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Abstract—We develop Pontryagin’s direct variational method, which allows us to obtain nec-
essary conditions in the Mayer extremal problem on a fixed interval under constraints on the
trajectories given by a differential inclusion with generally unbounded right-hand side. The
established necessary optimality conditions contain the Euler–Lagrange differential inclusion.
The results are proved under maximally weak conditions, and very strong statements compared
with the known ones are obtained; moreover, admissible velocity sets may be unbounded and
nonconvex under a general hypothesis that the right-hand side of the differential inclusion is
pseudo-Lipschitz. In the statements, we refine conditions on the Euler–Lagrange differential
inclusion, in which neither the Clarke normal cone nor the limiting normal cone is used, as is
common in the works of other authors. We also give an example demonstrating the efficiency
of the results obtained.
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INTRODUCTION

In the famous work [24], Pontryagin and his colleagues used a very efficient direct variational
method in order to prove necessary optimality conditions, which were later called the “Pontryagin
maximum principle.” This method is based on the linearization of a nonlinear controlled dynamical
system near an optimal trajectory. As a result, for the arising linear system of variational differential
equations, an adjoint system of differential equations was constructed, and it was proved that under
certain boundary conditions the corresponding solution of the adjoint system is a normal vector to
the attainability set of the original control system at the points of the optimal trajectory at any
instant of time. This was analytically expressed as the Pontryagin maximum principle, transversality
conditions, and some other properties of the adjoint system.

Subsequently, other well-known authors (see, for example, [7, 4, 12]) solved more general opti-
mization problems (for instance, those where the right-hand side of a control system is not smooth
with respect to the state variable) and applied different methods in order to prove necessary optimal-
ity conditions. These methods are based on various types of approximations of the original problems.

The first attempts to develop Pontryagin’s direct variational method for optimization problems
in the case when the control system is not smooth were made in [25, 2] for a controlled dynamical
system represented as a differential inclusion. In [2], Blagodatskikh obtained necessary optimal-
ity conditions in terms of support functions under the condition that the multivalued right-hand
side of the differential inclusion takes convex compact values and its support function is Lipschitz
continuous with respect to the state variable.

In [22, 23], the present author and Smirnov generalized Pontryagin’s direct variational method
and obtained necessary optimality conditions in optimization problems with differential inclusion in
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242 E. S. POLOVINKIN

the case when the right-hand side of the differential inclusion takes compact (possibly, nonconvex)
values and satisfies the Lipschitz condition in the Hausdorff metric.

In the present paper, continuing the studies of [16, 17, 19, 20], we generalize Pontryagin’s direct
variational method to the case of Mayer optimization problems on an interval with a differential
inclusion whose multivalued right-hand side takes unbounded nonconvex values, depends measur-
ably on time, and is pseudo-Lipschitz with respect to the state variable, in the presence of state
constraints at the initial and terminal points.

The development of necessary conditions for extremal problems with bounded differential in-
clusions satisfying the Lipschitz conditions in the Hausdorff metric can be found, for example,
in [4, 6, 8, 12, 13, 26, 27]. However, in the case when the right-hand side F of the differential inclu-
sion may take unbounded values, the Lipschitz condition on the multivalued mapping F becomes
too burdensome. Nevertheless, the unboundedness of the values of the right-hand side F (t, x) of
the differential inclusion is a natural property of differential inclusions that arises in optimal control
problems. For example, it arises when one deals with the Mayer problem obtained by reformulating
an extremal problem with an integral functional.

Our direct variational method for proving necessary conditions in the Mayer problem consists
of the following elements:

(1) proof of the continuous dependence of the set of trajectories of the differential inclusion on
some parameters (Proposition 5);

(2) construction of a continuous pseudolinearization of the differential inclusion near some (op-
timal) trajectory (Proposition 6);

(3) description of the set of trajectories of the adjoint convex process, i.e., calculation of the
polar cone to the set of trajectories of the convex process (Proposition 7);

(4) description of the properties of boundary trajectories of the differential inclusion and the
dynamics of the normals to the attainability sets at the points of a boundary trajectory
(Theorem 1);

(5) description of necessary conditions for solving the initial extremal Mayer problem with dif-
ferential inclusion (Theorem 2).

Eventually, we prove necessary conditions that also contain the Euler–Lagrange differential inclu-
sion whose graph is a normal cone. However, we use a narrower normal cone than the Clarke normal
cone or even a partially convexified limiting normal cone (cf. [5, Theorem 2.2.3]). In conclusion, we
give an example of a problem in which the necessary optimality conditions obtained in the present
study are more precise compared with other necessary conditions known in the literature (see, for
example, [5, 27, 13]).

On the other hand, we should note that our result is somewhat weaker that the assertion of
Theorem 2.2.3 in [5], because we have obtained a more general condition of Euler–Lagrange type, but
the maximum condition, which generalizes the Weierstrass conditions or the Pontryagin maximum
principle, has been established only for a particular case when the right-hand side of the original
differential inclusion has an additional property of local convexity (see Corollary 2).

1. MAIN NOTIONS AND DEFINITIONS

Denote by T := [t0, t1] a closed interval on the line R1 with the σ-algebra L of all measurable sub-
sets of T with respect to the Lebesgue measure μ. Let E be a real reflexive separable Banach space
and R

n be the Euclidean space of dimension n. We also introduce the notation Br(a) := {x ∈ E |
‖x − a‖ < r} for an open ball and �(x,A) := inf{‖x − y‖ | y ∈ A} for the distance function. The
closure of a set A is denoted by A, and its convex hull, by coA. The set of all absolutely contin-
uous functions (or, briefly, arcs) from T to R

n forms a Banach space AC(T,Rn) with the norm
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PONTRYAGIN’S DIRECT METHOD 243

‖f‖AC := ‖f(t0)‖Rn + ‖f ′‖L1 . Denote by AC∞(T,Rn) the subset in AC(T,Rn) of all arcs f such
that f ′ ∈ L∞(T,Rn). The norm in AC∞(T,Rn) is defined as ‖f‖AC∞ := ‖f(t0)‖Rn + ‖f ′‖L∞ .

Denote by P(E) the set of all subsets of the Banach space E and by F(E) the set of all nonempty
closed subsets of E. Recall (see [1, Sect. 4.1] or [23, Definition 2]) that the lower tangent cone (also
known as the simple tangent cone or the adjacent cone) to a set A ⊂ E at a point a ∈ A is a cone
of the form

TL(A; a) :=
{
v ∈ E

∣∣ lim
λ↓0

�(v, λ−1(A− a)) = 0
}
. (1.1)

In addition to the lower tangent cone, we will use the asymptotic lower tangent cone TAL(A, a) to
a set A ⊂ E at a point a ∈ A. It is defined as

TAL(A, a) := TL(A, a)
∗− TL(A, a), (1.2)

where ∗− is the Minkowski difference of two sets A and B, i.e., A ∗− B := {x ∈ E | x+ B ⊂ A}. It
is known (see, for example, [1, Sect. 4.5] or [23]) that the asymptotic lower tangent cone is always
a convex closed cone containing the Clarke tangent cone (for a definition of the latter see, for
example, [4, Sect. 2.4]).

