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Abstract—For a finite point set E ⊂ R
d and a connected graph G on k + 1 vertices, we define

a G-framework to be a collection of k + 1 points in E such that the distance between a pair
of points is specified if the corresponding vertices of G are connected by an edge. We consider
two frameworks the same if the specified edge-distances are the same. We find tight bounds on
such distinct-distance drawings for rigid graphs in the plane, deploying the celebrated result of
Guth and Katz. We introduce a congruence relation on a wider set of graphs, which behaves
nicely in both the real-discrete and continuous settings. We provide a sharp bound on the
number of such congruence classes. We then make a conjecture that the tight bound on rigid
graphs should apply to all graphs. This appears to be a hard problem even in the case of the
nonrigid 2-chain. However, we provide evidence to support the conjecture by demonstrating
that if the Erdős pinned-distance conjecture holds in dimension d, then the result for all graphs
in dimension d follows.

DOI: 10.1134/S0081543818080114

1. INTRODUCTION

Given a set E in R
d, the distance set of E is

Δd(E) = {|x− y| : x, y ∈ E} ⊆ R.

In [8] Erdős posed the following question: What is the minimal number of distinct distances de-
termined by a finite point set E in R

d? This has been thoroughly studied in the d = 2 case, with
the cascade of improvements to Erdős’s original |E|1/2 by authors including Moser [12], Chung [5],
Chung, Szemerédi and Trotter [6], Székely [17], Solymosi and Tóth [14] and Tardos [18] and, most
recently, the solution of the problem due to Guth and Katz [10]. In higher dimensions, a simple
variant of Erdős’s original argument gives |E|1/d in dimension d. An improvement in three di-
mensions due to Clarkson, Edelsbrunner, Guibas, Sharir and Welzl [7] proved that one obtains at
least |E|1/2 distances. The three-dimensional bound was furthered by Aronov, Pach, Sharir and
Tardos [1], who also proved a small improvement over the |E|1/d bound in dimension d. This was
then improved significantly by Solymosi and Vu [16] (see also [15]), who proved that one obtains at
least |E|2/d−2/(d(d+2)) distances, a near optimal bound for large dimensions.

The study of distance sets may be viewed as the study of congruence classes of two-point
configurations. If we consider a pair of points x, y and another pair x′, y′, then there exists a rigid
motion T such that Tx = x′ and Ty = y′ if and only if |x − y| = |x′ − y′|. A similar question can
be asked about configurations involving more points. In this paper we will consider (k + 1)-point
configurations. Suppose that k ≤ d and let x1, x2, . . . , xk+1 be linearly independent. Also assume
that y1, y2, . . . , yk+1 are linearly independent. Then the question of whether the two collections are
congruent, i.e., whether there exists a rigid motion T such that yj = Txj, 1 ≤ j ≤ k + 1, reduces
to checking whether |xi − xj| = |yi − yj| for all 1 ≤ i < j ≤ k + 1.
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Fig. 1. d = 2 and k = 3.

In the situation when k > d, significant new complications arise. Mainly that without further
assumptions on the structure of the distances provided we cannot guarantee that a rigid motion
exists. Consider a four-point configuration in the plane determined by side lengths 3, 1, 1 and 1;
here we already see multiple issues. There is sufficient flexibility to fix one edge and, by perturbing
the nonfixed points by small motions, give infinite realizations of the quadrilateral. There is no
hope of having a nice rigid map between such realizations. This particular issue can be solved by
specifying enough edges to restrict the flexibility to a finite number of realizations dependent on k
and d (the best one can hope for).

As a simple example, consider Fig. 1. The length of the dashed line is determined by the lengths
of the five solid lines. The natural dimension of the configuration space, in the sense that will be
made precise, is 5; i.e., we need five specified distances between our four points to guarantee we
have a rigid motion.

In general, the following heuristic is extremely useful in understanding the situation. Each of
the k + 1 points of our point set has d coordinates. The dimension of the Euclidean motion group
in R

d is equal to d plus the dimension of the orthogonal group. This gives the dimension of the
configuration space as

d(k + 1)− d−
(
d

2

)
= d(k + 1)−

(
d+ 1

2

)
<

(
k + 1

2

)
.

