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Abstract—Sharp estimates of the sampling and interpolation constants in spaces of polyno-
mials are obtained. These estimates are used to deduce asymptotically sharp estimates of the
sampling and interpolation constants for Bernstein spaces as the density of a sampling set
approaches the critical value.
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1. INTRODUCTION

The main goal of this paper is to show that the classical Bernstein estimates for equidistant
sampling and interpolation of bounded entire functions of exponential type remain optimal for
non-equidistant sampling.

1.1. Bernstein space. The Bernstein space Bσ is the space of entire functions of exponential
type σ > 0 bounded on the real axes, equipped with the uniform norm

‖f‖ := sup
x∈R

|f(x)|.

It is well known (see, e.g., [7, p. 17]) that every function f ∈ Bσ satisfies the estimate

|f(x+ iy)| ≤ ‖f‖eσ|y|, x, y ∈ R. (1.1)

Sampling at equidistant nodes in Bernstein (and other) spaces is a classical object of investiga-
tion. Consider, for simplicity, the set of integers Z. Set

‖f |Z‖ := sup
n∈Z

|f(n)|.

Then for every σ < π, there is a constant K such that the following implication holds:

f ∈ Bσ ⇒ ‖f‖ ≤ K‖f |Z‖.

Denote by Ks(Z, Bσ) the smallest possible value of K. Clearly,

Ks(Z, Bσ) := sup
f∈Bσ , f �=0

‖f‖
‖f |Z‖

.

Observe that the example f(x) = sin(πx) shows that the implication above does not hold
for σ ≥ π.

Bernstein obtained a sharp asymptotic estimate of Ks(Z, Bσ) as σ approaches the critical value π.
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ON IRREGULAR SAMPLING AND INTERPOLATION 179

Theorem A [1]. Let 0 < σ < π. Then

Ks(Z, Bσ) =
2

π
log

π

π − σ
(1 + o(1)), σ ↑ π.

See [5] and the references therein for some other estimates of the constant Ks(Z, Bσ).
Bernstein also obtained a sharp asymptotic estimate for the problem of interpolation of bounded

sequences on Z by functions f ∈ Bσ, σ > π. Given a bounded sequence {c(n), n ∈ Z}, one can
construct a function f ∈ Bσ satisfying

f(n) = c(n) (n ∈ Z), ‖f‖ ≤ K‖f |Z‖.

Here the constant K depends only on σ. Denote by Ki(Z, Bσ) the minimal K which can be used.
Theorem B [1]. Let σ > π. Then

Ki(Z, Bσ) =
2

π
log

σ

σ − π
(1 + o(1)), σ ↓ π.

In this paper we are interested in estimates of this type in the general case of irregular sampling.

1.2. Sampling and interpolation sets. Given a set Λ ⊂ R, let

‖f |Λ‖ := sup
λ∈Λ

|f(λ)|.

Definition 1.1. (i) A set Λ ⊂ R is called a sampling set for Bσ if there is a constant K
such that

‖f‖ ≤ K‖f |Λ‖ for every function f ∈ Bσ. (1.2)

(ii) A discrete set Λ ⊂ R is called an interpolation set for Bσ if for every datum {c(λ)} ∈ l∞(Λ)
there exists f ∈ Bσ such that

f(λ) = c(λ), λ ∈ Λ. (1.3)

A set Λ is said to be uniformly discrete (u.d.) if

inf
λ,λ′∈Λ, λ�=λ′

|λ− λ′| > 0.

The classical Beurling theorem characterizes u.d. sampling and interpolation sets for Bσ in terms
of the lower and upper uniform densities of Λ:

D−(Λ) := lim
l→∞

min
a∈R

#(Λ ∩ (a, a+ l))

l
, D+(Λ) := lim

l→∞
max
a∈R

#(Λ ∩ (a, a+ l))

l
.

Theorem C [2, 3]. Let Λ ⊂ R be a u.d. set.
(i) Λ is a sampling set for Bσ if and only if D−(Λ) > σ/π.
(ii) Λ is an interpolation set for Bσ if and only if D+(Λ) < σ/π.

1.3. Sampling and interpolation constants. Assume Λ is a sampling set for Bσ. We will
call the minimal constant K for which (1.2) holds the sampling constant and denote it by Ks(Λ, Bσ).
In other words,

Ks(Λ, Bσ) := sup
f∈Bσ , f �=0

‖f‖
‖f |Λ‖

.
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Now, let Λ be an interpolation set for Bσ. Banach theory implies that there is a constant K
such that for every datum {c(λ)} ∈ l∞(Λ), a function f ∈ Bσ satisfying (1.3) can be chosen with
the estimate

‖f‖ ≤ K sup
λ∈Λ

|c(λ)|.

The minimal constant K for which this holds is called the interpolation constant and denoted
by Ki(Λ, Bσ).

