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Abstract—Criteria for the convexity of closed sets in general Banach spaces in terms of the
Clarke and Bouligand tangent cones are proved. In the case of uniformly convex spaces, these
convexity criteria are stated in terms of proximal normal cones. These criteria are used to derive
sufficient conditions for the convexity of the images of convex sets under nonlinear mappings
and multifunctions.
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1. INTRODUCTION

We start the discussion of the subject of the present paper by considering the following problem:
Under what assumptions on a nonlinear mapping F : Rn → R

m is the image F (Cp
Δ) of a set Cp

Δ

convex?
The set Cp

Δ ⊂ R
n is determined by scalar parameters p > 1 and Δ > 0:

Cp
Δ :=

{
x = [x1, . . . , xn] : ‖x‖p ≤ Δ

}
, (1.1)

where

‖x‖p :=
(

n∑

i=1

|xi|p
)1/p

. (1.2)

Note that the set Cp
Δ is strictly convex for any p > 1 and positive Δ and represents a ball of radius Δ

in the uniformly convex space R
n
p equipped with the norm ‖·‖p (1.2).

The answer to this question in the case p = 2 follows from a general result by Polyak for a Hilbert
space [16]. Namely, for any nonlinear mapping F : Rn → R

m whose derivative F ′ is surjective and
Lipschitz continuous, the image F (C2

Δ) is convex for all small positive Δ.
However, the question of convexity of the sets F (Cp

Δ) for general p > 1 under nonlinear map-
ping F , which was asked by Polyak, turned out to be more complicated.

The following example of a nonlinear mapping F : R2
p → R

2
p was presented in [18]:

F (x) = [x1 + εx22, x2]. (1.3)

It is obvious that the derivative of F is close to the identical mapping for small ε. Nevertheless, in
the case p > 2 the image F (Cp

Δ) is not convex for any small positive Δ, as it was shown in [18].
In this paper we provide a complete answer to Polyak’s question by demonstrating that the

images F (Cp
Δ) are convex for all sufficiently small positive Δ for any p ∈ (1, 2] and nonlinear F

with surjective Lipschitz derivative F ′.
This and more general results on convexity of the images of convex sets under nonlinear mappings

are derived from general criteria for the convexity of sets in general Banach spaces which are obtained
in this paper.
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We state these necessary and sufficient conditions for the convexity of closed sets in Banach
spaces in terms of tangent and normal cones to sets.

Theorem 1.1. Let S be a closed subset of a Banach space X. Then the following statements
are equivalent :

(i) S is convex ;
(ii) for any x ∈ S

S ⊂ x+ TB
S (x); (1.4)

(iii) for any x ∈ S

S ⊂ x+ TC
S (x); (1.5)

(iv) for any x ∈ S

S ⊂ x+ (NC
S (x))∗; (1.6)

(v) if, in addition, the space X is uniformly convex, then for any x ∈ S

S ⊂ x+ (NP
S )

∗(x). (1.7)

Here TB
S (x) denotes the Bouligand tangent cone, which can be defined in terms of the lower

Dini directional derivative of the distance function

dS(z) := inf
x∈S

‖z − x‖ (1.8)

to the set S; namely,
TB
S (x) :=

{
v : DdS(x; v) ≤ 0

}
.

The Clarke tangent cone TC
S (x) can be defined in terms of the Clarke generalized directional deriva-

tive of the distance function:
TC
S (x) :=

{
v : D◦dS(x; v) ≤ 0

}
.

The proximal normal cone NP
S (x), x ∈ S, for a closed subset S of a uniformly convex space X con-

sists of all positive multiples αζ, α> 0, where for some z ∈X\S we have ζ ∈B∗, 〈ζ, z−x〉 = ‖z−x‖,
and x is the closest point to z:

‖z − x‖ = dS(z).

Note that we use the notation K∗ for the dual cone of a set K:

K∗ :=
{
ζ ∈ X

∗ : 〈ζ, k〉 ≤ 0 ∀ k ∈ K
}
.

Among a variety of concepts of tangent cones (starting with the largest Bouligand tangent
cone), the Clarke tangent cone has a prominent place with examples of its numerous successful
applications in different fields (including well-known applications to optimization and dynamic op-
timization problems [5–7] and less-known ones to problems of existence of fixed points and equilibria
in nonconvex sets [8, 9, 1]).

In this paper we demonstrate yet another application of the Clarke tangent cones to deriving
the tangential criteria (1.5) for the convexity of a set S in a general Banach space.

Note that the classical tangent cone cone(S − x) to a convex set S coincides with the Clarke
tangent cone (see [5]):

cone(S − x) = TC
S (x) ∀x ∈ S. (1.9)
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This fact implies that the tangential conditions (1.5) are necessary for the convexity of the set S.
It is shown here that conditions (1.5) are also sufficient for the convexity of S. To the best of our
knowledge, the question of validity of the tangential conditions (1.5) as a criterion for the convexity
of a set S in a general Banach space has been open until now.

The Clarke normal cone NC
S (x) at x ∈ S is defined as a dual cone to the Clarke tangent cone:

NC
S (x) :=

{
ζ ∈ X

∗ : 〈ζ, v〉 ≤ 0 ∀ v ∈ TC
S (x)

}
. (1.10)

In the case of a uniformly convex space X, it was established that the Clarke normal cone can be
represented in terms of proximal normal cones:

NC
S (x) = co

{
w*-lim
k→∞

ζk : ζk ∈ NP
S (xk), xk ∈ S, lim

k→∞
xk = x

}
, (1.11)

where w*-limk→∞ ζk is the weak* limit of the sequence ζk ∈ X
∗. This proximal normal formula was

established in [3, 4, 15] in the case of more general Banach spaces than the uniformly convex ones.
The proximal normal formula (1.11) for such spaces and the dual definition of the Clarke normal

cone imply that the normal condition (1.7) is necessary and sufficient for the convexity of S.
It is interesting to note that for arbitrary closed sets in a Hilbert space the normal convexity

criterion (1.7) was stated in the book [10, p. 63] in the form of Exercise 11.3.
In this paper we provide a straightforward proof of this proximal normal criterion for the convex-

ity of sets in the case of more general uniformly convex Banach spaces without using the proximal
normal formula.

