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Abstract—We study the properties of a parameterized sequence of countably additive vector
measures with densities defined on a compact space T with a nonnegative nonatomic Radon
measure μ and taking values in a separable Banach space. Each vector measure of this sequence
depends continuously on a parameter belonging to a metric space. We assume that a countable
locally finite open cover and a partition of unity inscribed into this cover are given in the metric
space of parameters. We prove that, for each value of the parameter, there exists a sequence
of μ-measurable subsets of the space T which is a partition of T . In addition, this sequence
depends uniformly continuously on the parameter and, for each value of the parameter and
each element of the initial parameterized sequence of vector measures, the relative value of the
measure of the corresponding subset in the partition of T can be uniformly approximated by
the corresponding value of the corresponding partition of unity function.
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INTRODUCTION

From the famous Lyapunov theorem [1, 2; 3, Ch. 8]) on vector measures defined on a compact

topological space T = (T,T , μ) with a σ-algebra T of measurable sets and a finite nonnegative

nonatomic Radon measure μ, it follows that, for any countably additive vector measurem : T → R
n

and any α ∈ [0, 1], there exists a set Aα ∈ T such that m(Aα) = αm(T ).

Based on this corollary, we proved the following result (see [4, Lemma 3.1]): if T = [t0, t1] is a

segment of the real line with a Lebesgue measure μ and a family T of Lebesgue measurable sets,

ms : T → R
n is a family of countably additive measures continuously depending on a parameter s

belonging to a compact metric space S, and {pj(s)}Jj=1 is a continuous partition of unity on S, then,

for any δ > 0, there exists a collection of disjoint sets {Aj(s)}Jj=1 ⊂ T continuously depending on

s ∈ S such that
⋃J

j=1Aj(s) = T (i.e., for any s ∈ S, {Aj(s)}Jj=1 is a measurable partition of T ) and,

for any s ∈ S and any j ∈ (1, J), we have ‖ms(Aj(s))−pj(s)ms(T )‖ < δ and μ(Aj(s)) = pj(s)μ(T ).

Using this result, we proved the existence of a continuous mapping from a compact function space

of parameters to a set of solutions of a differential inclusion. In turn, this allowed us to obtain

necessary conditions for the optimality of the solution of an extremal Mayer problem where one of

the constraints is a differential inclusion with Lipschitz right-hand side (see [5]).

In the case where a separable Banach space E and a compact topological space T = (T,T , μ)

are taken instead of Rn and [t0, t1], respectively, the corresponding generalization of the Lyapunov
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theorem (see [6]) implies the weaker statement that, for any countably additive vector measure

m : T → E with density and any α ∈ [0, 1] and δ > 0, there exists a set Aα ∈ T such that

‖m(Aα)− αm(T )‖ < δ.

In optimal control problems for systems in a Banach space, there is a need to solve the following

problem: for any sequence of vector measures {mj}∞j=1, mj : T → E, with densities, any sequence

of numbers {αj}∞j=1 such that αj ≥ 0 and
∑∞

j=1 αj = 1, and any δ > 0, find a partition of the

space T into disjoint measurable subsets {Aj}∞j=1 ⊂ T such that ‖mj(Aj) − αjmj(T )‖ < δ for

all j ∈ N.

Of special interest is the case where each vector measure mj depends continuously on a param-

eter s belonging to a metric space S (i.e., we have measures mj,s : T → E) and the numbers {αj}
depend on the parameter and correspond to a partition of unity {pj(s)} of the space S. In this

case, it is required to prove that, for any δ > 0, there exists a family {Aj(s)}∞j=1 of measurable

partitions of the space T which is continuous in the parameter s and satisfies the estimates

‖
∑∞

j=1mj,s(Aj(s))−
∑∞

j=1 pj(s)mj,s(T )‖ < δ. This problem was largely solved in [7], which allowed

the authors of that paper to prove a relaxation theorem for differential inclusions with Lipschitz

right-hand side and values in a separable Banach space.

The present paper is devoted to the development of the results of the mentioned works.

For a countable family of vector measures having densities and continuously depending on a

parameter belonging to a metric space, we construct a countable family of measurable partitions

of the compact support T of this family of measures. The constructed family of partitions is

continuously parameterized by the same parameter and gives an approximate expansion of a convex

combination of the values of the measures on T with more accurate uniform estimates of the form∑∞
j=1 ‖mj,s(Aj(s))− pj(s)mj,s(T )‖ < δ.

1. MAIN NOTATION AND DEFINITIONS

In what follows, we assume that (T,T , μ) is a compact topological space with a σ-algebra T of

measurable subsets and a finite nonnegative nonatomic Radon measure μ on them. We also assume

that E is a separable Banach space and S is a separable metric space of parameters. Define the

interval I := [0, 1].