So we can specify enough of the distances to rigidify our k + 1 point configuration. This is where
we follow the approach of [4, 13]. To do this, we need to introduce minimal infinitesimal rigidity,
which allows us to bound the number of realizations and provides the necessary rigid motion. For
motivation on minimal infinitesimal rigidity, see [2, 9].

We now turn to precise definitions and statements of results. Given a finite set E ⊂ R
d of

size >k + 1, we consider (k + 1)-tuples of vectors in E where the first d + 1 vectors are affinely
independent. We will refer to such (k + 1)-tuples as nonsingular.

We say that two nonsingular (k + 1)-tuples x1, x2, . . . , xk+1 and y1, y2, . . . , yk+1 are congruent
if there exists a rotation θ and a translation τ such that

yj = θxj + τ for all j.

Let Md(k)(R
d) denote the set of the resulting equivalence classes. Let Md(k)(E) denote the set of

resulting equivalence classes where the vectors are restricted to a finite point set E.
Theorem 1.1. Let E be a finite point set in R

2. Then

|M2(k)(E)| � |E|k;

here and throughout, � is used to suppress some constant independent of the controlling parameter.
Moreover, the lower bound is, in general, best possible.
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Fig. 2. The hinge.

We could state a higher dimensional version of Theorem 1.1, but it would not be sharp, because
our argument relies to a significant extent on the case k = 1, where the needed bound is only known
in two dimensions.

We now deal with point configurations where distances between some pairs of points are specified
and others are not. An interesting and deceptively looking example is provided by the hinge (Fig. 2).
More precisely, it is reasonable to ask, if E is a finite subset of R2, whether

∣∣{(|x− y|, |x− z|) : x, y, z ∈ E
}∣∣ � |E|2; (1.1)

here and throughout, X � Y with a controlling parameter R means that given ε > 0 there exists
Cε > 0 such that X ≤ CεR

εY .
We can gain a nonoptimal bound on the hinge (and, as we will later state, general nonrigid

configurations) using pinned-distance bounds. One defines pinned distance in the plane as

Δx(E) = {|x− y| : y ∈ E}

for a pin x ∈ E. The best known pinned result for the Erdős distance problem is due to Katz and
Tardos [11]. They proved that there exists x ∈ E such that

|Δx(E)| � |E|(48−14e)/(55−16e) . (1.2)

It follows that ∣∣{(|x− y|, |x− z|) : x, y, z ∈ E
}∣∣ � |E|2(48−14e)/(55−16e) .

Taking E = Z
2 ∩ [0,

√
n ]2 shows that estimate (1.1) would be best possible. While this question

looks like a natural variant of the Erdős distance conjecture, it appears to be very difficult. In order
to study configurations of this type, we need to build a geometric mechanism for point configurations
with distance relations encoded by combinatorial graphs. This is where we now turn our attention.
The main theorem resulting from this machinery is Theorem 1.20 below.

1.1. Graph rigidity. To gain sharp bounds on the size of individual congruence classes in
the plane, we require more structure on these finite point configurations. To do so, we encode
finite point frameworks using combinatorial graphs. We use these graphs to introduce a formal
notion of rigidity (minimal infinitesimal rigidity) which allows for an Elekes–Sharir-group-action
type argument to be set up.

Let k ≥ 1 and let Kk+1 denote the complete graph with vertex set {1, . . . , k + 1} and edge
set ordered lexicographically. Let Gk+1,m be a subgraph of Kk+1 with k + 1 vertices and m edges
inheriting the order.

Definition 1.2. A (k + 1)-tuple x in R
d is a tuple

x = (x1, x2, . . . , xk+1), xj ∈ R
d.

Definition 1.3. A framework of Gk+1,m in R
d is a pair (Gk+1,m,x), where x is a (k + 1)-tuple

in R
d.
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A convenient way to specify distances is through the distance function which we now define.
Definition 1.4. Given a graph Gk+1,m, we define the distance function fGk+1,m

(x) on x =

(x1, . . . , xk+1) ∈ R
d(k+1) by

fGk+1,m
(x) =

(
|xi − xj |

)
ij∈Gk+1,m

.

We also define the distance-squared function FGk+1,m
(x) by

FGk+1,m
(x) =

(
|xi − xj |2

)
ij∈Gk+1,m

.

Definition 1.5 (graph distances). The value fGk+1,m
(x) is called the Gk+1,m-distance of x.