One of the original stimuli for this paper came from a brief note by S. Vakhrameev [22], where
tangential convexity criteria in the form of equality (1.9) were stated for the case of closed sets with
nonempty interior in the finite-dimensional space X = R

n.
Another one was a series of papers by Polyak on his convexity principle [16, 17]. Namely, Polyak

demonstrated that for a nonlinear C1,1 mapping F : X → Y between Hilbert spaces whose derivative
F ′(x0) is surjective at x0 ∈ H, the image F (x0 + rB) of a ball x0 + rB of sufficiently small radius r
is convex.

Note that here and below B stands for the unit ball in X.
In this paper we apply the convexity criterion (1.4) to obtain sufficient conditions for the con-

vexity of the images of multifunctions

G(x) := F (x) +K,

where K is a closed convex cone.
Namely, for a set C which is determined as the intersection of sublevel sets of differentiable

functions Vi,
C :=

{
x ∈ X : Vi(x) ≤ 0, i = 1, . . . ,m

}
,

we obtain first-order conditions which imply the convexity of the set

S := G(C) :=
{
F (x) + k : x ∈ C, k ∈ K

}
.

As an example of application of this result (see Corollary 4.1 below), we derive a generalization of
the convexity principle from [17]. Namely, let F : X → Y be a C1,1 mapping from a Hilbert space X

to a general Banach space Y such that

F ′(x0)X +K = Y. (1.12)

Then, for all small r > 0, the image G(x0 + rB) of the ball x0 + rB is convex.
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Finally, we should mention the papers [2, 11] by Bobylev et al., which contain conditions for the
convexity of F (C) for a nonlinear mapping F : Rn → R

n where a convex set C is a sublevel set of
some strictly convex function V .

It seems that by using the tangential and normal criteria obtained in this paper, we answer some
open questions which have been raised by Lebourg in his review [13] of Polyak’s paper [17]. Let us
take a long quote from it on Polyak’s convexity principle to list these open questions:

Although the emphasis here is on applications, the new principle clearly goes beyond the scope
of any particular application, and it raises more interest in itself than in its potential appli-
cations. It also sets forth a few unanswered questions. Could this local principle be carried
on to uniformly convex Banach spaces? Could it be somehow turned into a global one? What
could be said, for instance, of the global image of a convex set—e.g. a ball—under a C1,1 or
even a C2 mapping?
It is worth spending some time on it, even without any specific application in mind.
We should mention the recent interesting papers [20, 21], which contain some generalizations

of Polyak’s convexity principle for uniformly convex spaces and multivalued mappings and which
answer some of Lebourg’s questions.

The plan of this paper is as follows. The next Section 2 contains the notation which is used
in the paper and a description of the results which are used in it. A proof of Theorem 1.1 with
tangential and normal convexity criteria is presented in Section 3. Section 4 contains applications
of these criteria to the derivation of sufficient conditions for the convexity of images of convex sets
under multivalued mappings.

2. NOTATION AND SOME RELEVANT RESULTS

The dual of a Banach space X is denoted by X
∗; the unit closed ball in X is denoted by BX

or simply B; similarly B∗ is the unit closed ball in X
∗. For ζ ∈ X

∗ and x ∈ X we have the linear
pairing 〈ζ, x〉.

For sets A, B and a number α we have the usual algebraic sum A + B and product αA. So
x0 + rB denotes a closed ball of radius r centered at x0.

The space of differentiable mappings F such that their derivatives F ′ are locally Lipschitz is
denoted by C1,1.

For a function f : X → R, the lower directional Dini derivative is defined as

Df(x; v) := lim inf
t→+0, w→v

f(x+ tw)− f(x)

t
.

The Clarke generalized directional derivative of f is defined as follows:

D◦f(x; v) := lim sup
y→x, w→v

f(y + tw)− f(y)

t
.

From the obvious inequality between the Dini and Clarke directional derivatives, we have

TC
S (x) ⊂ TB

S (x).

The following important inclusion, which is used in this paper, is due to Treiman [19]:

Lim inf
x′−→

S
x

TB
S (x′) ⊂ TC

S (x); (2.1)

here, for a multivalued mapping G : X → 2Y such that G(x) are subsets of a Banach space Y,

Lim inf
x′−→

S
x

G(x′) :=
⋂

ε>0

⋃

δ>0

⋂

x′∈x+δB

(G(x′) + εBY). (2.2)
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Since the Clarke generalized directional derivative of a locally Lipschitz function f is a support
function of the bounded convex set ∂Cf(x), which is called the Clarke generalized gradient, it follows
that the Clarke normal cone at x ∈ S can be defined as

NC
S (x) = cone ∂CdS(x), (2.3)

and due to duality
(NC

S (x))∗ = TC
S (x). (2.4)

Finally we use the following inverse multifunction theorem (see, e.g., [14]) for the multifunction
G(x) := F (x) +K where F : X → Y is a C1 nonlinear mapping and K is a closed convex cone.