Assume that D−(Λ) = 1. Then, by Theorem C(i), Λ is a sampling set for Bσ, σ < π, and it is
not a sampling set for Bσ, σ ≥ π. Using the compactness property of the Bernstein space (see [7,
p. 19]), it is easy to see that the sampling constant Ks(Λ, Bσ) grows to infinity as σ approaches the
critical value π from below.

Similarly, assume that D+(Λ) = 1. Then, by Theorem C(ii), Λ is an interpolation set for Bσ,
σ > π, and it is not if σ ≤ π. The compactness property shows that the constant Ki(Λ, Bσ) grows
to infinity as σ approaches π from above.

When Λ = Z, Theorems A and B show that the sampling and interpolation constants have
precisely logarithmic growth. One may ask how fast these constants must grow in the general case
of irregular sampling.

2. RESULTS

Our main result shows that the sampling and interpolation constants always have at least
logarithmic growth as σ approaches the critical value.

In what follows we denote by C absolute positive constants.
Theorem 1. Let Λ ⊂ R be a u.d. set.
(i) If D−(Λ) = 1, then

Ks(Λ, Bσ) ≥ C log
π

π − σ
, 0 < σ < π. (2.1)

(ii) If D+(Λ) = 1, then

Ki(Λ, Bσ) ≥ C log
σ

σ − π
, π < σ < 2π. (2.2)

Statement (i) of this theorem was announced in [6], with a sketch of proof. Statement (ii) is
new. Below we present complete proofs of both results. The main step of the proof is to get sharp
estimates of the sampling and interpolation constants for complex polynomials.

Denote by Pn the space of all algebraic polynomials of degree ≤n on the unit circle T := {z ∈ C :
|z| = 1}.

Let Λ ⊂ T be a finite set such that #Λ ≥ n + 1. Then every polynomial P ∈ Pn is uniquely
determined by its values on Λ, and one may introduce the corresponding sampling constant

Ks(Λ, Pn) := sup
P∈Pn, P �=0

maxz∈T|P (z)|
maxλ∈Λ|P (λ)| .

Assume Λ ⊂ T and #Λ ≤ n + 1. Then for every datum c(λ), λ ∈ Λ, there is a polynomial
P ∈ Pn satisfying

P (λ) = c(λ), λ ∈ Λ. (2.3)

One may introduce the corresponding interpolation constant Ki(Λ, Pn) as the infimum over all K
such that for every datum c(λ), λ ∈ Λ, there exists P ∈ Pn satisfying (2.3) and

max
z∈T

|P (z)| ≤ Kmax
λ∈Λ

|c(λ)|.
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The following version of Theorem 1 for complex polynomials holds.
Theorem 2. Assume Λ ⊂ T.
(i) If #Λ ≥ n+ 1, then

Ks(Λ, Pn) ≥ C log
n

#Λ− n
. (2.4)

(ii) If #Λ ≤ n+ 1, then

Ki(Λ, Pn) ≥ C log
n

n+ 2−#Λ
. (2.5)

3. SAMPLING

In this section we prove Theorems 1(i) and 2(i).

3.1. Sampling constant for polynomials. The following result essentially goes back to
Faber (see [4, Ch. 7]):

Let U be a projector from the space C(T) onto the subspace Pn. Then ‖U‖ > C log n.
Faber’s approach is based on averaging over translations. Different versions of the result have

been obtained by this approach. We will use the following one due to Al. Privalov [8]:
For every projector U above and every family of linear functionals ψj (1 ≤ j ≤ m) in C∗(T),

there is a unit vector f in C(T) such that ‖Uf‖ > C log(n/m) and the functionals vanish on f .
Proof of Theorem 2(i). We may assume that #Λ > n + 1. Write Λ = {λ0, λ1, . . . , λl},

where l := n+m for some m ∈ N. For every f ∈ C(T) denote by P (f) the polynomial of degree n
satisfying

P (f)(λj) = f(λj), 0 ≤ j ≤ n.

Clearly, P (f) is uniquely defined, and the operator U : f → P (f) is a projector from C(T) onto Pn.
Set

ψj(f) := P (f)(λn+j), 1 ≤ j ≤ m.

By Privalov’s theorem, there is a function f ∈ C(T) satisfying

‖f‖ = 1, P (f)(λj) = 0 (n+ 1 ≤ j ≤ l), ‖P (f)‖ > C log
n

m
.

Then (2.4) follows. �
3.2. Sampling constant for trigonometric polynomials. Here we formulate an analogue

of Theorem 2(i) for trigonometric polynomials.
Let N > 0 and m ∈ N. Denote by Tm(N) the space of all trigonometric polynomials of the form

Tm(N) :=

{
ϕ : ϕ(x) =

m∑
j=−m

a(j)eiπjx/N

}
. (3.1)

Obviously, Tm(N) consists of 2N -periodic functions and Tm(N) ⊂ Bπm/N . Observe that every
2N -periodic function ϕ ∈ Bπm/N belongs to Tm(N).