A closed convex cone K0 ⊂ E is called a Boltyanskii tent to a set A ⊂ E at a point a ∈ A
(see [3, § 3]) if there exists a continuous mapping q : K0 ∩ B1(0) → E such that a + v + q(v) ∈ A
for all v ∈ K0 ∩ B1(0) and the equality limv→0(‖q(v)‖/‖v‖) = 0 holds. The upper Dini derivative
of a locally Lipschitz function f : E → R

1 is defined as

D+
L f(x0)(u) = lim sup

λ↓0

f(x0 + λu)− f(x0)

λ
. (1.3)

Recall that the graph of a mapping F : T × R
n → P(Rn) is the set GraphF := {(t, x, y) ∈

T × R
n × R

n | y ∈ F (t, x)}. The cross-section of the graph GraphF at a point t ∈ T is the set
GraphF (t, ·) := {(x, y) ∈ R

n × R
n | y ∈ F (t, x)}.

Given a mapping F : T × R
n → P(Rn), consider a differential inclusion

x′(t) ∈ F (t, x(t)) for a.e. t ∈ T. (1.4)

For any C0 ⊂ R
n, denote by RT (F,C0) the set of all F -trajectories x ∈ AC(T,Rn) of the differential

inclusion (1.4) on the interval T under the condition that x(t0) ∈ C0. Denote by R∞
T (F,C0) the

subset of all F -trajectories from RT (F,C0) that belong to the space AC∞(T,Rn).
Given a mapping F : T × R

n → F(Rn) and an arc x̂ ∈ RT (F,C0), we can consider, for a.e. t ∈ T ,
the lower multivalued derivative of F (t, ·) at a point (x̂(t), x̂ ′(t)) ∈ GraphF (t, ·) in the direction
u ∈ R

n (see [23, 1]):

F ′
L(t, u) :=

{
v ∈ R

n | (u, v) ∈ TL
(
GraphF (t, ·); (x̂(t), x̂ ′(t))

)}
.

By analogy with the notation RT (F,C0) for the set of all F -trajectories of the inclusion (1.4), we
denote by R∞

T (F ′
L,K0) the set of all F ′

L-trajectories of the variational differential inclusion

u′(t) ∈ F ′
L(t, u(t)) for a.e. t ∈ T (1.5)

each of which satisfies the inclusion u ∈ AC∞(T,Rn) and the initial condition u(t0) ∈ K0.

2. THE MAYER PROBLEM

Our goal is to obtain necessary conditions for the solution of the following Mayer optimization
problem on the interval T := [t0, t1]:

Minimize
{
ϕ(x(t1)) | x ∈ RT (F,C0), x(t1) ∈ C1, C0, C1 ⊂ R

n
}
. (2.1)
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The problem consists in finding a minimum of a given locally Lipschitz function ϕ : Rn → R
1 on

the set of endpoints of all those F -trajectories of the differential inclusion (1.4) with unbounded
right-hand side whose initial values x(t0) are taken from the subset C0 ⊂ R

n and the terminal values
x(t1) are taken from the subset C1 ⊂ R

n.
Suppose that an F -trajectory x̂ ∈ RT (F,C0) is a solution to the extremal problem (2.1). Let

us formulate local conditions on the mapping F in problem (2.1) near the arc x̂.
Hypothesis 0 (measurability). The multivalued mapping F : T × R

n ⇒ R
n in (2.1) is

(L ⊗ B)-measurable, and for every t ∈ T the set GraphF (t, ·) is a closed subset in R
n × R

n.
Hypothesis 1 (pseudo-Lipschitz property). There exists a number ε ∈ (0, 1), a function l ∈

L1(T,R1
+), l(t) > 0 a.e., and a measurable function R : T → (0,+∞] such that the inclusion

G(t, x1) ⊂ F (t, x2) + l(t)‖x1 − x2‖B1(0) (2.2)

holds for an arbitrary pair of points (t, x1), (t, x2) in the tube

W :=
{
(t, x) ∈ T × R

n
∣∣ ‖x− x̂(t)‖ ≤ ε

}
,

where, by definition,
G(t, x) := F (t, x) ∩ (x̂ ′(t) +R(t)B1(0)). (2.3)

Hypothesis 2 (nondegeneracy). For the functions l and R defined in Hypothesis 1, there
exists a number ν ∈ (0, 1/ε) such that the inequality l(t) ≤ νR(t) holds for a.e. t ∈ T .

Definition 1. A mapping F : T ×R
n → P(Rn) is said to be measurable pseudo-Lipschitz near

the F -trajectory x̂ if there exist numbers ν > 0 and ε ∈ (0,min{1, 1/ν}) as well as functions l and R
that satisfy Hypotheses 0–2.

We also consider the following assumption.
Hypothesis 3. For the mapping F and the F -trajectory x̂, there exists a (multivalued) mea-

surable mapping K : T → F(Rn ×R
n) whose values are closed convex cones satisfying the following

inclusions for a.e. t ∈ T :

TC
(
GraphF (t, ·); (x̂(t), x̂ ′(t))

)
⊂ K(t) ⊂ TL

(
GraphF (t, ·); (x̂(t), x̂ ′(t))

)
. (2.4)

For a definition of the Clarke tangent cone TC, see [4, Sect. 2.4]; the definition of the lower tangent
cone TL is given in (1.1).

As an example of a mapping K(t) satisfying Hypothesis 3, one can consider (for every t ∈ T )
the Clarke tangent cone, the Michel–Penot tangent cone (see [11]), or the asymptotic lower tangent
cone (see (1.2)) to the set GraphF (t, ·) at the point (x̂(t), x̂ ′(t)). We prefer the greatest of the cones
listed above, the asymptotic lower tangent cone.

3. AUXILIARY RESULTS

A. First of all, recall some results (see [17, 19]) that will be needed in what follows.
Proposition 1 (see [19, Lemma 1]). Let a function f : Rn → R

1 be locally Lipschitz near a
point x0 ∈ Dom f . Then the tangent cone can be calculated by the formula

TL(Epi f ; (x0, f(x0))) =

{
(u, v) ∈ R

n × R
1
∣∣∣ v ≥ lim sup

λ↓0

f(x0 + λu)− f(x0)

λ

}
.

Proposition 2 (see [19, Lemma 2]). For any set Q ⊂ R
n and any point x0 ∈ Q, define the

set A := {(x, y) ∈ R
n × R

1 | y ≥ �(x,Q)}. Then the following inclusion holds: {(u, v) ∈ R
n × R

1 |
v ≥ �(u, TL(Q;x0))} ⊂ TL(A; (x0, 0)).
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Proposition 3 (see [17, inequality (46.21)]). If a mapping F : (0, 1) → F(Rn) is such that the
subset lim infλ↓0 F (λ) is nonempty (for the notion of the Kuratowski lim inf, see [9, § 29]), then the
inequality

lim sup
λ↓0

�(x, F (λ)) ≤ �
(
x, lim inf

λ↓0
F (λ)

)

holds for all x ∈ R
n.

Proposition 4 (see [17, Theorem 25.2]). Let a function ϕ : Rn → R
1 be locally Lipschitz near

some point x0 ∈ R
n and ψ : Rn → R be a positively homogeneous convex function such that the

inequality D+
Lϕ(x0)(x) ≤ ψ(x) < ∞ holds for all x ∈ R

n. Then the set Epiψ is a Boltyanskii tent
to the set Epiϕ at the point (x0, ϕ(x0)).

B. Based on the assertions of Lemmas 3.1 and 3.2 and Theorems 4.1–4.3 from [14], which were
proved in the Lipschitz case, we generalize them to the pseudo-Lipschitz case (see [16, 19–21]).