If the infinitesimal condition (1.12) holds and

y0 ∈ G(x0),

then for any sufficiently small ε > 0 there exists δ > 0 such that

y0 + εBY ⊂ G(x0 + δBX). (2.5)

3. PROOF OF THEOREM 1.1

First we prove the equivalence of statements (i)–(iv).
(i) ⇒ (ii). Let S be convex. Then, clearly, for any s and x in S the vector s− x is a Bouligand

tangent vector,
s− x ∈ TB

S (x),

since x+ t(s− x) ∈ S for all t ∈ [0, 1]. Of course, this implies (1.4).
(ii) ⇒ (iii). It follows from (1.4) and the definition (2.2) that

S − x = Lim inf
x′−→

S
x
(S − x′) ⊂ Lim inf

x′−→
S

x
TB
S (x′). (3.1)

In view of (2.1) this implies (1.5).
(iii) ⇒ (iv). Because of the duality between the Clarke tangent and normal cones (2.4), rela-

tion (1.5) implies (1.6).
(iv) ⇒ (i). We need to prove that the normal conditions (1.6) imply the convexity of the set S.

Assume on the contrary that S is not convex, namely, there exist x1, x2 ∈ S such that for some
maximizing t0 ∈ (0, 1)

Δ := dS(x(t0)) = max
t∈[0,1]

dS(x(t)) > 0 (3.2)

where x(t) = (1− t)x1 + tx2.
Denote x(t0) by x0 and for an arbitrary ε > 0 choose ỹε ∈ S such that

‖x0 − ỹε‖ < dS(x
0) + ε2.

By using Ekeland’s minimization principle, we can assume that there exists yε ∈ S such that

‖x0 − yε‖ < dS(x
0) + ε2 (3.3)

and yε ∈ S is a minimizer of the function

y → ‖x0 − y‖+ ε‖y − yε‖

on the closed set S.
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By using Clarke’s exact penalization result [5], we see that yε is also a minimizer of the function

y → ‖x0 − y‖+ ε‖y − yε‖+ 2dS(y)

on the entire space X.
Then we use necessary conditions for the minimizer yε in terms of the Clarke generalized gradient

to obtain
0 ∈ ∂C

(
‖x0 − y‖+ ε‖y − yε‖+ 2dS(y)

)∣∣
y=yε

.

In particular, this implies that

0 ∈ ∂C(‖x0 − y‖)
∣
∣
y=yε

+ 2∂CdS(yε) + εB, (3.4)

which means that there exist ζε and ζ in X
∗ such that

−ζε ∈ ∂C(‖y − x0‖)
∣
∣
y=yε

, ζ ∈ ∂Cds(yε), and ζε ∈ 2ζ + εB. (3.5)

We note that the first inclusion implies the important fact that

〈ζε, x0 − yε〉 = ‖x0 − yε‖ (3.6)

Remark also that the third inclusion in (3.5) yields

〈ζε, x1 − yε〉 ≤ 2〈ζ, x1 − yε〉+ ε‖x1 − yε‖, 〈ζε, x2 − yε〉 ≤ 2〈ζ, x2 − yε〉+ ε‖x2 − yε‖.

Note that x1 − yε and x2 − yε belong to S − yε and we can use the normal conditions (1.6) at
the point yε ∈ S and the representation (2.3) of the Clarke normal cone to obtain

〈ζε, x1 − yε〉 ≤ ε‖x1 − yε‖, 〈ζε, x2 − yε〉 ≤ ε‖x2 − yε‖. (3.7)

Multiplying the first inequality by t0, the second one by 1− t0, and adding them, we conclude that

〈ζε, x0 − yε〉 ≤ ε
(
t0‖x1 − yε‖+ (1− t0)‖x2 − yε‖

)
≤ ε

(
‖x2 − x1‖+ dS(x

0) + ε2
)
.

We used (3.3) to obtain the last inequality.
In view of (3.2), (3.6) and the definition of yε, we see that

0 < Δ ≤ O(ε),

which leads to a contradiction since ε > 0 can be arbitrary small. Thus, the set S is convex.
We now demonstrate that in the case of a uniformly convex space X statements (i) and (v) are

equivalent.
(i) ⇒ (v). Let S be a closed convex set and ζ ∈ NP

S (x). Without loss of generality we can
assume that ‖ζ‖ = 1 and

〈ζ, z − x〉 = ‖z − x‖ = dS(x) (3.8)

for some z /∈ S. Then, because of the convexity of S, we have

‖z − x− t(s− x)‖ − ‖z − x‖ ≥ 0

for any s ∈ S and t ∈ (0, 1]. Dividing this inequality by t and taking the limit as t → +0, we obtain

max
ζ

〈ζ, s− x〉 ≤ 0,

where the maximum is taken over the set of all ζ satisfying (3.8).
Of course, this implies that s− x ∈ (NP

S (x))
∗, and inclusion (1.7) is proved.
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(v) ⇒ (i). It is well known that for a closed subset S of a uniformly convex space X there exists
a dense set of points z for each of which there is a unique closest point x ∈ S:

‖z − x‖ = dS(z). (3.9)

Let us assume that the closed set S satisfies (1.7) but is not convex. This means that there exist
x1 and x2 in S and t0 ∈ (0, 1) such that

x0 := t0x1 + (1− t0)x2 /∈ S. (3.10)

This also means that the distance from x0 to S is positive:

dS(x0) > 0. (3.11)

Due to the uniform convexity of X, for any ε > 0 there exists a point z ∈ x0 + εB such that
there is a unique closest point x ∈ S to z satisfying (3.9).