Let Γ ⊂ R be a 2N -periodic set, Γ + 2N = Γ. Set Γ0 := Γ ∩ [−N,N).
Assume #Γ0 ≥ 2m+ 1. Then every ϕ ∈ Tm(N) is uniquely determined by the values on Γ, and

we may introduce the sampling constant

Ks(Γ, Tm(N)) := sup
ϕ∈Tm(N), ϕ �=0

‖ϕ‖
‖ϕ|Γ‖

.
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Proposition 3.1. Assume N > 0, m ∈ N and Γ0 ⊂ [−N,N), #Γ0 > 2m. Then

Ks(Γ, Tm(N)) ≥ C log
2m

#Γ0 − 2m
, Γ := Γ0 + 2NZ. (3.2)

It easy to check that Proposition 3.1 is equivalent to Theorem 2(i) for even n. Indeed, let Λ ⊂ T.
Write

Λ =
{
eiλ1 , . . . , eiλl

}
, −π ≤ λ1 < . . . < λl < π,

and set Γ := Γ0 + 2NZ, where

Γ0 :=

{
Nλ1

π
, . . . ,

Nλl

π

}
⊂ [−N,N).

Clearly, Γ is 2N -periodic and #Γ0 = #Λ.
Let n be an even number. Set m := n/2. Every polynomial P ∈ Pn can be written as

P (z) = zm
m∑

j=−m

a(j)zj .

By the change of variable z = eiπt/N , we see that Theorem 2(i) is equivalent to Proposition 3.1 with
m = n/2.

On the other hand, one may easily check that Theorem 2(i) for odd n follows from the result
for even n.

3.3. Sampling in Bσ. Here we prove Theorem 1(i). The proof is based on Proposition 3.2
below.

Let 0 < σ < π, τ be a positive integer and Γ0 ⊂ [−τ, τ ], #Γ0 ≤ 2τ . Consider the union of Γ0

with the rays x ≥ τ and x ≤ −τ . It easily follows from Beurling’s Theorem C(i) that the set
Γ0 ∪ {x : |x| ≥ τ} is a sampling set for Bσ, for every σ > 0. We show that if the number π − σ is
small and the number τ is large, then the corresponding sampling constant must be large.

Proposition 3.2. Let τ ∈ N and 0 < σ < π. For every set Γ0 ⊂ [−τ, τ), #Γ0 ≤ 2τ, we have

Ks
(
Γ0 ∪ {x : |x| ≥ τ}, Bσ

)
≥ C log

π

π − σ +Cτ−1/3
. (3.3)

When τ is sufficiently large,

τ ≥ 1

π − σ
, (3.4)

inequality (3.3) implies
Corollary 3.1. Assume 0 < σ < π and τ ∈ N satisfy (3.4). Then for every set Γ0 ⊂ [−τ, τ),

#Γ0 ≤ 2τ, we have

Ks
(
Γ0 ∪ {x : |x| ≥ τ}, Bσ

)
≥ C log

π

π − σ
. (3.5)

Proof of Proposition 3.2. Set N := τ −√
τ and Γ := Γ0 + 2NZ. To prove the proposition,

it suffices to construct a function g ∈ Bσ satisfying the conditions

‖g|Γ0‖ ≤ 1, |g(x)| ≤ 1 (|x| ≥ τ), |g(x0)| = C log
1

π − σ + Cτ−1/3
, (3.6)

with some x0 ∈ [−N,N).
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We may assume that σ > π/2 and that the number τ is so large that

τ

N
< 1 + 2τ−1/2

and that we can find an integer m satisfying

1 ≤ σ − 2τ−1/3 ≤ πm

N
≤ σ − τ−1/3. (3.7)

Then the following inequality holds:

m

τ −m
=

πm/N

πτ/N − πm/N
≥ 1

π − σ + Cτ−1/3
. (3.8)

Recall that #Γ0 ≤ 2τ . Using Proposition 3.1 and (3.8), we get

Ks(Γ, Tm(N)) ≥ C log
2m

2τ − 2m
≥ C log

1

π − σ + Cτ−1/3
. (3.9)

Choose now an exponential polynomial H ∈ Tm(N) which is small on Γ and has a large norm,
and let x0 ∈ [−N,N) be its maximum modulus point. By (3.9), we may assume that

‖H|Γ‖ ≤ 1, |H(x0)| = ‖H‖ = C log
1

π − σ + Cτ−1/3
. (3.10)

It follows that
‖H‖ ≤ C log τ. (3.11)

Set

h(x) :=
sinx

x
and g(x) := H(x)h

(
τ−1/3(x− x0)

)
. (3.12)

By the right inequality in (3.7),
g ∈ Bπm/N+τ−1/3 ⊂ Bσ.

From (3.10) we see that the first and last conditions in (3.6) are true.
The distance from x0 to the points ±τ is at least

√
τ , which gives

∣∣h(τ−1/3(x− x0)
)∣∣ ≤ 1

τ−1/3
√
τ
= τ−1/6, |x| ≥ τ.

