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Abstract—In a finite-dimensional Euclidean space, we consider a problem of pursuing one
evader by a group of pursuers with equal capabilities of all participants. The dynamics of the
problem is described by the system

D(α)zi = azi + ui − v, ui, v ∈ V,

where D(α)f is the Caputo derivative of order α ∈ (1, 2) of a function f . The set of admissible
controls V is compact and strictly convex, and a is a real number. The aim of the group of
pursuers is to catch the evader by at least m different pursuers, possibly at different times. The
terminal sets are the origin. The pursuers use quasi-strategies. We obtain sufficient conditions
for the solvability of the pursuit problem in terms of the initial positions. The investigation is
based on the method of resolving functions, which allows us to obtain sufficient conditions for
the termination of the approach problem in some guaranteed time.
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INTRODUCTION

An important direction in the development of the modern theory of differential games is

associated with the creation of solution methods for game problems of pursuit and evasion with

several objects [1–4]. In this area, not only are the classical solution methods deepened, but also new

problems are sought to which the existing methods are applicable. In particular, in [5–7], problems

of pursuing two objects described by equations with fractional derivatives were considered and

sufficient conditions of a capture were obtained.

In the present paper, we consider a problem on a multiple capture by a group of pursuers of one

evader provided that all the participants have equal capabilities and the movements of the players

are described by equations with Caputo fractional derivatives. Sufficient conditions of a capture

are obtained. Grigorenko found [8] necessary and sufficient conditions of a multiple capture for

the problem of simple pursuit. Conditions of a simultaneous multiple capture for the problem of

simple pursuit with equal capabilities of the participants were obtained by Blagodatskikh [9]. The

problem on a multiple capture of an evader in Pontryagin’s example was presented in [10–13]. A

multiple capture in linear differential games was considered in [2, 14–16]. The problem of group

pursuit with state constraints and fractional derivatives of order α ∈ (0, 1) was studied in [17].
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1. PROBLEM STATEMENT

Definition 1 [18]. Suppose that f is a function from [0,∞) to R
k, its derivative f ′ is absolutely

continuous on [0,∞), and α ∈ (1, 2). The Caputo derivative of f of order α is the function

(
D(α)f

)
(t) =

1

Γ(2− α)

t∫
0

f ′′(s)

(t− s)α−1
ds, where Γ(β) =

∞∫
0

e−ssβ−1 ds.

In the space R
k (k ≥ 2), we consider an (n+ 1)-person differential game: there are n pursuers

P1, . . . , Pn and one evader E. Each pursuer Pi moves according to the law

D(α)xi = axi + ui, xi(0) = x0i , ẋi(0) = x1i , ui ∈ V. (1.1)

The motion law of the evader E has the form

D(α)y = ay + v, y(0) = y0, ẏ(0) = y1, v ∈ V. (1.2)

Here α ∈ (1, 2), xi, y, ui, v ∈ R
k, V is a strictly convex compact set in R

k, and a is a real number.

In addition, x0i �= y0 for all i.

Instead of systems (1.1), (1.2), we consider the system

D(α)zi = azi + ui − v, zi(0) = z0i = x0i − y0, żi(0) = z1i = x1i − y1, ui, v ∈ V. (1.3)

Here and below, i ∈ I = {1, . . . , n}. Denote by z0 = {z0i , z1i } the vector of initial positions. We

assume that z1i �= 0 for all i.

Definition 2. A mapping Ui taking a vector of initial positions z0, time t, and arbitrary

prehistory of the evader’s control vt(·) to a measurable function ui(t) with values in V is called a

quasi-strategy of the pursuer Pi.

Definition 3. An m-multiple capture (for m = 1, a capture) occurs in the game if there exist a

time T (z0) and quasi-strategies U1, . . . , Un of the pursuers P1, . . . , Pn such that, for any measurable

function v(·) with values v(t) ∈ V for t ∈ [0, T (z0)], there exist times τ1, . . . τm ∈ [0, T (z0)] and

pairwise different indices i1, . . . , im ∈ I such that zis(τs) = 0 for s = 1, . . . ,m.