Suppose that the mapping F is measurable pseudo-Lipschitz near the arc x̂ with the correspond-
ing numbers ν > 0 and ε ∈ (0,min{1, 1/ν}) and functions l and R (see Definition 1). Below, we
will use two parameters a ∈ (0, ε] and γ ∈ (0, 1] and two functions

b(a) := min

{
3a,

1

ν

}
, m(t) :=

t∫

t0

l(τ) dτ, t ∈ T. (3.1)

We will also consider a function ρ0 ∈ L1(T,R1
+) such that 0 ≤ ρ0(t) ≤ γ b(ε)e−m(t1) l(t)/8 for

a.e. t ∈ T . Define the set

D0(F, ρ0, γ) :=
{
x ∈ AC(T,Rn)

∣∣∣ ‖x− x̂‖AC ≤ ε

4
, �(x′(t), F (t, x(t))) ≤ ρ0(t),

‖x′(t)− x̂ ′(t)‖ ≤ γ

2
b(ε)l(t), t ∈ T

}
. (3.2)

One can easily show that the set D0(F, ρ0, γ) \ {x̂} thus defined is nonempty and the graphs of all
arcs in this set are contained in the tube W (see Hypothesis 1). Moreover, for every x0 ∈ Bδ(x̂(t0)),
δ := min{1/(2ν), ε/4}γe−m(t1 ), there exists an arc x ∈ D0(F, ρ0, γ) such that x(t0) = x0.

Proposition 5 (see [21, Theorem 2]). In terms of the above definitions and under the above
conditions, denote the set D0(F, ρ0, γ) by S0. Let a ∈ (0, ε] and δ1 ∈ (0, 2−7b(a)e−m(t1)), and let
d : Bε/4(x̂(t0)) → R

n be a continuous function such that ‖d(x) − x‖ ≤ δ1 for every x ∈ Bε/4(x̂(t0)).
Then there exists a continuous mapping r : S0 → RT (F, d(Bε/4(x̂(t0)))) such that the following
relations hold for any arc x ∈ S0:

‖r(x)− x‖AC ≤
t1∫

t0

em(t1)−m(τ)ρ0(τ) dτ +
γ

8
b(a), (3.3)

r(x)(t0) = d(x(t0)), ‖r(x)− x̂‖AC ≤ ε,
∥∥∥∥
d

dt
r(x)(t)− x̂ ′(t)

∥∥∥∥ ≤ γ b(ε)l(t) for a.e. t ∈ T.

C. Denote by Σk the standard simplex in R
k+1, i.e.,

Σk :=

{
σ := (σ1, . . . , σk+1) ∈ R

k+1

∣∣∣∣ σm ≥ 0,

k+1∑
m=1

σm = 1

}
. (3.4)
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Proposition 6 (see [21, Theorem 3]). Let C0 ⊂ R
n and F : T × R

n → F(Rn) be a measurable
pseudo-Lipschitz mapping near an arc x̂ ∈ RT (F,C0). Let K0 be a Boltyanskii tent to the set C0

at a point x̂(t0). Suppose that a finite set of arcs {um ∈ R∞
T (F ′

L,K0)}, m ∈ 1, k + 1, is given.
For every σ ∈ Σk (see (3.4)), define the arc uσ :=

∑k+1
m=1 σmum and suppose that the inclusion

{uσ | σ ∈ Σk} ⊂ R∞
T (F ′

L,K0) is valid. Then, for every number γ ∈ (0, 1], there exists a number
λ0 > 0 such that for any λ ∈ (0, λ0) and any σ ∈ Σk there exists an F -trajectory xλ,σ ∈ RT (F,C0)
and an arc t �→ o(λ, σ, t) for which the following relations hold :

‖xλ,σ − x̂‖AC ≤ ε

4
, ‖x′λ,σ(t)− x̂ ′(t)‖ ≤ γ b(ε)l(t) for a.e. t ∈ T,

xλ,σ(t) = x̂(t) + λuσ(t) + o(λ, σ, t) ∀t ∈ T,

lim
λ↓0

max
σ∈Σk

‖o(λ, σ, ·)‖AC

λ
= 0,

and the mappings σ �→ o(λ, σ, ·) from Σk to AC(T,Rn) are continuous.

D. Recall that the polar cone to a cone K ⊂ E is the set K0 := {p ∈ E∗ | 〈p, x〉 ≤ 0 ∀x ∈ K}.
We can explicitly describe the polar cone to the cone of all trajectories of a differential inclusion
whose right-hand side has a convex conic graph.

Proposition 7 (see [15, 18]). Let K̃ be a closed convex cone in a separable reflexive Banach
space E. Let a mapping Q : [t0, t1]×E → F(E) be such that Q(t, x) := {y ∈E | (x, y)∈K(t)},
where the set K(t) is a closed convex cone in the space E × E for a.e. t ∈ T and the mapping
K : T → F(E × E) is measurable. Suppose that there exists a function γ ∈ L∞(T,R1

+) such that
Q(t, x) ∩ (γ(t)B1(0)) �= ∅ for any x ∈ B1(0) and a.e. t ∈ T . Let K̃0 and K0(t) be the polar cones
to K̃ and K(t), respectively. Then the cone (R∞

T (Q, K̃))0, which is the polar cone to R∞
T (Q, K̃),

consists of pairs of points b∗ ∈ E∗ and functions y∗ ∈ L1(T,E∗) such that for every such pair (b∗, y∗)
there exists a function x∗ ∈ L1(T,E∗) with

b∗ −
t1∫

t0

x∗(s) ds ∈ K̃0, (3.5)

⎛
⎝x∗(t), y∗(t)−

t1∫

t

x∗(s) ds

⎞
⎠ ∈ K0(t) for a.e. t ∈ T. (3.6)

4. BOUNDARY TRAJECTORIES

Theorem 1. Let C ∈ F(Rn), and let a mapping F : T × R
n → F(Rn) be measurable pseudo-

Lipschitz near an arc x̂∈RT (F,C) (see Definition 1). Suppose that a mapping K : T →F(Rn ×R
n)

satisfies Hypothesis 3 and a cone K ⊂ R
n is a Boltyanskii tent to the set C at the point x̂(t0).

Suppose also that Λ: Rn → R
m is a linear operator such that Λx̂(t1) /∈ IntΛ(A), where A := {x(t1) |

x ∈ RT (F,C)}. Then there exists a vector q ∈ R
m, q �= 0, and an arc p ∈ AC(T,Rn) such that

p(t0) ∈ K0, p(t1) = Λ∗q, (p′(t), p(t)) ∈ K0(t) for a.e. t ∈ T. (4.1)

Proof. The proof consists of four steps.
Step 1. First of all, we perform some transformations of the Mayer problem (2.1). We replace

the differential inclusion (1.4) by a differential inclusion with the right-hand side F̃ defined by the
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formula F̃ (t, x) := F (t, x + x̂(t)) − x̂ ′(t) for all x ∈ Bε(0) and a.e. t ∈ T . As a result, every
F -trajectory x is transformed into an F̃ -trajectory y := x− x̂. This transformation defines a one-
to-one correspondence between F -trajectories and F̃ -trajectories. In particular, the F -trajectory x̂
corresponds to the zero trajectory. Then we introduce a change of the time scale s = m(t), where
m(t) :=

∫ t
t0
l(r) dr, t ∈ T (see (3.1)); thus, any arc y is assigned a new arc z such that z(s) = y(t) =

y(m−1(s)), s ∈ [0,m(t1)]. As a result, we obtain a one-to-one correspondence between the arcs y
defined on the interval [t0, t1] and the arcs z defined on the interval [0,m(t1)]. Moreover, the arc y is
an F̃ -trajectory if and only if the arc z is an F̂ -trajectory, i.e., a trajectory of a differential inclusion
with the right-hand side F̂ defined by the formula

F̂ (s, z) :=
1

l(t)
F̃ (t, z), t = m−1(s), z ∈ Bε(0), for a.e. s ∈ [0,m(t1)].