So, by (3.11),

|g(x)| ≤ ‖H‖
∣∣h(τ−1/3(x− x0)

)∣∣ ≤ Cτ−1/6 log τ < 1, |x| ≥ τ,

provided τ is sufficiently large. This completes the proof of (3.6). �
We also need a simple
Lemma 3.1. Assume that Λ ⊂ R and τ ∈ N.
(i) Let D−(Λ) = 1. Then there is an interval I = [a − τ, a + τ), a ∈ R, which contains at

most 2τ points of Λ.
(ii) Let D+(Λ) = 1. Then there is an interval I = [a − τ, a + τ), a ∈ R, which contains at

least 2τ points of Λ.
Proof. Indeed, if statement (i) is not true, then every interval [−τ, τ) + 2kτ , k ∈ Z, contains

at least 2τ + 1 points of Λ. It easily follows that D−(Λ) ≥ (2τ + 1)/(2τ) > 1. A contradiction.
The proof of statement (ii) is similar. �
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Statement (ii) of this lemma will be used later in the proof of Theorem 1(ii).
Proof of Theorem 1(i). Assume that σ < π and D−(Λ) = 1. Fix any integer τ satisfy-

ing (3.4). By Lemma 3.1(i), there is an interval I of length 2τ containing at most 2τ points of Λ.
We may assume that I = [−τ, τ). Set Γ0 := Λ ∩ [−τ, τ). Clearly,

Ks(Λ, Bσ) ≥ Ks
(
Γ0 ∪ {x : |x| ≥ τ}, Bσ

)
.

The result now follows from (3.5). �

4. INTERPOLATION

In this section we prove statements (ii) of Theorems 1 and 2. The proofs are more technical
than those of statements (i).

Let [a] denote the integer part of a positive number a. We say that a u.d. set Λ pos-
sesses a uniform density D(Λ) if its upper and lower uniform densities coincide, and write
D(Λ) = D−(Λ) = D+(Λ).

Given N > M > 1, introduce two additional constants

ρ :=

(
N

M

)1/3

, r := ρ−√
ρ. (4.1)

We will assume that N and N/M are so large that ρ > 64 and

N

ρ
> 30Mρ. (4.2)

Clearly, the following estimates hold:

ρ < r + C
√
r, log

N

M
> C log r. (4.3)

4.1. Auxiliary lemmas. Recall that we denote by C absolute constants.
Lemma 4.1. Given a set Γ′

0 ⊂ [−ρ, ρ), #Γ′
0 ≤ 2ρ+ 1, there is a function g ∈ Bπ and a point

x0 ∈ [−r, r) such that

‖g|Γ′
0
‖ ≤ 1, |g(x0)| ≥ C log r, |g(x)| ≤ C

(|x| − r)3
(|x| ≥ ρ). (4.4)

Proof. Set
Γ′ := Γ′

0 + 2rZ.

Then

D(Γ′) ≤ #Γ′
0

2r
≤ 2ρ+ 1

2r
≤ 1 +

C√
r
. (4.5)

Set
w := π − 4r−1/9.

From (4.5), we see that π − w/D(Γ′) < Cr−1/9.
Observe that the set D(Γ′)Γ′ := {D(Γ′)γ : γ ∈ Γ′} has density 1. Hence, using Theorem 1(i)

with σ = w/D(Γ′), we obtain

Ks(Γ
′, Bw) = Ks

(
D(Γ′)Γ′, Bw/D(Γ′)

)
≥ C log

π

π −w/D(Γ′)
≥ C log r.
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Using the last inequality, we may find a function g1 ∈ Bw and a point x0 satisfying

‖g1|Γ′‖ ≤ 1, ‖g1‖ = C log r, |g1(x0)| ≥
‖g1‖
2

. (4.6)

We may assume that x0 ∈ [−r, r). Indeed, if x0 ∈ [(2j − 1)r, (2j + 1)r), we consider the function
g1(x+ 2jr). Observe that |g1(x+ 2jr)| ≤ 1 for x ∈ Γ′, due to the 2r-periodicity of Γ′.

Finally, set
g(x) := g1(x)h

4
(
r−1/9(x− x0)

)
,

where h is defined in (3.12). Clearly, g belongs to Bw+4r−1/9 = Bπ. By (4.6), it satisfies the first
two inequalities in (4.4).

When |x| ≥ ρ, we have
|x− x0| ≥ |x| − r ≥ ρ− r ≥

√
r,

and so |x− x0|4 ≥
√
r(|x| − r)3. This yields

|g(x)| ≤ ‖g1‖
∣∣h(r−1/9(x− x0)

)∣∣4 ≤ C log r

(
r1/9

|x− x0|

)4

≤ C

(|x| − r)3
, |x| ≥ ρ,

which completes the proof. �
Lemma 4.2. Given a set Γ0 ⊂ [−N,N), #Γ0 ≤ 2N + 1, there are at least k := [8M ] disjoint

intervals Ij ⊂ (−N,N) such that the length of each interval is equal to 2ρ and #(Γ0 ∩ Ij) ≤ 2ρ+ 1
for every j.