When we restrict our domain to some set X ⊆ R
d(k+1), we call fGk+1,m

(x) a Gk+1,m-distance on X

and we say that x is a realization of this distance in X. The set of Gk+1,m-distances on X is
fGk+1,m

(X), and we denote it by Δ(Gk+1,m,X).
Remark 1.6. The distance set Δ(Gk+1,m,X) depends on the numbering of the vertices and

the order of the edges. Whereas the order of the edges is superficial, inducing only a permutation in
the components of the Gk+1,m-distances, the numbering of the vertices can significantly change the
Gk+1,m-distance set. Consider X = {x0} × R

d × . . . × R
d and a graph G = G′ ∪ G′′ ∪ {e} where

e is a bridge between G′ and G′′. Then if we number the vertices of G′ followed by those of G′′,
we essentially capture G′′-distances only, whereas if we reverse the numbering order of the vertices
of G, we will capture G′-distances only. In the rest of this paper we take X = Ek+1 for some finite
E ⊂ R

d, so that the numbering of the vertices becomes superficial as well. In particular, the size of
the Gk+1,m-distance set is independent of the vertex numbering and edge order.

We consider the following conjecture.
Conjecture 1.7. Let E be a finite set in the plane of size n and Gk+1,m be a connected graph

on k + 1 vertices having m edges. Then, |Δ(Gk+1,m, Ek+1)| � nk.
Theorem 1.8. Conjecture 1.7 is sharp.
Our main results here concern the size of the set Δ(Gk+1,m, Ek+1). An important role is played

by properties of the graph Gk+1,m. In particular, it is essential whether the graph is rigid or not.
The key heuristic notion of this paper is that a graph Gk+1,m is rigid in R

d if once the m quan-
tities tij in

|xi − xj| = tij, ij ∈ Gk+1,m,

are specified, the other distances |xi − xj | for ij /∈ Gk+1,m can only take finitely many values as
the frameworks (Gk+1,m,x) vary over the set of nondegenerate frameworks (see generic frameworks
below for a formal definition of this nondegeneracy).

For technical reasons, we use a more precise and flexible notion of rigidity described below.
A simple example that illustrates the technical obstacles one must contend with is the following.
Consider a quadrilateral in the plane with side-lengths 1, 1, 1 and 3. This configuration is perfectly
rigid in the heuristic sense, but it is not minimally infinitesimally rigid, as the reader will see,
roughly because the rigidity in this case is not stable under small perturbations.

We now turn to precise definition.
Definition 1.9. An infinitesimal motion u = (u1, . . . , uk+1) in R

d of Gk+1,m at x is a (k + 1)-
tuple u of vectors uj ∈ R

d such that

DFGk+1,m
(x) · u = 0.

The set of infinitesimal motions in R
d of Gk+1,m at x is the kernel of DFGk+1,m

(x). Let us denote
by V(Gk+1,m,x) the set of infinitesimal motions in R

d of Gk+1,m at x. Let D(x) be the set of
infinitesimal motions in R

d of Kk+1 at x.
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FINITE POINT CONFIGURATIONS IN THE PLANE 133

Remark 1.10. It is evident that D(x) ⊆ V(Gk+1,m,x), because the system of equations
DFGk+1,m

(x) · u = 0 is included in DFKk+1
(x) · u = 0.

Definition 1.11. A framework (Gk+1,m,x) is said to be infinitesimally rigid in R
d when

V(Gk+1,m,x) = D(x).

It is unnecessarily restrictive to require of a graph that all its frameworks be infinitesimally rigid.
We will only require it of a certain family of frameworks which we call generic frameworks. Below
we define the set of generic tuples as the complement of the zero set of a certain polynomial. This
notion is independent of the graph Gk+1,m, depending only on the dimension d and the number of
vertices k + 1.

We also define the notion of independence for subsets of the edge set of Kk+1 and of maximal
independence for subsets of the edge set of Gk+1,m.

Let us use the following notation for our matrices: If aij is a matrix, (i, j) ∈ I × J , then for
B ⊆ I and C ⊆ J we define aB,C to be the submatrix aij with (i, j) ∈ B × C.

Definition 1.12. We say that x ∈ R
d(k+1) is a regular tuple of FGk+1,m

if rankDFGk+1,m

attains its global maximum at x. A framework (Gk+1,m,x) is a regular framework if x is a regular
tuple of FGk+1,m

.