We introduce the following notation:

Eρ(z, μ) =
∞∑
k=0

zk

Γ(kρ−1 + μ)
is the generalized Mittag-Leffler function [20, p. 17],

fi(t) =

⎧⎨
⎩
tα−1E1/α(at

α, 1)z0i + tαE1/α(at
α, 2)z1i if a < 0,

z0i
t
+ z1i if a = 0,

λ(z, v) = sup{λ ≥ 0: − λz ∈ V − v}, γ = −aΓ(2− α),

Ω(l) = {(i1, . . . , il) : i1, . . . , il ∈ I and are pariwise different},

δ+0 = min
v∈V

max
Λ∈Ω(m)

min
j∈Λ

λ(z1j , v), δ−0 = min
v∈V

max
Λ∈Ω(m)

min
j∈Λ

λ(−z1j , v),

δ+t = min
v∈V

max
Λ∈Ω(m)

min
j∈Λ

λ(fj(t), v), δ−t = min
v∈V

max
Λ∈Ω(m)

min
j∈Λ

λ(−fj(t), v),

δ0 = min{δ+0 , δ−0 }, δt = min{δ+t , δ−t },

r(t, s) =

{
1 if E1/α(a(t− s)α, α) ≥ 0,

−1 if E1/α(a(t− s)α, α) < 0,
E(t, s) = (t− s)α−1E1/α (a(t− s)α, α) .
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2. SUFFICIENT CONDITIONS OF THE CAPTURE

2.1. Sufficient conditions of the capture for a < 0.

Lemma 1. Let a < 0 and δ0 > 0. Then there exists a time T > 0 such that the inequality

δt > 0.5γδ0 holds for all t > T .

Proof. We have the following asymptotic estimates as t → +∞ [19, formula (1.2.4)]:

E1/α(at
α, 1) = − 1

atαΓ(1− α)
+O

( 1

t2α

)
, E1/α(at

α, 2) = − 1

atαΓ(2− α)
+O

( 1

t2α

)
,

where O(g) as t → +∞ is a specific function G such that the function G/g is bounded on (A,+∞)

for some A > 0. Hence, the function fi can be represented in the form

fi(t) = − z0i
atΓ(1− α)

+
z1i
γ

+O
( 1

tα

)
,

which yields lim
t→+∞

fi(t) =
z1i
γ
. Since the function λ is continuous [2, Lemma 1.3.13], we have

lim
t→∞

λ(fi(t), v) = λ
(z1i
γ
, v
)
for all v ∈ V . Consequently,

lim
t→+∞

δ+t = min
v∈V

max
Λ∈Ω(m)

min
j∈Λ

λ
(z1j
γ
, v
)
= γδ+0 .

Similarly, lim
t→+∞

δ−t = γδ−0 . Therefore, there exists T > 0 such that δt > 0.5γδ0 for all t > T . �

Lemma 2. Let a < 0 and δ0 > 0. Then there exists T0 > 0 such that, for any measurable

function v(·) with values in V, there exists a set Λ ∈ Ω(m) such that, for all j ∈ Λ,

Tα−1
0

T0∫
0

∣∣E(T0, s)
∣∣λ(fj(T0)r(T0, s), v(s)) ds ≥ 1.

Proof. By Lemma 1 there exists T1 > 0 such that δt > 0.5γδ0 for all t > T1. Let T > T1.

Consider the functions

hi(t) = tα−1

t∫
0

∣∣E(t, s)
∣∣λ(fi(T )r(T, s), v(s)) ds, t ∈ [0, T ].

Then

max
Λ∈Ω(m)

min
j∈Λ

hj(t) ≥ max
Λ∈Ω(m)

tα−1

t∫
0

∣∣E(t, s)
∣∣min
j∈Λ

λ(fj(T )r(T, s), v(s))ds. (2.1)

Since

max
Λ∈Ω(m)

aΛ ≥ 1

Cm
n

∑
Λ∈Ω(m)

aΛ
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for any nonnegative numbers {aΛ}Λ∈Ω(m), it follows from (2.1) that

max
Λ∈Ω(m)

min
j∈Λ

hj(t) ≥
tα−1

Cm
n

t∫
0

∣∣E(t, s)
∣∣ ∑
Λ∈Ω(m)

min
j∈Λ

λ(fj(T )r(T, s), v(s))ds

≥ tα−1

Cm
n

t∫
0

∣∣E(t, s)
∣∣ max
Λ∈Ω(m)

min
j∈Λ

λ(fj(T )r(T, s), v(s)) ds

≥ δ0γt
α−1

2Cm
n

t∫
0

∣∣E(t, s)
∣∣ ds ≥ δ0γ

2Cm
n

tα−1

t∫
0

E(t, s) ds. (2.2)

By [20, formula (1.15)], we have

t∫
0

E(t, s) ds = tαE1/α (at
α, α+ 1) .