Proof. Clearly, the interval [−N,N) contains at least [N/ρ] − 1 disjoint intervals of length 2ρ.
Assume that at most k − 1 of these intervals contain ≤ 2ρ+ 1 points of Γ0. Then there are at least
[N/ρ] − k intervals containing > 2ρ+ 1 points, so that

#Γ0 > (2ρ+ 1)

(
N

ρ
− 8M − 1

)
= 2N +

N

ρ
− (8M + 1)(2ρ + 1).

By (4.2), this inequality implies #Γ0 > 2N + 1. A contradiction. �
Recall that the space Tm(N) is defined in (3.1).
The next lemma plays a key role in the proof of Theorem 2(ii). We construct a real trigonometric

polynomial ϕ which is small on a given set Γ0, while ϕ is large and has prescribed signs on a
sufficiently large set Q.

Lemma 4.3. Assume Γ0 ⊂ [−N,N) and #Γ0 ≤ 2N + 1. Then there is a k-point set Q =
{x1, . . . , xk} ⊂ [−N,N), k := [8M ], such that for every function ψ : Q → {−1, 1} there is a real
function ϕ ∈ TN (N) satisfying

‖ϕ|Γ0‖ ≤ 1, ψ(xj)ϕ(xj) > C log r (j = 1, . . . , k). (4.7)

Proof. Let Ij := [aj − ρ, aj + ρ), where −N + ρ ≤ a1 < . . . < ak ≤ N − ρ, be the intervals
from Lemma 4.2. Set Jj := [aj − r, aj + r), j = 1, . . . , k.

For every j, 1 ≤ j ≤ k, set Γj := Γ0 ∩ Ij. By Lemma 4.1, there is a function gj ∈ Bπ and
a point xj ∈ Jj such that

|gj(xj)| ≥ C log r (4.8)

and

‖gj |Γj‖ ≤ 1, |gj(x)| ≤
C

(|x− aj | − r)3
(|x− aj| ≥ ρ). (4.9)

It is easy to check that we may assume that gj is real on R.
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Fix any function ψ : {x1, . . . , xk} → {−1, 1}. Since both gj and −gj satisfy the conditions above,
we may assume that ψ(xj)gj(xj) > 0, j = 1, . . . , k.

Set

g(x) :=
k∑

j=1

gj(x).

Then g is real and g ∈ Bπ.
Recall that ρ− r >

√
r. In what follows we will use the simple inequality

|x− aj | − r >
√
r|l − j| for every x ∈ Jl, l �= j.

Using this and (4.9), one may easily get the estimate

‖g|Γ0‖ ≤ C. (4.10)

Further, from (4.8) and (4.9), we obtain

ψ(xl)g(xl) ≥ |gl(xl)| −
∑
j �=l

|gj(xl)| > C log r −
∑
j �=l

C

r3/2|j − l|3
> C log r, l = 1, . . . , k. (4.11)

Now, assume x ≤ −N . Then, |x− aj| − r ≥ |x+N |+ j
√
r, and by (4.9),

|g(x)| ≤
k∑

j=1

C

(|x+N |+ j
√
r)3

≤ C

(|x+N |+√
r)2

.

A similar estimate hods for x ≥ N , which gives

|g(x)| ≤ C

(|x|+
√
r −N)2

, |x| ≥ N. (4.12)

Set
f(x) :=

∑
j∈Z

g(x + 2Nj).

From (4.12) it follows that this series converges uniformly on R. By (1.1), the convergence is also
uniform on compact subsets of the complex plane. It follows that f ∈ Bπ. Since f is 2N -periodic,
we conclude that f ∈ TN (N).

It follows from (4.10) and (4.12) that ‖f |Γ0‖ < C, while from (4.11) and (4.12) one can deduce
that ψ(xj)f(xj) > C log r, j = 1, . . . , k. Finally, let ϕ(x) := f(x)/C, where C := ‖f |Γ0‖. Then the
conclusions of the lemma hold. �

4.2. Interpolation in Tm(N) and Pn. Assume Γ0 ⊂ [−N,N) and #Γ0 ≤ 2m+ 1. For every
2N -periodic datum {

c(γ) : γ ∈ Γ = Γ0 + 2NZ
}
,

there is a trigonometric polynomial H ∈ Tm(N) satisfying

H(γ) = c(γ), γ ∈ Γ, and ‖H‖ ≤ K‖H|Γ‖,

where K depends only on Γ0. Denote by Ki(Γ, Tm(N)) the corresponding interpolation constant,
i.e., the smallest possible value of K.
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Proposition 4.1. Let m ∈ N and let Γ0 ⊂ [−N,N) satisfy #Γ0 < 2m. Then

Ki(Γ, Tm(N)) ≥ C log
2m

2m−#Γ0
, Γ = Γ0 + 2NZ. (4.13)

Proof. Before proceeding with the proof, let us remark that we may make several assumptions.
It is easy to see that we may assume that #Γ0 is an even number. After rescaling, we may assume
that N = #Γ0/2, so that the assumptions of Lemma 4.3 are fulfilled. Set M := m−N . Then

2m

2m−#Γ0
=

m

m−N
=

m

M
= 1 +

N

M
.