Definition 1.13. A subset H of the edge set of Kk+1 is called independent in R
d with respect

to x0 ∈ R
d(k+1) if the row vectors of DFKk+1

(x0) corresponding to H are linearly independent. We
call H independent in R

d if there exists some x0 so that H is independent with respect to x0, and x0

is said to be a witness to the independence of H. We also call H a maximally independent (in R
d)

subset of edges of Gk+1,m when it is independent and it is not contained in a larger independent
edge set of Gk+1,m.

Definition 1.14. For any nonempty independent (in R
d) set H of edges of Kk+1, we define the

polynomial PH(x) to be the sum of squares of |H| × |H| minors of the submatrix of rows of DFKk+1

corresponding to edges of H. Thus,

PH(x) =
∑

A⊂{1,...,d(k+1)}
|A|=|H|

∣∣det(DFKk+1
(x)H,A)

∣∣2.

Let XH denote the zero set of PH .
We define the set of generic tuples of R

d to be the complement of the zero set X of the
polynomial P (x) defined by

P (x) =
∏

H independent

PH(x).

We call X the set of critical tuples of R
d.

Remark 1.15. We have X =
⋃

H XH , where the union is taken over all the edge sets H which
are independent, and the generic tuples are then equal to R

d(k+1) \X. Moreover, if a set H of edges
is independent, then by Definition 1.14 it is generically independent, i.e., independent with respect
to any generic x. In fact, the set of generic tuples is precisely the set of tuples that simultaneously
witness the independence of every independent edge set.

Remark 1.16. The polynomial P (x) is nontrivial, because every PH is nontrivial, since there
is at least one witness xH for the independence of H, which means that PH(xH) 
= 0. Thus X is a
proper algebraic variety of dimension

dimX ≤ d(k + 1)− 1. (1.3)
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Remark 1.17. It is immediate from the definitions that generic tuples are regular tuples. The
other implication does not hold in general.

Definition 1.18. A framework (Gk+1,m,x) is called generic in R
d if x is a generic tuple in R

d,
and it is called critical in R

d if x is a critical tuple in R
d.

Using the definitions above, we can define minimally infinitesimally rigid graphs; this is the
formal notion of rigidity we will exploit to gain sharp results.

Definition 1.19. A graph Gk+1,m is called infinitesimally rigid in R
d if all its generic frame-

works are infinitesimally rigid. It is called minimally infinitesimally rigid in R
d if it is infinitesimally

rigid and no proper subgraph (on the same vertex set) is infinitesimally rigid.

Using the notion of minimal infinitesimal rigidity, we can gain sharp results for many graphs.

Theorem 1.20. Let Gk+1,m be a minimally infinitesimally rigid connected graph on k + 1 ver-
tices having m edges and E be a point set in R

2 of size n. Then,

|Δ(Gk+1,m, Ek+1)| � nk.

This result is proved very quickly using two very helpful results from [4]. The first of these
gives a bound on the number of distinct geometric forms of configurations obtained by specifying
distances dependent on only k and d. For example, triangles with edges specified can have four
different geometric forms where we can only use reflections to map one type to another. The bound
on these allows us to focus on the richest of such cases.

The second key result of minimal infinitesimal rigidity in [4] is the fact that two configurations
(with the same geometric form) have a rigid motion that takes one to another. This allows us to
reduce the above to the result of Guth and Katz.

1.2. Erdős’s pinned-distance conjecture. Our final result allows us to drop the condition
that our graph Gk+1,m needs to be rigid. We do this by evoking Erdős’s pinned-distance conjecture.
As stated earlier, the current best known result is (1.2) due to Katz and Tardos [11]. The established
conjecture is the following.

Conjecture 1.21. For a finite point set E in R
d there is a point y in E such that

|Δy(E)| ≈ |E|2/d.
It is clear, by considering the integer lattice, that the above conjecture is the best one can hope

for. With our current technology we are far from this sharp result; however, we will demonstrate
that the general graph distances result is a closely linked, though weaker, result.

Theorem 1.22. Conjecture 1.7 holds for any Gk+1,m if the pinned-distance conjecture is as-
sumed.

2. PROOF OF THEOREM 1.1

We begin by deriving the properties of Md(k)(R
d) that we will need in the proof.