Because of the Lipschitz continuity of the distance function dS , we have

dS(x0)− ε ≤ dS(z) ≤ dS(x0) + ε. (3.12)

Note that any vector ζ ∈ B∗ satisfying (3.8) is a proximal normal to the set S at the point x.
It follows from (1.7) that

〈ζ, x1 − x〉 ≤ 0, 〈ζ, x2 − x〉 ≤ 0.

Then from (3.9), (3.8), and the previous inequalities we obtain

dS(z) = 〈ζ, z − x〉 ≤ 〈ζ, t0x1 + (1− t0)x2 − x〉+ ‖z − x0‖ ≤ ε, (3.13)

but this implies that
dS(x0) ≤ 2ε

for an arbitrary ε > 0. Of course, this inequality contradicts (3.11), and so the set S is convex.
Theorem 1.1 is proved.

4. CONVEXITY OF IMAGES OF NONLINEAR MAPPINGS:
FIRST-ORDER CONDITIONS

In this section we use convexity criteria from Section 2 to prove some sufficient conditions for
the convexity of the image of a set C under a multivalued mapping G(x).

This multifunction G is defined as follows:

G(x) := F (x) +K, (4.1)

where F : X → Y is a single-valued mapping between Banach spaces X and Y and K ⊂ Y is a closed
convex cone.

The set C is determined as an intersection of sublevel sets of differentiable functions Vi : X → R:

C :=
{
x ∈ X : Vi(x) ≤ 0, i = 1, . . . ,m

}
. (4.2)

It is assumed that C is nonempty.
Here we consider the image

S := G(C) :=
{
F (x) + k : x ∈ C, k ∈ K

}
(4.3)

and provide conditions which imply the convexity of S.
In the next subsection we consider conditions which are formulated globally in terms of all points

in C. Then we consider conditions which have a more local character and are stated in terms of
points near the boundary of C.
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4.1. Global conditions for the convexity of images. Let us assume that the mapping F
is differentiable and satisfies the following conditions.

Assumption 4.1. For any x ∈ C there exist positive ν(x) and L(x) such that

‖F ′(x)− F ′(u)‖ ≤ L(x)‖x− u‖ ∀u ∈ C (4.4)

and
‖F ′∗(x)e‖ ≥ ν(x)‖e‖ ∀ e ∈ K∗. (4.5)

The first part of this assumption is satisfied if we assume that F ′ is a Lipschitz function inside C.
The second part of this assumption is a generalized condition of surjectivity of F ′(x), with ν(x) a
modulus of surjectivity.

Let I := {1, . . . ,m} and for x ∈ bdryC a set I(x) is the set of active indices

I(x) := {i ∈ I : Vi(x) = 0}.

Let the functions Vi, i ∈ I, satisfy the following assumption.
Assumption 4.2. (i) The functions Vi : X → R are differentiable at any x ∈ bdryC.
(ii) There exists a positive α(x) such that for any x ∈ bdryC, u ∈ C, and i ∈ I(x)

〈V ′
i (x), u − x〉+ α(x)‖u − x‖2 ≤ Vi(u)− Vi(x). (4.6)

(iii) There exists a positive β(x) such that for any x ∈ bdryC and i ∈ I(x)

‖V ′
i (x)‖ ≤ β(x). (4.7)

(iv) At any point x ∈ bdryC for any convex coefficients {λi}I(x) (that is, such that λi ≥ 0 and∑
i∈I(x) λi = 1),

∑

i∈I(x)
λiV

′
i (x) �= 0. (4.8)

It is obvious that (4.6) is satisfied if Vi are strictly convex C2 functions with some uniform lower
bound on the eigenvalues of the Hessians of Vi. Condition (4.8) is satisfied if Vi are convex and
there exists x∗ such that Vi(x∗) < 0 for all i ∈ I (Slater condition).

The surjectivity condition (4.5) implies (see, e.g., [14]) that for any y0 and x0 near C such that

y0 ∈ G(x0)

and for any sufficiently small ε > 0 there exists δ > 0 such that

y0 + εB ⊂ G(x0 + δB).

In particular, this implies the following two important facts:

(a) the set S = G(C) is closed;
(b) if for some x ∈ C and kx ∈ K the point F (x) + kx is a boundary point of S, then x is a

boundary point of C.

Later we will give an example demonstrating that in the absence of the surjectivity condi-
tion (4.5) the set G(C) can be nonconvex.

It should also be noted that Assumptions 4.1 and 4.2 have a global character: they require some
uniform behavior of the mapping F and functions Vi inside the entire set C.
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Theorem 4.1. Let Assumptions 4.1 and 4.2 be satisfied and for any x ∈ bdryC

α(x)ν(x)

β(x)
≥ 1

2
L(x). (4.9)

Then the set S (4.3) is convex.
Proof. To prove the convexity of the image S, we apply the tangential convexity criteria from

Theorem 1.1.
We use the following lemma, which characterizes vectors w that are not Bouligand tangent

vectors of the set S (4.3) at the boundary point F (x) + kx with x ∈ bdryC and kx ∈ K.
Lemma 4.1. Let w /∈ TB

S (F (x) + kx). Then there exist ε > 0, n(x) ∈ Y
∗, ‖n(x)‖ = 1, and

nonnegative coefficients {λi}I(x) such that

F ′∗(x)n(x) =
∑

i∈I(x)
λiV

′
i (x), 〈n(x), kx〉 = 0, n(x) ∈ K∗, (4.10)

〈n(x), w〉 ≥ ε. (4.11)

Proof. Note that it follows from the definition of the Bouligand tangent cone that there exists
a constant ε > 0 and a sequence {tj}, tj → +0 as j → ∞, such that

dS
(
F (x) + kx + tjw

)
≥ εtj.