Since estimate (4.13) makes sense when the ratio 2m/(2m −#Γ0) is a large number, we may also
assume that both N and m/M are so large that estimates (4.2) and (4.3) hold.

By (4.1) and (4.3), it is easy to check that log(N/M) lies between two constants times log r.
Hence, to prove Proposition 4.1, it suffices to prove the inequality

Ki(Γ, Tm(N)) > C log r. (4.14)

Let −N < x1 < . . . < xk < N be the points from Lemma 4.3. Choose a function
ψ : {x1, . . . , xk} → {−1, 1} so that ψ(xj)ψ(xj+1) = 1 when the number #Γ ∩ (xj, xj+1) is odd
and ψ(xj)ψ(xj+1) = −1 when #Γ ∩ (xj , xj+1) is even. Let ϕ ∈ TN (N) be the function from
Lemma 4.3. Then ‖ϕ|Γ‖ ≤ 1.

Choose a datum c(γ) as follows:

c(γ) := ϕ(γ), γ ∈ Γ.

To prove (4.14), we show that every trigonometric polynomial H ∈ Tm(N) satisfying

H(γ) = c(γ), γ ∈ Γ,

must be large, ‖H‖ ≥ C log r. By (4.7), it suffices to show that

|H(xj)| ≥ |ϕ(xj)| for some j, 1 ≤ j ≤ k. (4.15)

Since H − ϕ vanishes on Γ, the following equality holds with some entire function G:

H(x) = ϕ(x) +G(x)Φ(x), Φ(x) :=
∏

γ∈Γ∩[−N,N)

sin
(
π
x− γ

2N

)
.

It is easy to check that Φ ∈ TN (N), and so G ∈ Tm−N (N) = TM (N). Then G has at most 2M
zeros on [−N,N). We may assume that G is real (otherwise, we consider ReG).

Assume (4.15) is not true, i.e., |H(xj)| < |ϕ(xj)| for every j. Then, by the construction of
function ψ, for every j, 1 ≤ j < k,

sign(G(xj)G(xj+1)) = sign

(
ϕ(xj)ϕ(xj+1)

Φ(xj)Φ(xj+1)

)
=

ψ(xj)ψ(xj+1)

sign(Φ(xj)Φ(xj+1))
= −1,

where sign(G(x)) denotes the sign of G(x). Hence, G has at least k − 1 zeros on [−N,N). This is
a contradiction, since k = [8M ]. �

We have seen that Proposition 3.1 is equivalent to Theorem 2(i). In a similar fashion, one can
check that Proposition 4.1 is equivalent to Theorem 2(ii). Therefore, Theorem 2(ii) is proved.
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4.3. Interpolation in Bσ. Here we prove Theorem 1(ii). We will deduce Theorem 1(ii) from
Proposition 4.2 below, which is an analogue of Proposition 3.2 for sampling.

It is clear that every finite set Γ0 ⊂ R is an interpolation set for every space Bσ, σ > 0. Assume
Γ0 ⊂ [−τ, τ) has ≥ 2τ points. We show that if τ is large and σ − π is small, then the interpolation
constant Ki(Γ0, Bσ) must be large.

Proposition 4.2. Let τ ∈ N. For every set Γ0 ⊂ [−τ, τ), #Γ0 ≥ 2τ, we have

Ki(Γ0, Bσ) ≥ C log
σ

σ − π + Cτ−1/3
, σ > π.

This proposition implies
Corollary 4.1. Assume σ > π and τ ∈ N satisfy

τ ≥ 1

σ − π
.

For every Γ0 ⊂ [−τ, τ), #Γ0 ≥ 2τ, we have

Ki(Γ0, Bσ) ≥ C log
σ

σ − π
.

We will need two auxiliary results.
Lemma 4.4. Assume Λ ⊂ T and #Λ ≤ n + 1. Assume a datum c(λ), maxλ∈Λ|c(λ)| = 1, is

such that

max
z∈T

|P (z)| > Ki(Λ, Pn)

2
(4.16)

for every polynomial P ∈ Pn satisfying (2.3). If a polynomial Q ∈ Pn satisfies

max
λ∈Λ

|Q(λ)− c(λ)| < 1

8
,

then

max
z∈T

|Q(z)| > Ki(Λ, Pn)

4
.

Proof. Indeed, there is a polynomial H ∈ Pn such that

H(λ) = c(λ)−Q(λ), λ ∈ Λ,

and

max
z∈T

|H(z)| < 2Ki(Λ, Pn)max
λ∈Λ

|c(λ)−Q(λ)| < Ki(Λ, Pn)

4
.