Recall that a function m : T → E is called a finitely additive vector measure if, for any disjoint

sets A1, A2 ∈ T , m(A1 ∪A2) = m(A1) +m(A2). If, in addition, for any sequence {An} of pairwise

disjoint sets in T , we have the equality

m
( ∞⋃

n=1
An

)
=

∞∑
n=1

m(An),

where the series on the right-hand side converges in the norm of the space E, then m is called a

countably additive vector measure.

Recall that a family of sets {Aα}α∈I is called increasing if Aα ⊂ Aβ for any numbers α, β ∈ I

such that α < β.

The most important example of countably additive vector measures is the indefinite Bochner

integral. To explain this, let f : T → E be a Bochner integrable function. Then the function

mf : T → E defined by the formula

mf (A) :=

∫
A

f(t)dμ(t), A ∈ T ,
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is a countably additive and μ-continuous vector measure of bounded variation (see, for instance, [6]).

In this case, the function f(·) ∈ L1(T,E) is called the density (or Radon–Nikodym derivative) of

the vector measure mf .

Note that we consider only countably additive vector measures with densities. The set of all

such measures is denoted by M(T,E).

For any vector measure m ∈ M(T,E) with density f(·) ∈ L1(T,E), we define the norm of this

measure as the norm of its density:

‖m‖ = ‖f(·)‖L1 .

Therefore, if a vector measure ms ∈ M(T,E) with density fs(·) ∈ L1(T,E) is defined for any s ∈ S,

then the mapping ms from S to M(T,E) is continuous if and only if the mapping fs from S to

L1(T,E) is continuous.

In the case of a finite set of vector measures m1, . . . ,mn ∈ M(T,E), we define the composite

vector measure m̃ as follows:

m̃ := (m1, . . . ,mn) ∈ M(T,E × . . . ×E).

The norm of this measure is defined by the formula

‖m̃‖ := max{‖m1‖, . . . , ‖mn‖}.

Recall that the characteristic function of a set B ⊂ T is the function χ
B

such that χ
B
(t) = 1 if

t ∈ B and χ
B
(t) = 0 if t /∈ B.

For any vector measure m ∈ M(T,E) and any set B ∈ T , the measure m|B defined by the

formula

m|B(D) := m(D ∩B) ∀D ∈ T

is called the restriction of the measure m to the set B. It is easy to see that if f(·) ∈ L1(T,E) is

the density of a vector measure m and B ∈ T , then the function f(·)χ
B
(·) is the density of the

vector measure m|B.

For measurable subsets of the space T (more precisely, for equivalence classes of T ), we define

a metric by the formula

�(B,C) := μ(B
C) ∀B,C ∈ T ,

where B
C denotes the symmetric difference of sets B and C.

In what follows, the continuity of mappings from S to T is understood in the sense of this

metric.

Proposition 1. For any s ∈ S, let m(s) ∈ M(T,E), A(s) ∈ T , and m̂(s) := m(s)|A(s).

Assume that the mappings m : S → M(T,E) and A : S → T are continuous. Then the mapping

m̂ : S → M(T,E) is continuous.

Proof. Let f(s)(·) ∈ L1(T,E) be the density of the vector measure m(s) for any s ∈ S. We

fix a point s0 ∈ S and an arbitrary ε > 0. By the absolute continuity of the Lebesgue integral,

there exists δ = δ(ε) > 0 such that, for any A ∈ T with μ(A) < δ, the following inequality

holds:

∫
A
‖f(s0)(t)‖dμ(t) < ε/3. In turn, there exists a neighborhood U(s0) ⊂ S of the point s0

such that, by the continuity of the measures s → m(s) and the sets s → A(s), the inequalities
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‖f(s)(·)− f(s0)(·)‖L1 < ε/3 and μ(A(s)
A(s0)) < δ hold for all s ∈ U(s0). As a result, we have

‖m̂(s)− m̂(s0)‖ =

∫
T

‖f(s)(t)χ
A(s)

(t)− f(s0)(t)χA(s0)
(t)‖dμ(t)

≤ 2

∫
T

‖f(s)(t)− f(s0)(t)‖dμ(t) +
∫

A(s)�A(s0)

‖f(s0)(t)‖dμ(t) < ε,

which completes the proof of the proposition. �

2. SOME COROLLARIES OF THE LYAPUNOV THEOREM

Recall the statement of the Lyapunov theorem on vector measures [1].

Theorem 1 (A.A. Lyapunov). Let (T,T , μ) be a compact topological space with a finite

nonnegative nonatomic Radon measure μ, and let f : T → R
n be a Lebesgue integrable vector

function. We define a vector measure m : T → R
n as follows:

m(A) :=

∫
A

f(t)dμ(t), A ∈ T .

Then the set m(T ) defined by the formula

m(T ) := {m(A) | A ∈ T }

is convex and compact in R
n.