This relation, the exact penalization result from [5], and the metric regularity of the system of
inequalities in (4.2) (due to (4.8) in Assumption 4.2) imply that there exists a positive ρ such that
for any u ∈ X near x and any y ∈ K

‖F (x) + kx + tjw − F (u)− y‖+ ρmax
{
0,max

i∈I
Vi(u)

}
≥ εtj .

Consider the case kx �= 0. Then by choosing u = x + tje and y = (1 − tjγ)kx + tjk for arbitrary
e ∈ X, k ∈ K, and γ ∈ R, we obtain

1

tj

(∥
∥F (x) + kx + tjw − F (x+ tje)− (1− tjγ)kx − tjk

∥
∥ + ρmax

{
0,max

i∈I
Vi(x+ tje)

})
≥ ε

for all j large enough. By taking the limit as j → ∞, we arrive at

inf
e,k,γ

max
f∈B∗, λ

[
〈
f,w − F ′(x)e+ γkx − k

〉
+

〈
∑

i∈I(x)
λiV

′
i (x), e

〉]

≥ ε,

where the maximum is taken over all f ∈ B∗ and λ = {λi}I(x), 0 ≤ λi ≤ ρ, i ∈ I(x).
By using a one-sided variant of the minimax theorem, we establish the existence of n(x) ∈ B∗

and nonnegative numbers {λi}I(x) such that

〈n(x), w〉 + inf
γ
γ〈n(x), kx〉 − sup

e

〈

F ′∗(x)n(x)−
∑

i∈I(x)
λiV

′
i (x), e

〉

− sup
k
〈n(x), k〉 ≥ ε.

It is clear from this relation that n(x) �= 0 and that n(x) satisfies (4.10) and w satisfies (4.11). The
case kx = 0 is treated in a similar way.

The lemma is proved. �
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Now we return to the proof of the convexity of S (4.3) by assuming that the convexity criteria
do not hold for some boundary point F (x) + kx of S. This means in accordance with Lemma 4.1
that there exist u ∈ C and k ∈ K such that for the vector w = F (u) + k − F (x)− kx

〈
n(x), F (u) − F (x) + k − kx

〉
≥ ε,

where n(x), 0 < ‖n(x)‖ ≤ 1, satisfies (4.10) and (4.11).
Because of (4.10), from the previous inequality we have

〈n(x), F (u) − F (x)〉 ≥ ε. (4.12)

It follows from the first equality in (4.10) and the surjectivity condition (4.5) that

∑

i∈I(x)
λi ≥

ν(x)‖n(x)‖
maxi∈I(x)‖∇Vi(x)‖

.

Then we use this inequality and (4.7) to write the next estimate for {λi}:

∑

i∈I(x)
λi ≥

ν(x)‖n(x)‖
β(x)

. (4.13)

Since

F (u)− F (x) =

1∫

0

F ′(x+ t(u− x))(u− x) dt

= F ′(x)(x− u) +

1∫

0

(F ′(x+ t(u− x))− F ′(x))(u − x) dt,

we obtain from (4.4) the following estimate:

〈n(x), F (u) − F (x)〉 ≤ 〈F ′∗(x)n(x), u − x〉+ 1

2
L(x)‖u− x‖2‖n(x)‖.

Due to the representation for F ′∗(x)n(x) in (4.10), we obtain

〈n(x), F (u) − F (x)〉 ≤
∑

i∈I(x)
λi〈V ′

i (x), u− x〉+ 1

2
L(x)‖u− x‖2‖n(x)‖. (4.14)

Due to (4.6) and the fact that u ∈ C, we have

〈V ′
i (x), u− x〉 ≤ Vi(u)− Vi(x)− α(x)‖u− x‖2 ≤ −α(x)‖u − x‖2

for i ∈ I(x). We use this inequality and estimate (4.13) for λi to derive from (4.14) that

〈n(x), F (u) − F (x)〉 ≤ −
[
ν(x)α(x)

β(x)
− 1

2
L(x)

]
‖u− x‖2‖n(x)‖ ≤ 0.

The last inequality follows from (4.9) and implies that (4.12) is not satisfied. Thus, we have proved
that inclusion (1.4) holds for any boundary point of the set G(C) and this set is convex.

The theorem is proved. �
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Let us show how one can use Theorem 4.1 to generalize the sufficient conditions due to Polyak [16]
for the convexity of images of small balls in a Hilbert space.

Corollary 4.1. Let X be a Hilbert space, Y a Banach space, K ⊂ Y a closed convex cone, and
F : X → Y a nonlinear mapping such that for some x0 ∈ X and positive L, ν, and r it satisfies the
inequalities

‖F ′(x)− F ′(u)‖ ≤ L‖x− u‖ ∀x, u ∈ x0 + rB, (4.15)

‖F ′∗(x)e‖ ≥ ν‖e‖ ∀ e ∈ K∗. (4.16)

Then for any 0 < Δ ≤ min{r, ν/(2L)} the set G(x0 +ΔB) is convex.
Proof. Consider the function

V (x) :=
1

2
‖x− a‖2 − 1

2
Δ2,

where Δ satisfies the hypothesis of the corollary.
Note that in this case C = x0 + ΔB and the function V satisfies Assumption 4.2 and, conse-

quently, condition (4.6) with

α(x) =
1

2
, β(x) = Δ.