Accordingly, we should change the subset C of initial points to the subset Ĉ := C − x̂(t0) in the
hypotheses of Theorem 1. As a result, the arc ẑ ≡ 0 corresponding to the arc x̂ is a boundary
F̂ -trajectory for the transformed extremal problem on the interval [0,m(t1)] in the same sense as
x̂ is a boundary F -trajectory for the original problem. It is obvious that the multivalued map-
ping F̂ is measurable pseudo-Lipschitz near the trajectory ẑ ≡ 0 with the parameters l̂(s) = 1 for
a.e. s ∈ [0,m(t1)] and R̂(s) = R(t)/l(t) for t = m−1(s) and with the same parameter ν̂ = ν (see
Definition 1).

Let us show that the assertion of the theorem for the transformed problem implies the assertion
of the theorem for the original problem. Obviously, the equality

GraphF (t, ·) − (x̂(t), x̂ ′(t)) =

(
1 0
0 l(t)

)
Graph F̂ (s, ·), s = m(t),

holds for a.e. t ∈ T . Hence

TL
(
GraphF (t, ·); (x̂(t), x̂ ′(t))

)
=

(
1 0
0 l(t)

)
TL

(
Graph F̂ (s, ·); (0, 0)

)
.

In turn, Hypothesis 3 takes the form

TC
(
Graph F̂ (s, ·); (0, 0)

)
⊂ K̂(s) ⊂ TL

(
Graph F̂ (s, ·); (0, 0)

)
for a.e. s ∈ [0,m(t1)],

where

K̂(s) :=

(
1 0
0 1

l(t)

)
K(t), t = m−1(s).

Based on the definition of the polar cone, we obtain the following relation between the polar cones
K̂0(s) and K0(t):

K̂0(s) =

(
1 0
0 l(t)

)
K0(t), t = m−1(s). (4.2)

If we prove Theorem 1 for the transformed problem, then we obtain the inclusion

(p̂ ′(s), p̂(s)) ∈ K̂0(s) for a.e. s ∈ [0,m(t1)]. (4.3)

Define an arc p(t) := p̂(m(t)) = p̂(s). Differentiating this function with respect to t, we have
p′(t) = p̂ ′(s)l(t). Hence, using (4.2) and (4.3), we arrive at the inclusion

(p′(t), p(t)) ∈ l(t)K0(t) = K0(t) for a.e. t ∈ T.

Thus, we have shown that without loss of generality it suffices to prove Theorem 1 only for the
transformed problem.
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Step 2. In view of step 1, in the further proof of the theorem (steps 2–4) we assume that 0 ∈ C
and denote the interval [0,m(t1)] by T for simplicity. The mapping F : T × R

n → F(Rn) is measur-
able pseudo-Lipschitz near the trajectory x̂ ≡ 0 (and 0 ∈ F (t, 0)) in the tube W := T ×Bε(0) with
parameters ε, ν > 0, εν < 1, with the pseudo-Lipschitz function l(t) = 1 a.e., and with a function
R(t) ≥ 1/ν. Let K : T → F(Rn × R

n) be a measurable mapping such that its values K(t) are con-
vex cones satisfying the inclusions TC(GraphF (t, ·); (0, 0)) ⊂ K(t) ⊂ TL(GraphF (t, ·); (0, 0)) (see
Hypothesis 3). Define the norm in the space R

n ×R
1 by the formula ‖(x, x0)‖Rn×R1 := ‖x‖+ |x0|.

Lemma 1. Define mappings Q,P : T × R
n × R

1 → F(Rn × R
1
+) as follows:

Q(t, u, u0) :=
{
(v, v0) ∈ R

n × R
1
∣∣ v0 ≥ �(v, F (t, u))

}
, (4.4)

P (t, u, u0) :=
{
(v, v0) ∈ R

n × R
1
∣∣ v0 ≥ 2�((u, v),K(t))

}
. (4.5)

Then

(i) the mapping Q : T × (Bε(0) × R
1) → F(Rn × R

1) is measurable pseudo-Lipschitz near the
arc (0, 0) ∈ RT (Q, (C × {0})) with the previous parameters l(t) = 1 and R(t) ≥ 1/ν;

(ii) for a.e. t ∈ T and every (u, u0) ∈ B1((0, 0)) ⊂ R
n × R

1, the set P (t, u, u0) ∩ B2((0, 0))
is nonempty, closed, and convex, and the mapping P (t, u, u0) is measurable with respect to
t ∈ T and Lipschitz with respect to (u, u0) in the Pompeiu–Hausdorff metric;

(iii) the inclusion

P (t, u, u0) ⊂ Q′
L(t, u, u

0) for a.e. t ∈ T, (u, u0) ∈ R
n × R

1, (4.6)

is valid, where the set Q′
L(t, u, u

0) is defined as

Q′
L(t, u, u

0) :=
{
(v, v0) ∈ R

n × R
1
∣∣ (u, u0, v, v0) ∈ TL(GraphQ(t, ·); (0, 0, 0, 0))

}
.

Proof. (i) Take arbitrary points (t, x1, x
0
1),(t, x2, x

0
2) ∈ T × Bε(0) × [0, ε]. Since the intersec-

tion F (t, x1) ∩R(t)B1(0) is nonempty by the hypothesis, it follows that Q(t, x1, x
0
1) ∩R(t)B1((0, 0))

is also nonempty. Take an arbitrary point (v1, v
0
1) ∈ Q(t, x1, x

0
1) ∩ R(t)B1((0, 0)). According

to (4.4), this means that v01 ≥ �(v1, F (t, x1)), as well as ‖v1‖ + |v01 | < R(t). As a result, there
exists a point ṽ1 ∈ F (t, x1) such that ‖v1 − ṽ1‖ ≤ v01 . This means that ‖ṽ1‖ < R(t), i.e.,
ṽ1 ∈ G(t, x1) (see (2.3) with x̂ = 0). From the inclusion (2.2) (with l(t) = 1) we obtain ṽ1 ∈
F (t, x2) + ‖x1 − x2‖B1(0); i.e., there exists a point ṽ2 ∈ F (t, x2) such that ‖ṽ1 − ṽ2‖ ≤ ‖x1 − x2‖.
Define v2 := ṽ2 − ṽ1 + v1. Then we have (v2, v

0
1) ∈ Q(t, x2, x

0
2) and (v1, v

0
1) ∈ Q(t, x2, x

0
2) +

‖x1 − x2‖B1((0, 0)); i.e., an analog of the inclusion (2.2) for the mapping Q is valid.
(ii) Since the set K(t) is a closed convex cone for a.e. t ∈ T , the distance function (u, v) �→

2�((u, v),K(t)) is a convex Lipschitz function. Therefore, the sets P (t, u, u0) are convex and closed,
the multivalued mapping P is measurable with respect to t ∈ T , and the set GraphP (t, ·) is a
convex cone. Since 0 ∈ K(t), the inclusion (0, 2‖u‖) ∈ P (t, u, u0) follows from (4.5) for any point
(u, u0) ∈ R

n × R
1; i.e., the set P (t, u, u0) ∩ B2((0, 0)) is nonempty for all (u, u0) ∈ B1((0, 0)).