Note that, for any measurable set D0 ⊂ T of measure zero (for instance, for the empty set), we

have m(D0) = 0 ∈ m(T ). Similarly, m(T ) ∈ m(T ). Consequently, by the Lyapunov theorem, the

segment [0,m(T )] belongs to the convex compact set m(T ). Therefore, for any α ∈ [0, 1], we have

αm(T ) ∈ m(T ). Thus, we obtain the following result.

Corollary 1. Let f : T → R
n be a Lebesgue integrable vector function. Then, for any α ∈ [0, 1],

there exists a measurable set Aα ⊂ T such that m(Aα) = αm(T ), i.e.,

α

∫
T

f(t)dμ(t) =

∫
Aα

f(t)dμ(t).

Note that it is not possible to directly extend the Lyapunov theorem to arbitrary countably

additive nonatomic vector measures without density and with values in an infinite-dimensional

space.

The known generalization of the Lyapunov theorem for a vector measure with density and with

values in the separable Banach space E (see [6]) implies that, in this case, only the closure of the

set of all vectors m(D) corresponding to all possible measurable subsets D of T is a convex compact

set in E.

Therefore, similarly to Corollary 1, from the generalized Lyapunov theorem, we obtain only an

inequality; i.e., the following result holds.
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Corollary 2. Let f : T → E be a Bochner integrable function. Then, for any ε > 0 and any

α ∈ [0, 1], there exists a measurable set Aα ⊂ T such that∥∥∥∥α ∫
T

f(t)dμ(t)−
∫
Aα

f(t)dμ(t)

∥∥∥∥ < ε.

Combining Corollaries 1 and 2, we obtain the following result.

Corollary 3. Let f : T → E be a Bochner integrable function, and let g: T → R
p be a Lebesgue

integrable function. We define vector measures m : T → E and m0 : T → R
p as follows:

m(A) :=

∫
A

f(t)dμ(t), m0(A) :=

∫
A

g(t)dμ(t) ∀A ∈ T . (2.1)

Then, for any ε > 0 and any α ∈ [0, 1], there exists a set Aα ∈ T such that ‖m(Aα)−αm(T )‖ < ε

and m0(Aα) = αm0(T ), i.e., ∥∥∥∥α ∫
T

f(t)dμ(t)−
∫
Aα

f(t)dμ(t)

∥∥∥∥ < ε, (2.2)

α

∫
T

g(t)dμ(t) =

∫
Aα

g(t)dμ(t). (2.3)

Note that Corollary 3 says nothing about the relationship between the measurable sets {Aα}α∈I
besides the fact that they satisfy relations (2.2) and (2.3). We would like this family of sets to be

increasing.

3. SEGMENTS AND ε-SEGMENTS

Definition 1 [8]. Let f ∈ L1(T,E), and let m : T → E be the vector measure with density f .

An increasing family of sets {Aα}α∈I ⊂ T such that A0 = ∅ and A1 = T is called:

(1) a segment for the measure m if and only if, for any α ∈ I, m(Aα) = αm(T );

(2) an ε-segment for the measure m if and only if, for any α ∈ I, ‖m(Aα)− αm(T )‖ < ε.

In what follows, we use the following theorem proved in [9].

Theorem 2 [9, Theorem 15]. Let f ∈ L1(T,E) and g ∈ L1(T,Rp), and let m : T → E and

m0 : T → R
p be the corresponding vector measure (see formulas (2.1)). Then, for any ε > 0, there

exists a family {Aα}α∈I ⊂ T which is an ε-segment for the vector measure m and is a segment for

the vector measure m0.

In what follows, we need three lemmas which are either proved in [9] or are small modifications

of the statements in [9].

Lemma 1 [8; 9, Proposition 18]. Let S be a compact Hausdorff topological space, let {ms}s∈S ⊂
M(T,E) be a set of vector measures continuously depending on the parameter s ∈ S, and let

m0 ∈ M(T,Rp). Then, for any ε > 0, there exists a family {Aα}α∈I ⊂ T which is a segment for

the measure m0 and is an ε-segment for any vector measure ms, s ∈ S.

Note that we can construct several different ε-segments in T for the same vector measure

m ∈ M(T,E). In what follows, we need to find ways to pass continuously from one ε-segment
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of such a measure to another. A slight strengthening of Proposition 2 from [7] (or Proposition 19

from [9]) leads to the following result.

Lemma 2. Let m ∈ M(T,E), and let {Aα}α∈I and {Bα}α∈I be families in T each of which is

an ε-segment for the measure m and is a segment for the measure μ. Then there exists a continuous

mapping D : I × I → T with the following properties:

(1) D(0, α) = Aα and D(1, α) = Bα for any α ∈ I;

(2) for any z ∈ I, the family {D(z, α)}α∈I is an ε-segment for both the measure m and the

measure μ;

(3) μ(D(z1, α1)
D(z2, α2)) ≤ (|z1 − z2|+ 2|α1 − α2|)μ(T ), α1, α2, z1, z2 ∈ I.