Note also that due to (4.16) and (4.15) the mapping F satisfies Assumption 4.1 with L(x) = L and
ν(x) = ν. Since ‖x− x0‖ = Δ for any x ∈ bdryC, we can easily check that inequality (4.9) is also
satisfied. Then this corollary immediately follows from Theorem 4.1. �

Consider another application of Theorem 4.1 which allows us to answer the question raised by
Polyak in [17] about the convexity of images of small balls (1.1) in the finite-dimensional space R

n
p

with the norm ‖·‖p (1.2). In [18] Reissig constructed an example of a nonlinear mapping (1.3) and
demonstrated that for any p > 2 and any Δ small enough F (Cp

Δ) is nonconvex.
Here we will show that for a mapping F with surjective F ′ the image F (Cp

Δ) is convex for any
p ∈ (1, 2] and all small Δ. This answers Polyak’s question in the affirmative for the case of p ∈ (1, 2].

Proposition 4.1. Let p ∈ (1, 2] and F : Rn → R
m be a nonlinear mapping such that for some

positive L, ν, and r conditions (4.15) and (4.16) are satisfied for some closed convex cone K ⊂ R
m.

Then for all positive Δ such that

Δ ≤ min

{
r√
n
,
(p− 1)ν√

nL

}
, (4.17)

the set G(Cp
Δ) is convex.

Proof. We only need to check that Assumptions 4.1, 4.2 and (4.9) are satisfied for F and the
function V (x) := ‖x‖pp −Δp under conditions (4.15), (4.16) and the bound (4.17) for x0 = 0.

Indeed, if x ∈ Cp
Δ, then its every component xi satisfies the estimate |xi| ≤ Δ and for the

Euclidean norm we have ‖x‖ ≤
√
nΔ. Since V ′(x) = p

[
|x1|p−1 sign x1, . . . , |xn|p−1 sign xn

]
, we

obtain ‖V ′(x)‖ ≤ p
√
nΔp−1 for x ∈ Cp

Δ. This implies that β = p
√
nΔp−1.

To find α(x), we use the following representation:

V (u)− V (x) =

1∫

0

〈V ′(yt), u− x〉 dt = 〈V ′(x), u− x〉+
1∫

0

〈 s∫

0

V ′′(ys)(u− x) ds, u− x

〉

dt,

where yt = x+ t(u− x).
Note that the Hessian V ′′(x) is a diagonal matrix diag{p(p − 1)|x1|p−2, . . . , p(p − 1)|xn|p−2}

at a point x ∈ Cp
Δ where it exists. This implies that (4.6) is valid for any x, u ∈ Cp

Δ with α =
p(p− 1)Δp−2/2.
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Finally we observe that if
√
nΔ ≤ r, then Cp

Δ ⊂ B(0, r), and for such Δ condition (4.9) holds if

p(p− 1)Δp−2ν

2p
√
nΔp−1

≥ 1

2
L.

However, this inequality is valid if Δ satisfies (4.17). The proposition is proved. �
Case p > 2. We show the nonconvexity of F (Cp

Δ) by using the proximal normal convexity
criteria. Consider a parametrization of the boundary points of the set Cp

Δ:

xτ = [xτ1 , x
τ
2 ] :=

[
Δ− τ, (Δp − (Δ − τ)p)1/p

]
, τ ∈ [0,Δ). (4.18)

Then F (xτ ) = [Δ− τ + ε(xτ2)
2, xτ2 ], and it is easy to check that for any ε ∈ (0, 1/4] and Δ < 1 the

vector h = [1, 0] is a proximal normal vector to F (Cp
Δ) at the point F (x0) = [Δ, 0].

Now we fix positive ε and Δ satisfying the bounds mentioned above and find that for all τ > 0
small enough

〈h, F (xτ )− F (x0)〉 = −τ + ε(Δp − (Δ− τ)p)2/p = −τ + ε(pΔp−1τ + o(τ))2/p.

Since 2/p < 1, it is clear that for all small τ > 0 the previous expression takes positive values. This
implies that the proximal normal criterion (1.7) fails for the point F (x0) and the set F (Cp

Δ) is not
convex.

Remark 4.1. The assumption of the surjectivity of F ′ on the set C is an important one.
Consider the set CΔ := {x = [x1, x2] ∈ R

2 : ‖x‖2/2 ≤ Δ} and the mapping F (x) : R2 → R
2 such

that F (x) := [x1, x
2
1]. It is clear that F ′ is not surjective for any x and the set F (CΔ) is not convex

for arbitrary small Δ > 0.

4.2. Localized conditions for the convexity of images G(C). The conditions for the
convexity of images of the convex set C (4.2) in the form (4.9) have a global character since the
functions α(x), β(x), and L(x) are defined in terms of points from the entire set C.

In this subsection we present an approach to the derivation of convexity conditions for G(C)
which are stated in terms of the local behavior of the mapping F and functions Vi(x) near the
boundary points of C. The only global requirement is the surjectivity of the derivative F ′ at any
point x ∈ C (see (1.12)). However, we should note that in view of Remark 4.1 this assumption is
essential for the convexity of the image.

Our approach is based on the known result of Klee [12] that a closed connected subset S of
a linear topological space is convex if each point of S has a convex neighborhood in the relative
topology. In the context of convexity of images of sets, it was first suggested in [2].

Now we state assumptions on the properties of the space X, mapping F , and functions Vi. The
first of them states some “smoothness” properties of X in terms of the existence of a smooth convex
function.