This implies that the mapping P satisfies the Lipschitz condition with respect to (u, u0) (see, for
example, [17, Corollary 7.1]).

(iii) For brevity, denote the lower tangent cone TL(GraphQ(t, ·); (0, 0, 0, 0)) by A(t). Since the
mapping F is pseudo-Lipschitz near the zero arc with the Lipschitz function l(t) ≡ 1, for all v ∈ R

n

and u ∈ Bε(0) ⊂ R
n we have the inequality �(v, F (t, u)) ≤ 2�((u, v),GraphG(t, ·)) for a.e. t ∈ T

(see [19, inequality (4.15)]). If we define

C(t) :=
{
(u, u0, v, v0) ∈ Bε(0)× R

1 × R
n × R

1
∣∣ v0 ≥ 2�((u, v),GraphG(t, ·))

}
,
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then the last inequality implies the inclusion C(t) ⊂ GraphQ(t, ·). Since the set C(t) is the epigraph
of the function g(t, u, u0, v) := 2�((u, v),GraphG(t, ·)), which is Lipschitz continuous with respect
to (u, u0, v) ∈ Bε(0)× R

1 × R
n, we obtain the following inclusion by Proposition 1:

A(t) ⊃ TL(C(t); (0, 0, 0, 0)) =

{
(u, u0, v, v0)

∣∣∣ v0 ≥ lim sup
λ→+0

λ−1
(
g(t, λu, λu0, λv)− g(t, 0, 0, 0)

)}
.

Since g(t, 0, 0, 0) = 0 and λ−1g(t, λu, λu0, λv) = 2�((u, v), λ−1(GraphG(t, ·))), Proposition 3 implies
the inclusion

TL(C(t); (0, 0, 0, 0)) ⊃
{
(u, u0, v, v0)

∣∣ v0 ≥ 2�
(
(u, v), lim inf

λ→+0
λ−1GraphG(t, ·)

)}

=
{
(u, u0, v, v0)

∣∣ v0 ≥ 2�
(
(u, v), TL(GraphF (t, ·); (0, 0))

)}
.

As a result, in view of Hypothesis 3, we arrive at the inclusion

A(t) ⊃
{
(u, u0, v, v0)

∣∣ v0 ≥ 2�((u, v),K(t))
}
= GraphP (t, ·),

which implies (4.6). �
Step 3.
Lemma 2. Under the hypotheses and notation of Lemma 1, the cone (GraphP (t, ·))0, which

is polar to the cone GraphP (t, ·), can be calculated by the formula

(GraphP (t, ·))0 =
{
τ · (u∗, 0, v∗,−1) ∈ R

n×R
1×R

n×R
1
∣∣ τ ≥ 0, (u∗, v∗)∈K0(t) ∩BRn×Rn

2 (0)
}
.

Proof. Since the cone GraphP (t, ·) is the epigraph of a convex positively homogeneous function
z �→ f(t, z), where f(t, z) := 2�((u, v),K(t)) for z := (u, u0, v), it follows from the properties of
convex functions that the polar cone to this cone can be calculated by the formula

(GraphP (t, ·))0 = cone
{
(w,−1) | w ∈ ∂zf(t, 0)

}
.

At the same time, the subdifferential of a convex function at zero is given by

∂zf(t, 0) :=
{
z∗ ∈ R

n × R
1 × R

n
∣∣ f(t, z) ≥ 〈z∗, z〉 ∀z ∈ R

n × R
1 × R

n
}
,

which implies that the point z∗ := (u∗, u0∗, v∗) belongs to the subdifferential ∂zf(t, 0) if and only if
u0∗ = 0 and (u∗, v∗) ∈ K0(t) ∩B2(0). Here the first equality follows from the fact that the function
u0 �→ f(t, u, u0, v) is constant. The second inclusion follows from the inclusion 0 ∈ K(t), which
means that f(t, z) ≤ 2‖z‖ for all z; hence, for all z∗ ∈ ∂zf(t, 0) we obtain the inequality ‖z∗‖ ≤ 2.
In turn, since the equality f(t, z0) = 0 holds for all z0 = (u, u0, v) such that (u, v) ∈ K(t), it follows
that 〈z∗, z0〉 > 0 = f(t, z0) for all z∗ = (u∗, 0, v∗) such that (u∗, v∗) /∈ K0(t), i.e., z∗ /∈ ∂zf(t, 0). �

Step 4: The main part of the proof of Theorem 1. Under the conditions of step 2, we extend
the state space R

n to the space R
n × R

1 and pass to a new problem on the interval T = [0,m(t1)].
To this end, we define the set C̃ := C × {0} ⊂ R

n ×R
1 and the cone K̃ := K × {0} ⊂ R

n × R
1. In

the space R
n × R

1, consider the mappings Q and P defined in (4.4) and (4.5), with the properties
described in Lemma 1. Consider the sets of trajectories RT (Q, C̃) and R∞

T (P, K̃). According
to (4.4), the inclusion (0, 0) ∈ RT (Q, C̃) is valid (since x̂ ≡ 0). Define the set

MΛ :=
{
(Λx(m(t1)), x

0(m(t1))) ∈ R
m × R

1
∣∣ (x, x0) ∈ R∞

T (P, K̃)
}
. (4.7)

By definition, the set MΛ is a convex cone in R
m × R

1
+, and it is obvious that (0, 1) ∈ MΛ. Let us

prove that there exists a vector (q, q0) ∈ R
m × R

1 such that (q, q0) ∈ M0
Λ and q �= 0, where M0

Λ
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denotes the polar cone to MΛ. Suppose the contrary, i.e., that the inclusion M0
Λ ⊂ {0} ×R

1 holds,
with 0 ∈ R

m. This means that MΛ = M00
Λ ⊃ {(x, 0) | x ∈ R

m}. Since the cone MΛ is convex, we
then obtain

MΛ ⊃ R
m × (R1

+ \ {0}). (4.8)

In the space R
m, take a simplex Δ with vertices zi, i ∈ 1,m+ 1, and with boundary Γ such that

0 ∈ IntΔ. Let b0 := min{‖z‖ | z ∈ Γ}. By construction, b0 > 0. It follows from the definition of the
cone MΛ (4.7) and the inclusion (4.8) that there exist trajectories (ui, u0i ) ∈ R∞

T (P, K̃), i ∈ 1,m+ 1,
such that

Λui(m(t1)) = zi, u0i (m(t1)) ≤
b0

16(1 + ‖Λ‖) exp(−m(t1)) ∀i ∈ 1,m+ 1. (4.9)

For every σ := (σ1, . . . , σm+1) ∈ Σm (see (3.4)), define the arc

(uσ, u
0
σ) :=

m+1∑
i=1

σi(ui, u
0
i ) (4.10)

in the space AC∞(T,Rn × R
1). It is obvious that for every σ ∈ Σm the arc (uσ, u

0
σ) belongs to the

convex set of trajectories R∞
T (P, K̃); moreover, in view of the inclusion (4.6), this arc belongs to

the set R∞
T (Q′

L, K̃).
By Proposition 6 with x̂ ≡ 0, l(t) ≡ 1, and γ = e−m(t1)/16, for the mapping Q (4.4) and the

functions (4.10), there exists a number λ0 ∈ (0, 1) such that for any λ ∈ (0, λ0] and σ ∈ Σm there
exists a trajectory