Proof. Since the families {Aα}α∈I and {Bα}α∈I are segments for the measure μ, the mappings

α → χAα(·) and α → χBα(·) from I to L1(T,R1) are continuous. Hence, the mappings α → m(Aα)

and α → m(Bα) are continuous. Consequently, defining

a := max{max
α∈I

‖m(Aα)− αm(T )‖, max
α∈I

‖m(Bα)− αm(T )‖},

we find that a < ε. Let η be a positive number such that a+ 2η < ε.

For any α ∈ I, we define a vector measure mα as follows:

mα := (m|Aα
,m|Bα

, μ|Aα
, μ|Bα

) ∈ M(T,E × E × R
1 × R

1). (3.1)

By Proposition 1, the mapping α → mα is continuous. In view of Lemma 1, there exists a family

{Cz}z∈I which is an η-segment for each measure of the family {mα}α∈I and is a segment for the

measure μ. We define

D(z, α) := (Bα ∩ Cz) ∪ (Aα ∩ (T \ Cz)), z, α ∈ I, (3.2)

and show that D(z, α) are the desired sets. By construction, it follows from (3.2) that property (1)

holds. By the definition of an η-segment, for the family {Cz}z∈I , we have

‖mα(Cz)− zmα(T )‖ < η. (3.3)

Therefore,

‖mα(T \ Cz)− (1− z)mα(T )‖ < η. (3.4)

Inequality (3.3) implies, in particular, that, for the second component in (3.1),

‖m(Bα ∩ Cz)− zm(Bα)‖ < η.

Since the family {Bα}α∈I is an ε-segment for the measure m, we have

‖m(Bα ∩ Cz)− zαm(T )‖ ≤ ‖m(Bα ∩Cz)− zm(Bα)‖+ ‖zm(Bα)− zαm(T )‖ < η + za. (3.5)

Similarly, we deduce from (3.4) that, for the first component in (3.1),

‖m((T \ Cz) ∩Aα)− (1− z)αm(T )‖ < η + (1− z)a. (3.6)

Summing inequalities (3.5) and (3.6), we find that, for any α ∈ I,

‖m(D(z, α)) − αm(T )‖ ≤ 2η + a < ε.
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Similarly, we deduce from inequalities (3.3) and (3.4) that, for the last two components in (3.1),

|μ(D(z, α)) − αμ(T )| < ε.

To prove the continuity of the mapping D : I × I → T (more precisely, property (3)), we note that

D(z, α)
D(y, α) = (Aα
Bα) ∩ (Cz
Cy).

Since the family {Cz}z∈I is a segment for the measure μ, for z1 > z2, we have Cz1 ⊃ Cz2 and,

therefore, Cz1
Cz2 = Cz1 \ Cz2 . As a result, we obtain

μ(D(z1, α)
D(z2, α)) ≤ μ(Cz1
Cz2) ≤ |z1 − z2|μ(T ).

On the other hand, it follows from (3.2) that

μ(D(z, α1)
D(z, α2)) =

∫
T

∣∣χ
D(z,α1)

(t)− χ
D(z,α2)

(t)
∣∣dμ(t)

=

∫
T

∣∣χ
Bα1∩Cz

(t) + χ
Aα1∩(T\Cz)

(t)− χ
Bα2∩Cz

(t)− χ
Aα2∩(T\Cz)

(t)
∣∣dμ(t)

≤
∫
T

∣∣χ
Bα1

(t)− χ
Bα2

(t)
∣∣χ

Cz
(t)dμ(t) +

∫
T

∣∣χ
Aα1

(t)− χ
Aα2

(t)
∣∣χ

T\Cz
(t)dμ(t)

≤ μ(Aα1
Aα2) + μ(Bα1
Bα2) ≤ 2|α1 − α2|μ(T ).

Summing these inequalities, we obtain property (3). �

Lemma 3 [9, Theorem 17]. Let {mj}∞j=1 ⊂ M(T,E), let m0 = μ, and let vector measures m̃j

be defined as follows:

m̃j := (m0,m1, . . . ,mj) : T → R
1 × E × . . . × E ∀j = 0, 1, 2, . . . .

Then, for any ε > 0, there exists a continuous mapping D : [0,∞) × I → T with the following

properties:

(1) for any z ∈ [0,∞), the family {D(z, α)}α∈I is an ε-segment for the measure m̃j with j = [z];

(2) μ(D(z1, α1)
D(z2, α2)) ≤ (|z1 − z2|+ 2|α1 − α2|)μ(T ) ∀α1, α2 ∈ I, z1, z2 ∈ [0,∞).