Therefore, from (2.2), we obtain

max
Λ∈Ω(m)

min
j∈Λ

hj(T ) ≥
δ0γ

2Cm
n

Tα−1TαE1/α(aT
α, α+ 1) =

δ0γ

2Cm
n

T 2α−1E1/α(aT
α, α+ 1).

In view of [19, formula (1.2.4)], the following asymptotic representation holds as t → +∞:

E1/α(at
α, α+ 1) = − 1

atα
+O

( 1

t2α

)
.

Therefore,

max
Λ∈Ω(m)

min
j∈Λ

hj(T ) ≥
δ0γ

2Cm
n

(
− Tα−1

a
+O

( 1

T

))
, T → +∞.

Since a < 0 and α− 1 > 0, there exists T0 > T1 such that

δ0γ

2Cm
n

(
− Tα−1

a
+O

( 1

T

))
≥ 1.

Thus, there exists T0 > 0 such that max
Λ∈Ω(m)

min
j∈Λ

hj(T0) ≥ 1. Consequently, there exists Λ0 ∈ Ω(m)

such that hj(T0) ≥ 1 for all j ∈ Λ0, which completes the proof. �
Define the number

T̂ = inf

{
t
∣∣ inf
v(·)

max
Λ∈Ω(m)

min
j∈Λ

tα−1

t∫
0

|E(t, s)|λ(fj(t)r(t, s), v(s)) ds ≥ 1

}
.

By Lemma 2, T̂ < ∞.

Theorem 1. Let a < 0 and δ0 > 0. Then an m-multiple capture occurs in the game.
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Proof. Let v(s) for s ∈ [0, T̂ ] be an arbitrary control of the evader. Consider the function

H(t) = 1− max
Λ∈Ω(m)

min
j∈Λ

T̂α−1

t∫
0

|E(T̂ , s)|λ(fj(T̂ )r(T̂ , s), v(s)) ds

and denote by T0 > 0 its first root. Note that T0 exists in view of Lemma 2 and the definition of T̂ .

In addition, there exists a set Λ0 ∈ Ω(m) such that, for all j ∈ Λ0,

1− T̂α−1

T0∫
0

|E(T̂ , s)|λ(fj(T̂ )r(T̂ , s), v(s)) ds ≤ 0.

Therefore, there exist times tj ≤ T0, j ∈ Λ0, for which

1− T̂α−1

tj∫
0

|E(T̂ , s)|λ(fj(T̂ )r(T̂ , s), v(s)) ds = 0. (2.3)

For j /∈ Λ0, denote by tj times for which condition (2.3) holds if such times exist. We define the

pursuers’ controls by setting

ui(s) =

⎧⎪⎨
⎪⎩
v(s)− λ(fi(T̂ )r(T̂ , s), v(s))fi(T̂ )r(T̂ , s), s ∈ [0,min{ti, T̂}],

v(s), s ∈ [min{ti, T̂ }, T̂ ].

Then the solution of system (1.3) can be represented in the form [21, formula (19)]

zi(t) = E1/α(at
α, 1)z0i + tE1/α(at

α, 2)z1i +

t∫
0

E(t, s)(ui(s)− v(s))ds.

Hence,

T̂α−1zi(T̂ ) = fi(T̂ ) + T̂α−1

T̂∫
0

E(T̂ , s)(ui(s)− v(s)) ds

= fi(T̂ )− T̂α−1

T̂∫
0

|E(T̂ , s)|λ(fi(T̂ )r(T̂ , s), v(s))fi(T̂ ) ds

= fi(T̂ )

(
1− T̂α−1

ti∫
0

|E(T̂ , s)|λ(fi(T̂ )r(T̂ , s), v(s))
)
ds = 0

for all i ∈ Λ0. Consequently, zi(T̂ ) = 0 for all i ∈ Λ0. �
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2.2. Sufficient conditions of the capture for a = 0.