(xλ,σ, x
0
λ,σ) ∈ RT (Q, C̃) (4.11)

that can be represented as

xλ,σ(t) = λuσ(t) + o(t, λ, σ), x0λ,σ(t) = λu0σ(t) + o0(t, λ, σ), (4.12)

and every function σ �→ (xλ,σ, x
0
λ,σ) from Σm to AC(T,Rn × R

1) is continuous.
Since the functions λ �→ (o( · , λ, σ), o0( · , λ, σ)) are o-small as λ → +0, there exists a number

λ1 ∈ (0, λ0] such that the inequality

max
σ∈Σm

λ−1
∥∥(o( · , λ, σ), o0( · , λ, σ))∥∥

AC
≤ b0

16(1 + ‖Λ‖) e
−m(t1) (4.13)

holds for every λ ∈ (0, λ1]. Moreover, for all λ ∈ (0, λ1] and all σ ∈ Σm, we have ‖xλ,σ‖AC ≤ ε/4
and x0 ′λ,σ(t) ≤ e−m(t1)b(ε)/16 for a.e. t ∈ T . By the definition of the mapping Q (4.4), from the
inclusion (4.11) we obtain

x0 ′λ,σ(t) ≥ �
(
x′λ,σ(t), F (t, xλ,σ(t))

)
∀λ ∈ (0, λ0), σ ∈ Σm,

for a.e. t ∈ T . Thus, we have shown that the inclusion xλ,σ ∈ D0(F, x
0 ′
λ,σ, 1) (see (3.2)) is valid. Let

us define the number λ2 := min{λ1, (1 + ‖Λ‖)b(ε)/b0}. Then, for any λ ∈ (0, λ2], by Proposition 5
(with a = λb0/(3(1 + ‖Λ‖)) and d(x) = x), there exist trajectories yλ,σ ∈ RT (F, xλ,σ(0)) such that
the function σ �→ yλ,σ from Σm to AC(T,Rn) is continuous. Using relations (3.3), (4.12), (4.9),
and (4.13), we obtain the following inequalities for the arcs wλ,σ := yλ,σ − xλ,σ:

‖wλ,σ‖AC < em(t1)x0λ,σ(m(t1)) +
b(a)

8
≤ λb0

4(1 + ‖Λ‖) , λ ∈ (0, λ2].

Fix λ = λ2. Then it follows from the above inequalities and (4.12) and (4.13) that Λyλ2,σ(m(t1))
can be represented as

Λyλ2,σ(m(t1)) = λ2Λuσ(m(t1)) + λ2Λ
(
λ−1
2 o(m(t1), λ2, σ) + λ−1

2 wλ2,σ(m(t1))
)
.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 304 2019



PONTRYAGIN’S DIRECT METHOD 251

This means that
Λyλ2,σ(m(t1)) = λ2ϕ(σ) + λ2g(σ) ∀σ ∈ Σm, (4.14)

where ϕ(σ) :=
∑m+1

i=1 σizi ∈ Δ and the function g : Σm → R
m is continuous and satisfies the

inequality

max
σ∈Σm

‖g(σ)‖ <
b0
2
. (4.15)

Since the function ϕ : Σm → Δ provides a one-to-one correspondence between the sets Σm and Δ,
we can define a function g̃ : Δ → R

m by setting g̃(z) = g(ϕ−1(z)). We also define the function
f(z) := z + g̃(z), z ∈ Δ. These functions are continuous on Δ, and for every z ∈ Δ (with the
corresponding σ = ϕ−1(z)) there exists a trajectory yz := yλ2,σ ∈ RT (F,C) such that the equality
Λyz(m(t1)) = λ2f(z) is valid in view of (4.14). For any u0 ∈ (1/2)Δ, from (4.15) we obtain

‖f(z)− z‖ <
b0
2

≤ ‖z − u0‖ ∀z ∈ Γ. (4.16)

Hence, by the scholium from [10, Sect. 4.1], the inclusion u0 ∈ f(Δ) holds. This means that there
exists a point z0 ∈ Δ such that u0 = f(z0). Since the point u0 is arbitrary, we obtain the inclusion
(1/2)Δ⊂ f(Δ), which, in turn, implies the inclusion (λ2b0/2)B1(0)⊂{Λyz(m(t1)) | z ∈Δ}⊂Λ(A).
This contradicts the hypothesis of the theorem that Λx̂(m(t1)) ≡ 0 /∈ IntΛ(A).

Thus, we have proved that there exists a vector (q, q0) ∈ M0
Λ such that q �= 0; hence, by the

definition of the polar cone, we obtain the inequality

〈q,Λx(m(t1))〉+ q0x0(m(t1)) ≤ 0 (4.17)

for any arc (x, x0) ∈ R∞
T (P, K̃). Note that the conic mapping GraphP (t, ·) satisfies all the hypothe-

ses of Proposition 7 with γ(t) ≡ 2. Consider a pair (b∗, y∗) ∈ (Rn × R
1)× L1(T, (Rn × R

1)) of the
form b∗ = y∗(t) ≡ (Λ∗q, q0) ∈ R

n × R
1. For any arc (x, x0) ∈ R∞

T (P, K̃), using inequality (4.17),
we calculate the bilinear form

〈(b∗, y∗), (x, x0)〉 := 〈b∗, (x(0), x0(0))〉 +
m(t1)∫

0

〈y∗(s), (x′(s), x0 ′(s))〉 ds

= 〈b∗, (x(m(t1)), x
0(m(t1)))〉 = 〈Λ∗q, x(m(t1))〉+ q0x0(m(t1)) ≤ 0.

This means that the pair (b∗, y∗) belongs to the cone (R∞
T (P, K̃))0. By Proposition 7, for this

pair (b∗, y∗) there exists a function x∗ ∈ L1(T,Rn × R
1) such that the inclusions (3.5) and (3.6)

hold. Define an arc p̃ ∈ AC(T,Rn × R
1) by setting p̃(t) := b∗ −

∫m(t1)
t x∗(s) ds. Then p̃(m(t1)) =

b∗ = (Λ∗q, q0); hence, in view of the inclusion (3.5), we have p̃(0) ∈ K̃0. In turn, the inclusion (3.6)
implies the differential inclusion

(p̃ ′(t), p̃(t)) ∈ (GraphP (t, ·))0 for a.e. t ∈ T.

Let us write the arc p̃(·) componentwise, i.e., p̃(t) = (p1(t), p0(t)) ∈ R
n × R

1. Then, by Lemma 2,
the preceding inclusion reads

(p1′(t), p1(t)) ∈ K0(t), p0 ′(t) ≡ 0 for a.e. t ∈ T.

Therefore, taking the arc p := p1, we obtain expressions (4.1). This completes the proof of Theo-
rem 1. �
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5. THE MAIN RESULT

Lemma 3. Let a mapping H : Rn → F(Rn) be pseudo-Lipschitz near a point (x0, y0) ∈
GraphH; i.e., let there exist numbers ε > 0, l > 0, and R ∈ (0,+∞] such that the set
G(x) := H(x) ∩ BR(y0) is nonempty and the inclusion G(x) ⊂ H(z) + l‖x − z‖B1(0) holds for
all x, z ∈ Bε(x0). Then the following inclusion is valid for all w ∈ G(x0):

(0, w − y0) ∈ TC(Graph(coG); (x0, y0)).