Proof. We fix ε > 0. By Theorem 2, for any j = 0, 1, 2, . . ., there exists a family {D(j, α)}α∈I
which is an ε-segment for the vector measure m̃j and is a segment for the measure μ. To extend this

family to values {D(z, α)}α∈I defined for all z ∈ [0,∞), for any j = 0, 1, 2, . . ., we apply Lemma 2 to

the families {D(j, α)}α∈I and {D(j+1, α)}α∈I which are ε-segments for the vector measure m̃j and

are segments for the measure μ. By this lemma, there exists a continuous mapping Cj : I × I → T
connecting these families. Then we define the mappings D(z, α) := Cj(z − [z], α), z ∈ [j, j + 1),

which obviously have properties (1) and (2). �
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4. COVERS AND PARTITIONS

In what follows, we assume that S = (S, d) is a separable metric space with metric d. An

open cover of the metric space (S, d) is a family {Vλ}λ∈Λ ⊂ S of nonempty open sets such that⋃
λ∈Λ Vλ = S and Vλ �= S for any λ ∈ Λ.

An open cover {Vn}∞n=1 of the separable metric space (S, d) is called locally finite if, for any

point s0 ∈ S, there exists a neighborhood U(s0) such that Vn ∩U(s0) �= ∅ only for a finite number

of indices n ∈ N.

We need the following property of open covers.

Lemma 4. Let {Vλ}λ∈Λ ⊂ S be a locally finite cover of the metric space (S, d). Then there

exists a locally finite cover {Wλ}λ∈Λ of the space (S, d) such that W λ ⊂ Vλ for any λ ∈ Λ, where

Wλ is the closure of the set Wλ.

Proof. For any s ∈ S, we define Λs := {λ ∈ Λ | s ∈ Vλ}. Since the cover {Vλ}λ∈Λ is locally

finite, any set Λs is finite and nonempty. For any λ ∈ Λ, we define

Sλ := {s ∈ Vλ | d(s, S \ Vλ) = max
ν∈Λs

d(s, S \ Vν)}.

Thus, we associate any point s ∈ S with sets Vλ containing this point together with the largest

ball. As a result, we have: (i) for any s ∈ S, there exists λ ∈ Λ such that s ∈ Sλ; (ii) Sλ ⊂ Vλ for

any λ ∈ Λ.

We fix an arbitrary λ0 ∈ Λ and consider an arbitrary point s1 ∈ S \ Vλ0 . By the definition

of a cover, there exists λ1 ∈ Λ such that s1 ∈ Vλ1 . Therefore, there exists ε > 0 such that

B3ε(s1) ⊂ Vλ1 . We show that Bε(s1) ∩ Sλ0 = ∅. If this is not the case, then there exists a point

s2 ∈ Bε(s1) ∩ Sλ0 . Therefore, B2ε(s2) ⊂ B3ε(s1) ⊂ Vλ1 . Consequently, λ1 ∈ Λs2 and

d(s2, S \ Vλ0) ≤ d(s2, s1) ≤ ε < 2ε ≤ d(s2, S \ Vλ1),

which contradicts the inclusion s2 ∈ Sλ0 . Thus, we have shown that any point s1 ∈ S \ Vλ0

has a neighborhood not intersecting Sλ0 . Hence, Sλ0 ⊂ Vλ0 . Consider the closed sets Sλ0 and

Uλ0 := S \Vλ0 . As we have just shown, they are disjoint. Since any metric space is a normal space,

there exist disjoint neighborhoods U(Sλ0) and U(Uλ0) of the sets Sλ0 and Uλ0 , respectively. Define

Wλ0 := U(Sλ0). Then, by construction, Wλ0 ⊂ S \ U(Uλ0) ⊂ Vλ0 . In addition, the set S \ U(Uλ0)

is closed. Consequently, Wλ0 is an open subset of Vλ0 contained in Vλ0 together with its closure.

Since, for any s ∈ S, there exists λ ∈ Λ such that s ∈ Sλ ⊂ Wλ, the required cover {Wλ}λ∈Λ of

the space S is constructed. �

A sequence of continuous functions pn : S → I, where I = [0, 1] and n ∈ N, is called a partition

of unity subordinate to a locally finite open cover {Vn}∞n=1 of the space S if supppn ⊂ Vn for any

n ∈ N and
∑∞

n=1 pn(s) = 1 for any s ∈ S. Note that this sum contains only a finite number of

nonzero terms, which follows from the local finiteness of the cover {Vn}∞n=1. We also recall that

supp f is the closure of the set {s ∈ S | f(s) > 0}.
A measurable partition of the space T is a sequence {An}∞n=1 ⊂ T such that Ai ∩ Aj = ∅ for

∀i �= j and
⋃∞

n=1 An = T .