Since the polynomial P := H +Q satisfies (2.3), it also satisfies (4.16). The statement of the lemma
easily follows. �

Lemma 4.5. For every τ ∈ N there is a function R ∈ Bτ−1/6 and a constant c > 1 such that

‖R‖ < c, |R(x)| > 1

c
, |x| ≤ τ, (4.17)

|R(x+ iy)| ≤ C
eτ

−1/3|y|

(|x| − τ)3/2
, |x| ≥ N, y ∈ R, (4.18)

and ∑
j∈Z, j �=0

|R(x+ 2Nj)| ≤ Cτ−2/3, |x| ≤ N, (4.19)

where N := τ + τ2/3.
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Proof. Set α := τ−1/3/4 and denote by R the convolution between the characteristic function
of (−τ, τ) and the function αh4(αx), where h is defined in (3.12); i.e., for every complex number
z = x+ iy,

R(z) := α

τ∫
−τ

(
sin(α(z − t))

α(z − t)

)4

dt =

α(x+τ)∫
α(x−τ)

(
sin(u+ iαy)

u+ iαy

)4

du. (4.20)

Clearly, R ∈ B4α = Bτ−1/3 . It is straightforward to check that this function satisfies (4.17).
Assume x ≤ −τ − τ2/3. Since α(x+ τ) = −α(|x| − τ), we have

|R(x+ iy)| <
−α(|x|−τ)∫
−∞

| sin(iαy)|4
u4

du <
e4α|y|

(α(|x| − τ))3
< C

eτ
−1/3|y|

(|x| − τ)3/2
.

A similar estimate holds for x ≥ τ + τ2/3, which proves (4.18).
Finally, observe that for every |x| ≤ N and j ∈ Z, j �= 0, we have

|x+ 2Nj| − τ ≥ (2|j| − 1)N − τ ≥ (|j| − 1)N + τ2/3.

This estimate and (4.18) imply (4.19). �
Proof of Proposition 4.2. Set N := τ + τ2/3 and Γ := Γ0 + 2NZ.
We may assume that τ is so large that the conclusions of Lemma 4.5 hold, and that there is an

integer m satisfying

σ + τ−1/3 ≤ πm

N
≤ σ + 2τ−1/3. (4.21)

Then
m

m− τ
=

πm/N

πm/N − πτ/N
≥ 1

σ − π + Cτ−1/3
.

This estimate and (4.13) imply

Ki(Γ, Tm(N)) ≥ C log
2m

2m− 2τ
≥ C log

σ

σ − π + Cτ−1/3
. (4.22)

Fix a 2N -periodic datum c(γ) such that maxγ∈Γ0 |c(γ)| = 1 and

‖H‖ >
Ki(Γ, Tm(N))

2

for every H ∈ Tm(N) satisfying H(γ) = c(γ) for γ ∈ Γ0.
Take any function f ∈ Bσ satisfying

f(γ) =
c(γ)

R(γ)
, γ ∈ Γ0,

where R is defined in (4.20). By the second inequality in (4.17),

max
γ∈Γ0

∣∣∣∣ c(γ)R(γ)

∣∣∣∣ ≤ C.

Hence, to prove the proposition, it suffices to show that

‖f‖ ≥ C log
σ

σ − π + Cτ−1/3
. (4.23)
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Set
fR(x) :=

∑
j∈Z

(fR)(x+ 2Nj).

Using (1.1) and (4.18), we see that the series above converges uniformly on compact subsets of the
complex plane, so that fR ∈ Bσ+τ−1/3 . Since fR is 2N -periodic, (4.21) shows that fR ∈ Tm(N).
One may also deduce from (4.18) that

‖f‖ ≥ C‖fR‖. (4.24)

Let γ ∈ Γ0. Since Γ0 ⊂ [−τ, τ), from (4.19) we get the estimate

|fR(γ)− c(γ)| =
∣∣∣∣∣

∑
j∈Z, j �=0

(fR)(γ + 2Nj)

∣∣∣∣∣ ≤ C‖f‖τ−2/3. (4.25)

Assume f satisfies ‖f‖ ≥ (1/4C)τ2/3, where C is the constant in (4.25). Then, clearly, it also
satisfies (4.23).

If ‖f‖ < (1/4C)τ2/3, then (4.25) implies

max
γ∈Γ0

|fR(γ)− c(γ)| ≤ 1

4
.

By Lemma 4.4,

‖fR‖ ≥ Ki(Γ, Tm(N))

4
.

This, (4.22) and (4.24) imply (4.23). �
Proof of Theorem 1(ii). Set

τ := 1 +

[
1

σ − π

]
.

By Lemma 3.1(ii), we may assume that [−τ, τ) contains at least 2τ points of Λ. Then estimate (2.2)
is an immediate consequence of Corollary 4.1. �

5. REMARKS

5.1. Good sampling and interpolation. The size of the sampling constant is important in
the theory of reconstruction of signals from their sampled values. Loosely speaking, the sampling
provided by a set Λ is “good” if the corresponding sampling constant is not “large.” The following
question arises: Given a constant K > 0, how dense should a u.d. set Λ be to satisfy the inequality
Ks(Λ, Bσ) ≤ K?