Assumption 4.3. There exist a differentiable convex function g : X → [0,+∞) and positive
constants c1, c2, and c3 such that g(0) = 0, g(x) > c1 for all x /∈ B, ‖g′(x)‖ ≤ c2 for all x ∈ B, and

g(u) − g(x) ≥ 〈g′(x), u− x〉+ c3‖u− x‖2

for all x, u ∈ B.
Note that in the case of a Hilbert space X the function g(x) = ‖x‖2/2 satisfies Assumption 4.3

with c1 = 1/2, c2 = 1, and c3 = 1/2.
Let us fix some x0 ∈ X and r > 0 and define a function

V0(x) := g
(x− x0

r

)
− c1. (4.19)
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It is easy to see that for this function the nonempty convex closed set

Dr(x0) := {x ∈ X : V0(x) ≤ 0} (4.20)

is contained in the ball x0 + rB and for all x, u ∈ Dr(x0)

‖V ′
0(x)‖ ≤ c2

r
, V0(u)− V0(x) ≥ 〈V ′

0(x), u− x〉+ c3
r2

‖u− x‖2. (4.21)

Note that in the next assumption about F and Vi, the functions α̂(x), β̂(x), ν̂(x), and L̂(x) are
defined at boundary points of C and their values reflect the local behavior of the mapping F and
functions Vi near these points.

Assumption 4.4. Let the mapping F : X → Y be continuously differentiable and satisfy (1.12)
on C, and let the functions Vi : X → R be convex and differentiable at any x ∈ bdryC. For
any x0 ∈ bdryC there exists positive r̂(x0), ν̂(x0), L̂(x0), α̂(x0), and β̂(x0) such that for any
u, x ∈ C ∩ (x0 + r̂(x0)B)

‖F ′(x)− F ′(u)‖ ≤ L̂(x0)‖x− u‖, (4.22)

‖F ′∗(x)e‖ ≥ ν̂(x0)‖e‖ ∀ e ∈ K∗, (4.23)

〈V ′
i (x), u − x〉+ α̂(x0)‖u− x‖2 ≤ Vi(u)− Vi(x) ∀ i ∈ I(x), (4.24)

‖V ′
i (x)‖ ≤ β̂(x0) ∀ i ∈ I(x). (4.25)

Finally, we assume that the functions Vi and V0 (see (4.19)) satisfy an analog of the Slater
condition from mathematical programming.

Assumption 4.5. For any x0 ∈ bdryC and r ∈ (0, r(x0)) there exists x∗ ∈ x0 + rB such that

Vi(x∗) < 0, i = 0, 1, . . . ,m. (4.26)

Theorem 4.2. Let Assumptions 4.3–4.5 be satisfied and for any x0 ∈ bdryC

α̂(x0)ν̂(x0)

β̂(x0)
≥ 1

2
L̂(x0). (4.27)

Then the set G(C) is convex.
Proof. Since C and the cone K are convex, the set S = G(C) is connected. For any x0 ∈ C

consider the set
Sr(x0) := G(C ∩Dr(x0)) (4.28)

with a sufficiently small r > 0. Note that if x0 is an interior point of C, then, because of (1.12),
Sr(x0) contains a ball of sufficiently small radius, which is of course a convex set.

Thus we need to consider only boundary points x0 ∈ bdryC. We will show that the set Sr(x0)
is convex for sufficiently small r. Then in accordance with Klee’s theorem the set S is convex.

For x0 ∈ bdryC we fix some positive r < min{r̂(x0), c2/(c3β̂(x0))}.
Note that the set Sr(x0) is the image G(Cr(x0)) of the set

Cr(x0) :=
{
x ∈ X : V0(x) ≤ 0, Vi(x) ≤ 0, i ∈ I}.

Let us assume that the set Sr(x0) is not convex, which in accordance with Theorem 1.1 implies
that at some boundary point F (x) + kx of Sr(x0) the vector w = F (u) − F (x) + ku − kx is not a
Bouligand tangent vector to this set for some u ∈ Cr(x0) and ku ∈ K.

Note that the boundary point F (x) + kx of Sr(x0) should satisfy the condition x ∈ bdryCr(x0)
because of (1.12).
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In view of Assumption 4.5 we can use Lemma 4.1 to conclude that there exist ε > 0, nonnegative
numbers λ0 and λi, i ∈ I(x), and n(x) ∈ Y

∗ such that ‖n(x)‖ = 1 and

F ′∗(x)n(x) = λ0V
′
0(x) +

∑

i∈I(x)
λiV

′
i (x), 〈n(x), kx〉 = 0, n(x) ∈ K∗, (4.29)

〈n(x), w〉 ≥ ε. (4.30)

Then it follows from (4.29) that (4.12) is valid.
From (4.29), (4.21), (4.25), and the surjectivity assumption (4.23) we obtain

λ0
c2
r

+ β̂(x0)
∑

i∈I(x)
λi ≥ ν̂(x0). (4.31)

The next estimate follows from (4.22) and the integral representation for F (u)− F (x):

〈n(x), w〉 ≤ 〈n(x), F (u) − F (x)〉 ≤ 〈F ′∗(x)n(x), u− x〉+ 1

2
L̂(x0)‖u− x‖2.

By using the first equality in (4.29) we obtain

〈n(x), F (u) − F (x)〉 ≤ λ0〈∇V0(x), u− x〉+
∑

i∈I(x)
λi〈∇V (x), u − x〉+ 1

2
L̂(x0)‖u− x‖2. (4.32)

Due to (4.24), (4.21), and the fact that x, u ∈ Cr(x0), we have

〈∇Vi(x), u− x〉 ≤ Vi(u)− Vi(x)− α̂(x0)‖u− x‖2 ≤ −α̂(x0)‖u− x‖2

for i ∈ I(x) and

〈∇V0(x), u− x〉 ≤ V0(u)− V0(x)−
c3
r2

‖u− x‖2 ≤ − c3
r2

‖u− x‖2.