If {An(s)}∞n=1 is a measurable partition of the space T depending on the parameter s ∈ S and

if the mappings An : S → T are continuous for any n ∈ N, we say that {An(s)}∞n=1 is a continuous

family of measurable partitions of the space T .

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 303 Suppl. 1 2018



SOME PROPERTIES OF VECTOR MEASURES S191

A family {An(s)}∞n=1 of measurable partitions of the space T is called finite if, for any s0 ∈ S,

the measurable partition {An(s0)}∞n=1 is finite, i.e., μ(An(s0)) > 0 for a finite number of indices

n ∈ N and An(s0) = ∅ for the remaining indices n.

The following remarkable theorem was proved in [9].

Theorem 3 [9, Theorem 18]. Suppose that {Vn}∞n=1 is a locally finite open cover of the metric

space S, {pn(·)}∞n=1 is a partition of unity subordinate to this cover, a sequence {mn,s}∞n=1 of vector

measures with densities (i.e., {mn,s}∞n=1 ⊂ M(T,E)) is given for any s ∈ S, and the mapping

mn,· : S → E is continuous for any n ∈ N. Then, for any δ > 0, there exists a finite continuous

family {An(s)}∞n=1 ⊂ T of measurable partitions of the space T such that, for any s ∈ S,

∥∥∥ ∞∑
n=1

mn,s(An(s))−
∞∑
n=1

pn(s)mn,s(T )
∥∥∥ < δ,

|μ(An(s))− pn(s)μ(T )| < δ ∀n ∈ N.

Our goal is to give a generalization of this theorem important for applications.

5. MAIN RESULT

Theorem 4. Suppose that {Vn}∞n=1 is a locally finite open cover of the metric space S,

{pn(·)}∞n=1 is a partition of unity subordinate to this cover, a sequence {mn,s}∞n=1 of vector measures

with densities (i.e., {mn,s}∞n=1 ⊂ M(T,E)) is given for any s ∈ S, and the mapping mn,· : S → E

is continuous for any n ∈ N. Then, for any δ > 0, there exists a finite continuous family

{An(s)}∞n=1 ⊂ T of measurable partitions of the space T such that :

(1) for s ∈ S and n ∈ N, if μ(An(s)) > 0, then pn(s) > 0;

(2) for any s ∈ S,
∞∑
n=1

‖mn,s(An(s))− pn(s)mn,s(T )‖ < δ, (5.1)

∞∑
n=1

|μ(An(s))− pn(s)μ(T )| < δ, (5.2)

lim
s′→s

∞∑
n=1

μ(An(s
′)
An(s)) = 0. (5.3)

Proof. Let fn(s)(·) ∈ L1(T,E) be the corresponding densities of the vector measures mn,s :

T → E. By the assumption of the theorem, for any n ∈ N, the mapping fn : S → L1(T,E) is

continuous. For any s ∈ S, we define

Ns := {n ∈ N | pn(s) > 0}.

For any n ∈ N, let hn : S → I be a continuous function such that hn(s) = 1 for s ∈ supp pn and

supphn ⊂ Vn. Define r(s) :=
∑∞

n=1 hn(s). In view of the local finiteness of the cover {Vn}∞n=1,

for any s ∈ S, the cardinality of the set Ns (denoted by card{Ns}) is finite. More precisely,

card{Ns} ≤ r(s) < ∞.

We define functions f̃n : S → L1(T,R1 × E) as follows: f̃n(s)(·) := (1, fn(s)(·)).
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For any n ∈ N and any s ∈ S, we define a function kn(s) : T → L1(T,R1 × E) as follows:

kn(s)(t) := r(s)hn(s)f̃n(s)(t), t ∈ T. (5.4)

Obviously, r(s) ≥ 1 for any s ∈ S and the mappings r : S → R
1 and kn : S → L1(T,R1 × E) are

continuous. For any s0 ∈ S, we define

Us0 :=
⋂

n∈Ns0

{
s ∈ S

∣∣pn(s) > 0, ‖fn(s)− fn(s0)‖L1 <
δ

16r(s0)
, 3r(s) < 4r(s0)

}
. (5.5)

Clearly, the family {Us}s∈S is an open cover of the metric space S. By virtue of the paracompactness

of the space S and Lemma 4, there exists a sequence of continuous functions ri : S → I such

that the sequence {int supp ri}∞i=1 is a locally finite subcover of the cover {Us}s∈S and the sets

W i := {s ∈ S | ri(s) = 1} cover the space S. Therefore, there exist points si ∈ S such that

W i ⊂ Usi for any i ∈ N. We define the functions uj ∈ L1(T,R1 × E), j ∈ N, by the formula

uj(t) :=

{
kn(si)(t) if j = 2i3n,

0 otherwise.
(5.6)

Using these functions as densities, we define vector measures mj(A) by the formula

mj(A) :=

∫
A
uj(t)dμ(t), j ∈ N,

and let m0(A) = μ(A) for A ∈ T . We also define vector measures m̃j as follows:

m̃j := (m0,m1, . . . ,mj), j = 0, 1, 2, . . . .