Proof. Take an arbitrary point w ∈ G(x0). Define a point v0 := w − y0 and a number
δ := ‖v0‖. By construction, δ < R. Consider an arbitrary number sequence {λk > 0}k∈N such
that λk → 0 as k → +∞. Consider also an arbitrary sequence {(xk, yk) ∈ Graph(coG)}k∈N that
converges to the point (x0, y0) as k → +∞.

Let α := min{(R − δ)/l, ε}. There exists a number K0 such that xk ∈ Bα(x0) and λk ∈ (0, 1) for
all k > K0. Since the mapping H is pseudo-Lipschitz, the inclusion w ∈ H(xk) + l‖xk − x0‖B1(0)
holds for all k > K0; i.e., there exist points zk ∈ H(xk) such that ‖zk − w‖ ≤ l‖xk − x0‖; i.e.,
zk → w as k → +∞ and ‖zk − y0‖ < R; i.e., zk ∈ G(xk). Define vk := zk − yk for all k > K0

and vk := 0 for all k ≤ K0. Obviously, vk → v0 as k → +∞, and the inclusion yk + λkvk =
(1 − λk)yk + λkzk ∈ coG(xk) is valid for all k ∈ N. Thus, for any sequences {λk > 0}k∈N and
{(xk, yk) ∈ Graph(coG)} such that λk → 0 and (xk, yk) → (x0, y0) as k → +∞, we have found
a sequence {(0, vk) ∈ R

n × R
n}k∈N that converges to (0, v0) ∈ R

n × R
n, and for all k ∈ N the

inclusion (xk, yk) + λk(0, vk) ∈ Graph(coG) is valid. By the definition of the Clarke tangent cone
(see [4]), this means that (0, v0) ∈ TC(Graph(coG); (x0, y0)). �

Corollary 1. Let the hypotheses of Lemma 3 be satisfied. Suppose that a closed convex cone
K ⊂R

n×R
n satisfies the inclusion K ⊃ TC(Graph(coG); (x0, y0)). Then, for any point (q, p)∈K0,

where K0 is the polar cone to K, the following maximum principle holds :

〈p, y0〉 = max{〈p,w〉 | w ∈ G(x0)}.

Theorem 2. Let T := [t0, t1], and let a trajectory x̂ ∈ RT (F,C0) be a local solution to the
original Mayer problem (2.1) in the space AC(T,Rn). Suppose that the mapping F is measurable
pseudo-Lipschitz near the arc x̂ (see Definition 1). Let the cones K(t) satisfy Hypothesis 3. Let K0

and K1 be some Boltyanskii tents to the sets C0 and C1 at the points x̂(t0) and x̂(t1), respectively.
Suppose that ψ : Rn → R

1 is a convex positively homogeneous function satisfying the inequality
D+

L ϕ(x̂(t1))(x) ≤ ψ(x) < ∞ for all x ∈ R
n (see (1.3)). Then there exists a number λ ≥ 0 and an

arc p ∈ AC(T,Rn) such that the following conditions are satisfied :

(1) the nontriviality conditions λ+ ‖p‖AC > 0;

(2) the transversality conditions

p(t0) ∈ K0
0 , −p(t1) ∈ K0

1 + λ∂ψ(0); (5.1)

(3) the Euler differential inclusion for the arc p,

(p′(t), p(t)) ∈ K0(t) for a.e. t ∈ T. (5.2)

Proof. Let us extend the state space R
n to the following spaces Z and V :

Z := R
n × R

n × R
n × R

n × R
1, V := R

1 × R
n × R

n × R
n. (5.3)
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Define a set C̃ ⊂ Z, a linear operator Λ: Z → V , and a multivalued mapping H : T × Z → P(Z)
by the formulas

C̃ :=
{
z := (z1, z2, z3, z4, z5)

∣∣ z1 ∈ C0, z3 ∈ C1, z5 ≥ ϕ(z4)
}
,

Λz :=
{
(v1, v2, v3, v4) ∈ V

∣∣ v1 = z5, v2 = z3 − z1, v3 = z4 − z2, v4 = z2 − z1
}
,

H(t, z) :=
{
w ∈ Z

∣∣ w = (w1, w1, 0, 0, 0), w1 ∈ F (t, z1)
}
.

(5.4)

Define an arc ẑ : T → Z and a set A ⊂ Z as

ẑ(t) :=
(
x̂(t), x̂(t), x̂(t1), x̂(t1), ϕ(x̂(t1))

)
, t ∈ T, (5.5)

A :=
{
z(t1) ∈ Z

∣∣ z ∈ RT (H, C̃)
}
. (5.6)

Obviously, the arc ẑ is a trajectory of the extended differential inclusion, i.e., ẑ ∈ RT (H, C̃). Since
the mapping F is measurable pseudo-Lipschitz near x̂, one can easily show that the mapping H is
also measurable pseudo-Lipschitz near ẑ.

Let us show that Λẑ(t1) /∈ IntΛ(A). Notice that for any α ≥ 0 and any arc x ∈ RT (F,C0) such
that x(t1) ∈ C1, the function

uα(t) :=
(
x(t), x(t), x(t1), x(t1), ϕ(x(t1)) + α

)
, t ∈ T, (5.7)

satisfies the inclusion uα ∈ RT (H, C̃). In view of (5.4), the equality Λuα(t1) = (ϕ(x(t1)) + α, 0, 0, 0)
is also valid. The converse also holds; i.e., if an arc z ∈ RT (H, C̃) is such that there exists a number β
for which the equality Λz(t1) = (β, 0, 0, 0) is satisfied, then it follows from (5.4) that the trajectory z
satisfies the equality z(t) = (z1(t), z1(t), z1(t1), z

1(t1), β), where β ≥ ϕ(z1(t1)), z1 ∈ RT (F,C0), and
z1(t1) ∈ C1. For the trajectory ẑ (see (5.5)), we have Λẑ(t1) = (ϕ(x̂(t1)), 0, 0, 0). Suppose that the
inclusion Λẑ(t1) ∈ IntΛ(A) is valid. Then there exists a number μ > 0 and an arc ũ0 ∈ RT (H, C̃)
(see (5.7) for α = 0) such that Λũ0(t1) = (ϕ(x̂(t1)) − μ, 0, 0, 0); hence, ϕ(x̃(t1)) = ϕ(x̂(t1)) − μ,
which is impossible since the trajectory x̂ is a solution to problem (2.1). Thus, Λẑ(t1) /∈ IntΛ(A).
Define K2 := Epiψ. By Proposition 4, the cone K2 is a Boltyanskii tent to the set Epiϕ at the
point (x̂(t1), ϕ(x̂(t1))), and the inclusion K2 ⊂ TL(Epiϕ, (x̂(t1), ϕ(x̂(t1)))) holds. Using (5.4), we
define cones K̃ ⊂ Z and K̃(t) ⊂ Z × Z (see (5.3)):

K̃ := K0 × R
n ×K1 ×K2,

K̃(t) :=
{
(z, w) ∈ Z × Z

∣∣ w1 = w2, w3 = w4 = 0, w5 = 0, (z1, w1) ∈ K(t)
}
.