Using these inequalities and estimate (4.31) for λ0 and λi, i ∈ I(x), we find from (4.32) that

〈n(x), F (u) − F (x)〉 ≤
[

− c3
r2

λ0 −
∑

i∈Iγ(x)
λiα̂(x0) +

1

2
L̂(x0)

]

‖u− x‖2

≤
[
λ0

(
c2

β̂(x0)r
− c3

r2

)
− α̂(x0)ν̂(0)

β̂(x0)
+

1

2
L̂(x0)

]
‖u− x‖2.

Due to (4.27) for x0 and the choice of r, we arrive at a contradiction, and this implies that the
tangential criterion (1.4) for the convexity of the set Sr is satisfied. Thus, the set Sr(x0) is convex.
In accordance with Klee’s theorem this implies that G(S) is convex. The theorem is proved. �

ACKNOWLEDGMENTS

The author is grateful to Sergey Aseev and Francis Clarke for useful discussions.

FUNDING

This work was partially supported by the National Science Foundation grant DMS-0708019.

REFERENCES
1. H. Ben-El-Mechaiekh and W. Kryszewski, “Equilibria of set-valued maps on nonconvex domains,” Trans. Am.

Math. Soc. 349 (10), 4159–4179 (1997).
2. N. A. Bobylev, S. V. Emel’yanov, and S. K. Korovin, “Convexity of images of convex sets under smooth maps,”

Comput. Math. Model. 15 (3), 213–222 (2004) [transl. from Nelinein. Din. Upr. 2, 23–32 (2002)].
3. J. M. Borwein and J. R. Giles, “The proximal normal formula in Banach space,” Trans. Am. Math. Soc. 302 (1),

371–381 (1987).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 304 2019



204 Yu. S. LEDYAEV

4. J. M. Borwein and H. M. Strojwas, “Proximal analysis and boundaries of closed sets in Banach space. II:
Applications,” Can. J. Math. 39 (2), 428–472 (1987).

5. F. H. Clarke, Optimization and Nonsmooth Analysis (J. Wiley & Sons, New York, 1983), Can. Math. Soc. Ser.
Monogr. Adv. Texts.

6. F. H. Clarke, Methods of Dynamic and Nonsmooth Optimization (SIAM, Philadelphia, PA, 1989), CBMS–NSF
Reg. Conf. Ser. Appl. Math. 57.

7. F. H. Clarke, Necessary Conditions in Dynamic Optimization (Am. Math. Soc., Providence, RI, 2005), Mem.
AMS 173 (816).

8. F. H. Clarke, Yu. S. Ledyaev, and R. J. Stern, “Fixed points and equilibria in nonconvex sets,” Nonlinear Anal.,
Theory Methods Appl. 25 (2), 145–161 (1995).

9. F. H. Clarke, Yu. S. Ledyaev, and R. J. Stern, “Fixed point theory via nonsmooth analysis,” in Recent Devel-
opments in Optimization Theory and Nonlinear Analysis: AMS/IMU Spec. Sess., Jerusalem, 1995 (Am. Math.
Soc., Providence, RI, 1997), Contemp. Math. 204, pp. 93–106.

10. F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth Analysis and Control Theory (Springer,
New York, 1998), Grad. Texts Math. 178.

11. S. V. Emel’yanov, S. K. Korovin, and N. A. Bobylev, “On the convexity of the images of convex sets under
smooth mappings,” Dokl. Math. 66 (1), 55–57 (2002) [transl. from Dokl. Akad. Nauk 385 (3), 302–304 (2002)].

12. V. L. Klee Jr., “Convex sets in linear spaces,” Duke Math. J. 18, 443–466 (1951).
13. G. Lebourg, “Review of the paper ‘The convexity principle and its applications’ by B.T. Polyak,” Math. Rev.

MR1993039 (2004f:49038) (2004).
14. Yu. S. Ledyaev and Q. J. Zhu, “Implicit multifunction theorems,” Set-Valued Anal. 7 (3), 209–238 (1999).
15. P. D. Loewen, “The proximal normal formula in Hilbert space,” Nonlinear Anal., Theory Methods Appl. 11 (9),

979–995 (1987).
16. B. T. Polyak, “Convexity of nonlinear image of a small ball with applications to optimization,” Set-Valued Anal.

9 (1–2), 159–168 (2001).
17. B. T. Polyak, “The convexity principle and its applications,” Bull. Braz. Math. Soc. (N.S.) 34 (1), 59–75 (2003).
18. G. Reißig, “Convexity of reachable sets of nonlinear ordinary differential equations,” Autom. Remote Control

68 (9), 1527–1543 (2007) [transl. from Avtom. Telemekh., No. 9, 64–78 (2007)].
19. J. S. Treiman, “Characterization of Clarke’s tangent and normal cones in finite and infinite dimensions,” Nonlinear

Anal., Theory Methods Appl. 7 (7), 771–783 (1983).
20. A. Uderzo, “On the Polyak convexity principle and its application to variational analysis,” Nonlinear Anal.,

Theory Methods Appl. 91, 60–71 (2013).
21. A. Uderzo, “Convexity of the images of small balls through nonconvex multifunctions,” Nonlinear Anal., Theory

Methods Appl. 128, 348–364 (2015).
22. S. A. Vakhrameev, “A note on convexity in smooth nonlinear systems,” J. Math. Sci. 100 (5), 2470–2490 (2000)

[transl. from Itogi Nauki Tekh., Ser.: Sovrem. Mat. Prilozh., Temat. Obz. 60, 42–73 (1998)].

This article was submitted by the author
simultaneously in Russian and English

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 304 2019