By Lemma 3, for the sequence of vector measures {mj}∞j=0 , there exists a continuous mapping

D : [0,∞) × I → T with the following properties:

(1) for any z ∈ [0,∞), the family {D(z, α)}α∈I is a
δ

4
-segment for the measure m̃j with j = [z];

(2) μ(D(z1, α1)
D(z2, α2)) ≤ (|z1 − z2|+ 2|α1 − α2|)μ(T ) if α1, α2 ∈ I and z1, z2 ∈ [0,∞).

We define the function τ : S → R
1
+ by the formula

τ(s) :=

∞∑
n, i=1

ri(s)hn(s) 2
i 3n. (5.7)

In view of the local finiteness of the covers {supp ri}∞i=1 and {Vn}∞n=1 of the space S, the sum in

formula (5.7) is finite for any s ∈ S and the function τ : S → R
1
+ is continuous.

Define the following family of measurable sets in T :

A(s, α) := D(τ(s), α), s ∈ S, α ∈ I. (5.8)

From the above and formula (5.8), we deduce that the mapping A : S × I → T is continuous and,

for any s ∈ S, the family {A(s, α)}α∈I is a
δ

4
-segment for the vector measure m̃j with j = [τ(s)].

In addition, for any s1, s2 ∈ S and any α1, α2 ∈ I, we have

μ(A(s1, α1)
A(s2, α2)) ≤ (|τ(s1)− τ(s2)|+ 2|α1 − α2|)μ(T ).
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We fix a point s ∈ S. To estimate τ(s) and find j such that j ≤ [τ(s)], we choose an index n ∈ Ns

(i.e., an index n such that hn(s) = 1) and an index m ∈ N such that s ∈ Wm ⊂ Usm. Hence,

rm(s) = 1 and, by the definition of the set Usm (see (5.5)), we have n ∈ Nsm, i.e., pn(sm) > 0.

Consequently, hn(sm) = 1. This and (5.7) yield τ(s) ≥ rm(s)hn(s)2
m3n = 2m3n. Thus, choosing

j = 2m3n, we obtain the inequality j ≤ [τ(s)], which implies that the family {A(s, α)}α∈I is a
δ

4
-segment for the vector measure m̃j. In particular, this family is a

δ

4
-segment for the vector

measure mj with j = 2m3n. In view of (5.4) and (5.6), this means that the function uj(·) =

kn(sm)(·) = r(sm)f̃n(sm)(·) is the density of the measuremj. Therefore, dividing the corresponding

inequality by r(sm) > 0, for any α ∈ I, we obtain the inequalities

|μ(A(s, α)) − αμ(T )| < δ

4r(sm)
, (5.9)

∥∥∥∥ ∫
A(s,α)

fn(sm)(t)dμ(t) − α

∫
T

fn(sm)(t)dμ(t)

∥∥∥∥ <
δ

4r(sm)
. (5.10)

In turn, for the same point s ∈ S, we have∥∥∥∥ ∫
A(s,α)

fn(s)(t)dμ(t)− α

∫
T

fn(s)(t)dμ(t)

∥∥∥∥
≤

∥∥∥∥ ∫
A(s,α)

fn(sm)(t)dμ(t) − α

∫
T

fn(sm)(t)dμ(t)

∥∥∥∥ + 2‖fn(s)(·) − fn(sm)(·)‖L1 .

Since s ∈ Usm, formula (5.5) for Usm and inequality (5.10) imply that the right-hand side of the

latter inequality is less than

δ

4r(sm)
+ 2

δ

16r(sm)
=

3δ

8r(sm)
<

δ

2r(s)
. (5.11)

Hence, ∥∥∥∥ ∫
A(s,α)

fn(s)(t)dμ(t) − α

∫
T

fn(s)(t)dμ(t)

∥∥∥∥ <
δ

2r(s)
(5.12)

for any s ∈ S, any n ∈ Ns, and any α ∈ I. Similarly, it follows from (5.9) and (5.11) that

|μ(A(s, α)) − αμ(T )| < δ

2r(s)
(5.13)

for any s ∈ S and any α ∈ I. We define z0(s) := 0, zn(s) := p1(s) + . . .+ pn(s), and

An(s) := A(s, zn(s)) \A(s, zn−1(s)). (5.14)