Similarly, one may ask how sparse a set Λ should be so that Ki(Λ, Bσ) ≤ K.
The following result gives necessary density conditions for “good” sampling and interpolation.
Corollary 5.1. Suppose given constants σ > 0, K > 1 and a u.d. set Λ ⊂ R.
(i) If Ks(Λ, Bσ) ≤ K, then

D−(Λ) ≥ σ

π
(1 + e−CK).

(ii) If Ki(Λ, Bσ) ≤ K, then

D+(Λ) ≤ σ

π
(1− e−CK).
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Proof. This result follows easily from Theorem 1: Set a = D−(Λ). Then D−(aΛ) = 1. Since
Ks(Λ, Bσ) = Ks(aΛ, Bσ/a), statement (i) easily follows from (2.1). Statement (ii) follows from (2.2)
in a similar fashion. �

Observe that Beurling’s Theorem C is an easy consequence of Corollary 5.1.
On the other hand, no sufficient conditions for “good” sampling and interpolation may be given

in terms of the uniform densities of the sampling set Λ (see Theorem 3 below).

5.2. Growth of sampling and interpolation constants. As Theorems A and B prove,
the asymptotic estimates (2.1) and (2.2) in Theorem 1 are sharp.

In fact, the sampling and interpolation constants may have arbitrarily fast growth.
Theorem 3. Suppose given a function ω(σ) ↑ ∞, σ ↓ 0.
(i) There exists a u.d. set Λ, D−(Λ) = 1, such that

Ks(Λ, Bσ) ≥ ω(π − σ), σ < π.

(ii) There exists a u.d. set Λ, D+(Λ) = 1, such that

Ki(Λ, Bσ) ≥ ω(σ − π), π < σ < 2π.

Proof. Let us prove statement (ii). Fix a decreasing sequence σj such that σ1 = 2π and σj
approaches π so fast that

log
1

σj+1 − π
> Cω(σj − π), j ∈ N, (5.1)

where C is a large constant to be chosen later.
Set aj := σj+2/σj . Clearly, aj → 1 as j → ∞.
Let k(j) ∈ N be so large that

k(j) ≥ 1

σj+2 − π
.

Set

Zk := {−k,−k + 1, . . . , k − 1, k}, Λj :=
1

aj
Zk(j).

Since σjaj = σj+2, using Corollary 4.1 we obtain

Ki(Λj , Bσj ) = Ki(Zk(j), Bσj+2) ≥ C log
σj+2

σj+2 − π
.

We may assume that C in (5.1) is so large that we get

Ki(Λj , Bσj ) ≥ ω(σj+1 − π).

Now, set

Λ :=

∞⋃
j=1

(Λj +Nj),

where Nj ↑ ∞ grow so fast that D+(Λ) = 1.
Take any σ ∈ (π, 2π), and find j such that σj ≥ σ ≥ σj+1. Then we get

Ki(Λ, Bσ) ≥ Ki(Λ, Bσj ) ≥ Ki(Λj +Nj , Bσj ) = Ki(Λj , Bσj ) ≥ ω(σj+1 − π) ≥ ω(σ − π).

This proves statement (ii) of Theorem 3.
Statement (i) of Theorem 3 can be deduced from Corollary 3.1 in a similar fashion. �

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 303 2018



192 A. OLEVSKII, A. ULANOVSKII

ACKNOWLEDGMENTS

The research of the first author is supported in part by the Israel Science Foundation.

REFERENCES
1. S. N. Bernstein, “The extension of properties of trigonometric polynomials to entire functions of finite degree,”

Izv. Akad. Nauk SSSR, Ser. Mat. 12 (5), 421–444 (1948).
2. A. Beurling, “Balayage of Fourier–Stieltjes transforms,” in The Collected Works of Arne Beurling , Vol. 2: Har-
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Analysis (Birkhäuser, Boston, 1989), Ch. V, pp. 351–365.
4. L. V. Kantorovich and G. P. Akilov, Functional Analysis (Nauka, Moscow, 1977; Pergamon Press, Oxford, 1982).
5. H. C. Liu and A. J. Macintyre, “Cartwright’s theorem on functions bounded at the integers,” Proc. Am. Math.

Soc. 12, 460–462 (1961).
6. A. Olevskii and A. Ulanovskii, “On irregular sampling in Bernstein spaces,” C. R., Math., Acad. Sci. Paris

353 (1), 47–50 (2015).
7. A. M. Olevskii and A. Ulanovskii, Functions with Disconnected Spectrum: Sampling, Interpolation, Translates

(Am. Math. Soc., Providence, RI, 2016), Univ. Lect. Ser. 65.
8. Al. A. Privalov, “Growth of the degrees of polynomial bases and approximation of trigonometric projectors,”

Math. Notes 42 (2), 619–623 (1987) [transl. from Mat. Zametki 42 (2), 207–214 (1987)].

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 303 2018


