ Z+, and ω ∈ Ω(U ,V); i.e.,
the mapping d is an exterior derivation of the exterior algebra Ω(U ,A) and the exterior
Ω(U ,A)-module Ω(U ,M);

• if the curvature F (κ) vanishes, then d ◦ d = 0 and the differential complex {Ωq(K,M), dq |
q ∈ Z} is defined, with the cohomology spaces Hq(K,M) = Ker dq/ Im dq−1, q ∈ Z.

Proof. The proof of the equality d ◦ d = 0 is based on the assumed property κ[ξ′, ξ′′] =
[κξ′,κξ′′], ξ′, ξ′′ ∈ D(U), of the mapping κ (see [13] for a detailed exposition). The other statements
are easy to verify directly. �

Theorem 7. Let the curvature F (κ) vanish. Then the Cartan magic formula

Lξ = d ◦ iξ + iξ ◦ d

holds for every ξ ∈ D(U).
Proof. The proof is standard, but the calculations are rather cumbersome. See [13] for full

details. �
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Corollary 1. The commutator [Lξ, d] vanishes for every ξ ∈ D(U).
Theorem 8. Let M be an ̂A-module, let Ω(M) = Ω(M,M), and let us take κ = idD(M) ∈

End
̂A(D(M)). Then the complex {Ωq(M), dq | q ∈ Z} is exact ; i.e., the cohomology spaces

Hq(M) = Hq(M,M) are trivial for all q ∈ Z.
Proof. Indeed, by Proposition 16, we have E = (idM, 0) ∈ D(M), while LE = idΩ(M). Hence,

by the Cartan magic formula, the homotopy formula

idΩ(M) = iE ◦ d+ d ◦ iE

holds, implying the claim. �

9. CONCLUSIONS

Here we have presented only the basic definitions, constructions, and results of the noncommu-
tative analysis in algebras and modules. We hope that this paper will be a good supplement to the
fundamental studies [1, 2, 8]. Possible applications lie in the theory of complex quantum models,
quantum calculus, noncommutative geometry, noncommutative partial differential equations, etc.
For example, the technique presented above may turn out to be useful in the problems addressed
in [3–7, 9–14].
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