Obviously, property (1) holds; i.e., if pn(s) = 0, then An(s) = ∅. Since {pn(s)}∞n=1 is a locally finite

partition of unity on S, for any s ∈ S, the sequence {zn(s)}∞n=1 is nondecreasing and there exists

an index ns such that zn(s) = 1 for all n ≥ ns; i.e., the family {An(s)}∞n=1 is a finite measurable

partition of the space T such that An(s) = ∅ if n /∈ Ns. Moreover, since, for any n ∈ N, the
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function zn : S → I is continuous, the mappings s → A(s, zn(s)) are continuous from S to T . This

along with (5.14) and the inequality

μ
((

A(s1, zn(s1)) \ A(s1, zn−1(s1))
)


(
A(s2, zn(s2)) \A(s2, zn−1(s2))

))
≤ μ

(
A(s1, zn(s1))
A(s2, zn(s2))

)
+ μ

(
A(s1, zn−1(s1))
A(s2, zn−1(s2))

)
implies that the mappings An : S → T are continuous.

We show that the sets An(s) satisfy inequalities (5.1) and (5.2). From formula (5.14), the

inclusion A(s, zn−1(s)) ⊂ A(s, zn(s)), and inequalities (5.12) and (5.13) with α = zn(s) and α =

zn−1(s), we deduce that, for any n ∈ N,∥∥∥∥ ∫
An(s)

fn(s)(t)dμ(t)− pn(s)

∫
T

fn(s)(t)dμ(t)

∥∥∥∥ <
δ

r(s)
, |μ(An(s))− pn(s)μ(T )| <

δ

r(s)
.

The cardinality of the set of all indices n for which An(s) �= ∅ can be estimated as follows:

card{n | An(s) �= ∅} = card{Ns} ≤ r(s). Summing these inequalities over all n ∈ N, we take

into account only n ∈ Ns, since pn(s) = 0 and An(s) = ∅ for n /∈ Ns. As a result, we obtain

inequalities (5.1) and (5.2).

Since the cover {Vn}∞n=1 of the space S is locally finite, for any fixed point s0 ∈ S, we choose a

neighborhood U(s0) for which there exists a finite set N(s0) ⊂ N such that Vn ∩ U(s0) �= ∅ only

for n ∈ N(s0). Denoting the cardinality of the set N(s0) by r̃(s0), we have r(s) ≤ r̃(s0) < ∞ for

any s ∈ U(s0). This means that if s ∈ U(s0) and n /∈ N(s0), then pn(s) = 0, i.e., An(s) = ∅. As a

result, for any s ∈ U(s0), we have

∞∑
n=1

μ(An(s)
An(s0)) =
∑

n∈N(s0)

μ(An(s)
An(s0)).

Hence, taking into account that each mapping An : S → T is continuous (i.e., each term in this

sum tends to zero as s → s0) and the number of terms is finite for any s ∈ U(s0), we obtain

equality (5.3). �

In conclusion, we show how the finite measurable partition {An(s)}∞n=1 of the space T obtained

in Theorem 4 can be used to construct continuous mappings.

Proposition 2. Let S be a separable metric space, and let, for any s ∈ S and any n ∈ N,

An(s) be a measurable subset of the compact space T . We assume that the following relations hold :⎧⎪⎪⎨⎪⎪⎩
An1(s) ∩ An2(s) = ∅ ∀n1 �= n2, T =

∞⋃
n=1

An(s),

lim
s→s0

∞∑
n=1

μ(An(s)
An(s0)) = 0 ∀s0 ∈ S.
(5.15)

Let vn(·) ∈ L1(T,E) for any n ∈ N, and assume that there exists a function k(·) ∈ L1(T,R1
+) such

that ‖vn(t)‖ ≤ k(t) for any n ∈ N and almost every t ∈ T . Let g : S → L1(T,E) be the mapping

defined by the formula

g(s)(t) :=

∞∑
n=1

χ
An(s)

(t)vn(t), t ∈ T. (5.16)

Then the mapping g is continuous.
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Proof. Using (5.15) and (5.16), for any s, s0 ∈ S, we obtain

∫
T

‖g(s)(t) − g(s0)(t)‖dμ(t) ≤
∞∑
n=1

∫
T

∣∣∣χAn(s)
(t)− χ

An(s0)
(t)

∣∣∣ ‖vn(t)‖dμ(t)
≤

∞∑
n=1

∫
T

χ
An(s)�An(s0)

(t)k(t)dμ(t) ≤
∞∑
n=1

∫
An(s)�An(s0)

k(t)dμ(t).

It remains to note that, by (5.15), the right-hand side of this inequality tends to zero as s → s0. �

CONCLUSIONS

The obtained result makes it possible to construct a continuous mapping from a set of functions

which approximate solutions of a differential inclusion with unbounded right-hand side and values in

a Banach space to the set of solutions of this inclusion. Using such a mapping and other results, we

can generalize the class of optimization problems for which necessary conditions for the optimality

of a solution in Euler–Lagrange form can be proved.
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