Lemma 3. Let a = 0 and δ+0 > 0. Then there exists a time T > 0 such that δ+t > 0.5δ+0 for

all t > T .

Proof. Since lim
t→+∞

fi(t) = z1i and the function λ is continuous [2, Lemma 1.3.13], we have

lim
t→+∞

λ(fi(t), v) = λ(z1i , v) for all v ∈ V . Therefore, lim
t→+∞

δ+t = δ+0 , which yields the required

inequality. �
Lemma 4. Let a = 0 and δ+0 > 0. Then there exists T0 > 0 such that, for any measurable

function v(·) with values in V, there exists a set Λ ∈ Ω(m) such that, for all j ∈ Λ,

1

T0

T0∫
0

E(T0, s)λ(fj(T0), v(s))ds ≥ 1.

Proof. The lemma is proved similarly to Lemma 2 with the use of Lemma 3. �
Define the number

T̂ = inf

{
t > 0 | inf

v(·)
max

Λ∈Ω(m)
min
j∈Λ

1

t

t∫
0

E(t, s)λ(fj(t), v(s))ds ≥ 1

}
.

By Lemma 4, T̂ < +∞.

Theorem 2. Let a = 0 and δ+0 > 0. Then an m-multiple capture occurs in the game.

Proof. Consider the function

H(t) = 1− max
Λ∈Ω(m)

min
j∈Λ

1

T̂

t∫
0

E(T̂ , s)λ(fj(T̂ ), v(s))ds

and denote by T0 its first root. Then there exists a set Λ0 ∈ Ω(m) such that, for all j ∈ Λ0,

1− 1

T̂

T0∫
0

E(T̂ , s)λ(fj(T̂ ), v(s))ds ≤ 0.

Therefore, there exist times tj ≤ T0, j ∈ Λ0, for which

1− 1

T̂

tj∫
0

E(T̂ , s)λ(fj(T̂ ), v(s)) ds = 0. (2.4)

For j /∈ Λ0, denote by tj times for which condition (2.4) holds if such times exist. We define the

pursuers’ controls by setting

ui(s) =

⎧⎪⎨
⎪⎩
v(s)− λ(fi(T̂ ), v(s))fi(T̂ ), s ∈ [0,min{ti, T̂}],

v(s), s ∈ [min{ti, T̂ }, T̂ ].
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Then the solution of system (1.3) can be presented in the form [21, formula (19)]

zi(t) = z0i + tz1i +

t∫
0

E(t, s)(ui(s)− v(s))ds.

Hence,

zi(T̂ )

T̂
= fi(T̂ ) +

1

T̂

T̂∫
0

E(T̂ , s)(ui(s)− v(s))ds = fi(T̂ )−
1

T̂

T̂∫
0

E(T̂ , s)λ(fi(T̂ ), v(s))ds · fi(T̂ )

= fi(T̂ )
(
1− 1

T̂

ti∫
0

E(T̂ , s)λ(fi(T̂ ), v(s))ds
)
= 0

for all i ∈ Λ0. Consequently, zi(T̂ ) = 0 for all i ∈ Λ0. �
Denote by IntA and coA the interior and the convex hull of a set A.

Lemma 5 [3, Assertion 1.3]. Let V be a strictly convex compact set with smooth boundary,

and let

0 ∈
⋂

Λ∈Ω(n−m+1)

Int co {z1j , j ∈ Λ}. (2.5)

Then δ0 > 0.

Theorem 3. Suppose that a ≤ 0, V is a strictly convex compact set with smooth boundary,

and condition (2.5) is satisfied. Then an m-multiple capture occurs in the game.

Proof. The validity of this theorem follows from Lemma 5 and Theorems 1 and 2. �
Corollary. Suppose that a ≤ 0, V is a strictly convex compact set with smooth boundary, and

0 ∈ Int co {z11 , . . . , z1n}.

Then there is a capture in the game.

Proof. The corollary is proved by setting m = 1 in (2.5). �
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