One can easily verify that the cone K̃ is a Boltyanskii tent to the set C at the point ẑ(t0), the cones
K̃(t) are convex and closed for a.e. t ∈ T , the mapping K̃ : T → Z × Z is measurable, and the
following inclusion holds:

K̃(t) ⊂ TL
(
GraphH(t, ·); (ẑ(t), ẑ ′(t))

)
for a.e. t ∈ T.

The cones K̃0 and K̃0(t), which are polar to the cones K̃ and K̃(t), have the form

K̃0 = K0
0 × {0} ×K0

1 ×K0
2 , (5.8)

K̃0(t) =
{(

p1, p2, p3, p4, p5, v1, v2, v3, v4, v5
)
∈ Z × Z

∣∣ p2 = p3 = p4 = 0, p5 = 0,

(p1, v1 + v2) ∈ K0(t)
}
. (5.9)

According to Theorem 1, there exists an arc p̃ := (p1, p2, p3, p4, p5) ∈ AC(T,Z) and a nonzero vector
q := (q1, q2, q3, q4) ∈ V such that relations (4.1) are valid. From (4.1), (5.4), and (5.8), we obtain
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the following formulas:

p̃(t1) = Λ∗q =
(
−q2 − q4,−q3 + q4, q2, q3, q1

)
, p1(t0) ∈ K0

0 ,

p2(t0) = 0, p3(t0) ∈ K0
1 , (p4(t0), p

5(t0)) ∈ K0
2 .

Using (4.1) and (5.9), we then obtain

(p1 ′(t), p1(t) + p2(t)) ∈ K0(t), p2 ′(t) = p3 ′(t) = p4 ′(t) = 0, p5 ′(t) = 0.

This means that the functions p2(t) ≡ 0, p3(t) ≡ p3, p4(t) ≡ p4, and p5(t) ≡ p5 are constant; i.e.,

−q3 + q4 = p2 = 0, −p1(t1) = q2 + q3, p3 = q2, p4 = q3, p5 = q1.

The vector (p4, p5) is normal to the set Epiϕ at the point (x̂(t1), ϕ(x̂(t1))); therefore, two cases are
possible.

(1) p5 < 0. In view of positive homogeneity, it can be normalized; i.e., we assume that p5 = −1.
Then we obtain p4 ∈ ∂ψ(0); hence, p1(t1) = −p3 − p4 ∈ −K0

1 − ∂ψ(0) (i.e., the case when λ = 1).
In this case, we take the arc p(t) := p1(t).

(2) p5 = 0. Then p4 = 0, and so q1 = q3 = q4 = 0; i.e., q = (0, q2, 0, 0). Since q �= 0, we have
q2 �= 0; i.e., p1(t1) �= 0 and p1(t1) ∈ −K0

1 (i.e., the case of λ = 0). In this case, we also take the arc
p(t) := p1(t). �

Theorem 2 and Corollary 1 imply
Corollary 2. In particular, suppose that the sets F (t, x) ∩ (x̂ ′(t) + R(t)B1(0)) are convex for

a.e. t ∈ T and all x ∈ Bε(x̂(t)). Then it follows from the Euler differential inclusion (5.2) that the
arc p satisfies the Pontryagin maximum principle, i.e.,

〈p(t), x̂ ′(t)〉 ≥ 〈p(t), y〉 ∀y ∈ F (t, x̂(t)) ∩ (x̂ ′(t) +R(t)B1(0)) for a.e. t ∈ T.

6. EXAMPLE

Consider a simple example of the Mayer problem (2.1) in which the necessary optimality condi-
tions involving polar cones to tangent cones can be more precise than those with the Clarke normal
cone or the limiting normal cone [5].

Let n = 1 and the time interval [t0, t1] be [0, 1]. Let f : R1 → R
1 be a Lipschitz function such

that f(x) = f(−x) for x ∈ R
1 and f(x) = 1/2 for |x| ≥ 1. On the interval [0, 1], the function f is

a continuous piecewise affine function with a countable number of segments, and the graph of f is
enclosed between the parabola y = x2/2 and the line y = 0 with corner points on these two arcs.
All segments of this piecewise affine function have inclination angles to the axis Ox equal to ±π/4,
and when the argument x decreases from 1 to 0, the signs of the angles alternate. Suppose also that
a function l ∈ L1([0, 1],R1

+), l(t) > 0, is chosen in such a way that it is unbounded on any open
interval.

Define the mapping F (t, x) := l(t)({y ∈ R
1 | f(x) ≤ y ≤ x2} ∪ {y ∈ R

1 | y ≥ 2x2}) for t ∈ [0, 1]
and x ∈ R

1. Then, for any choice of the numbers ν > 0 and ε ∈ (0,min{1/4, 1/ν}) and the function
R(t) ≥ νl(t), the mapping F is measurable pseudo-Lipschitz near x̂(t) ≡ 0, t ∈ [0, 1]. Consider
the problem of minimizing the terminal value x(1) over all trajectories of the differential inclusion
x′ ∈ F (t, x) that satisfy the initial condition x(0) = 0. It is obvious that x̂(t) ≡ 0 is a solution to
this problem.

One can easily verify that the lower tangent cone to the set GraphF (t, ·) at the point 0 has
the form TL(GraphF (t, ·); 0) = {(u, v) ∈ R

2 | v ≥ 0}. Taking K(t) := TL(GraphF (t, ·); 0), we
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calculate its polar cone K0(t) = {(q, p) ∈ R
2 | q = 0, p ≤ 0}. Thus, the necessary conditions (5.2)

(the Euler differential inclusion) take a simple form: p′(t) = 0 and p(t) = const ≤ 0. From the
transversality conditions we find λ = 1 and p(t) ≡ −1.

One can also easily verify that the limiting normal cone to the set GraphF (t, ·) at the point 0
has the form

NL
GraphF (t,· )(0) =

{
(q, p) ∈ R

2
∣∣ |q|+ l(t)p ≤ 0

}
∪
{
(q, p)

∣∣ q = 0, p ≥ 0
}

for a.e. t ∈ [0, 1]. The necessary conditions from [5, Theorem 3.1.1] in the form of the Euler
differential inclusion for the arc p are more complicated: either |p′(t)| + l(t)p(t) ≤ 0 a.e., or p(t) =
const ≥ 0 a.e.

7. CONCLUSIONS

We have described a direct method for finding necessary conditions in the form of the Euler–
Lagrange differential inclusion for the Mayer optimization problem on an interval under constraints
on the trajectories given by a differential inclusion with unbounded right-hand side. In [20] we
presented a direct method for finding necessary conditions in the Lagrangian form for a time-
optimal problem with differential inclusion having an unbounded right-hand side, and in [19] we
obtained necessary optimality conditions in the Lagrangian form for the Mayer problem with free
right end in which the values of trajectories belong to a reflexive separable Banach space.

Our necessary conditions are obtained by the direct method, which is a development of Pon-
tryagin’s direct method, and are expressed in terms of polar cones, which differ from the Clarke
normal cone and the limiting normal cone [5]. We have presented a simple example in which polar
cones provide a more precise result than the limiting normal cones.

FUNDING

This work was supported by the Russian Foundation for Basic Research, project no. 18-01-
00209a.

REFERENCES
1. J.-P. Aubin and H. Frankowska, Set-Valued Analysis (Birkhäuser, Boston, 1990).
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