2.1. Congruence classes of (k + 1)-tuples. In this subsection we build a congruence
relation—using the action of the orthogonal group—to provide a more general class of configurations
where we can gain sharp results on distance tuples.

A (k + 1)-point configuration in R
d is given by an arbitrary choice of a point in R

d(k+1). We
label this configuration as (v0, . . . , vk) with vj ∈ R

d initially.
Recall, k ≥ d is assumed and we say that the configuration above is nonsingular if its first

d+ 1 vectors {v0, . . . , vd} are affinely independent.
We denote the space of these nonsingular (k + 1)-point configurations in R

d by Nd(k).
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FINITE POINT CONFIGURATIONS IN THE PLANE 135

Step 1: Passage to origin-pinned configurations. Given a nonsingular configuration (v0, . . . , vk),
we define the associated origin-pinned configuration as (u1, . . . , uk) where uj = vj − v0 for all
1 ≤ j ≤ k. The first d resulting vectors of this process form an invertible matrix whose columns are
u1, . . . , ud, as these vectors were required to be linearly independent and hence are a basis of R

d.
Thus we will write the associated origin-pinned configuration as (A, ud+1, . . . , uk).

The space for nonsingular origin-pinned configurations is hence identified as

GLd(R)× R
d(k−d).

So, we have a map

π : Nd(k) → GLd(R)× R
d(k−d)

given by

π(v0, . . . , vk) = (A, vd+1 − v0, . . . , vk − v0).

This map is equivalent to passage to translation classes of nonsingular configurations of k + 1 points
in R

d.

Step 2: Analysis of the O(d) action on pinned configurations and “moving frames.” Congruence
classes of such pinned configurations are given by O(d)-orbits of the following action: B ∈ O(d)
acts on (A, ud+1, . . . , uk) by sending it to (BA, Bud+1, . . . , Buk).

This action is complicated by the fact that O(d) acts on both the matrix A and the remaining
vectors. To simplify future formulas, we fix this by using a method of “moving frames.”

All this means is that as the columns of A are a basis of R
d, we may expand each uj when

j > d as a linear combination of u1, . . . , ud. If uj =
∑d

k=1 cjkuk, we will define cj = (cj1, . . . , cjd)
T.

Equivalently, Acj = uj ; note that as A depends on the first d vectors, this is a variable change of
basis, i.e., a “moving frame.”

Notice now that when B ∈ O(d) acts, Buj =
∑d

k=1 cjkBuk, or equivalently BAcj = Buj, and
so the cj vectors themselves are unchanged by the O(d) action.

In other words, if we reencode pinned configurations as (u1, . . . , ud, cd+1, . . . , ck), then the O(d)
action only acts on the first d coordinates and leaves the remaining coordinates unchanged. Thus
the action becomes

B · (A, cd+1, . . . , ck) = (BA, cd+1, . . . , ck),

so now O(d) will only act on the matrix slot in this coordinate system.
To summarize, we will now use this “moving frame” coordinate system, and thus an origin-pinned

configuration is given by (A, cd+1, . . . , ck) ∈ GLd(R) × R
d(k−d) where Acj = uj relates the original

vectors to these new c-vectors.

Step 3: Quotienting the O(d) action. Using the moving frame coordinate system, nonsingular
origin-pinned configurations of k + 1 points in R

d form the space GLd(R) × R
d(k−d). The action

of O(d) is given by B · (A, cd+1, . . . , ck) = (BA, cd+1, . . . , ck), so the final space for nonsingular
congruence classes of configurations of k + 1 points in R

d, which we will call Md(k)(R
d), is given by

Md(k)(R
d) = (O(d)\GLd(R))× R

d(k−d),

where this is the quotient of the left action of O(d). To make this more explicit, we recall the LU -
or UL-decomposition of nonsingular matrices that comes from the Gram–Schmidt process. Any
A ∈ GLd(R) can be written as A = BC for unique B ∈ O(d) and C ∈ L, where L is the Lie group
of upper triangular matrices with positive real entries on the diagonal.
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This means that as manifolds (but not as groups) GLd(R) is diffeomorphic to O(d) × L, where
the left action of O(d) on GLd(R) translates to an action on O(d) × L, with O(d) acting only on
the left factor by left translation. Thus O(d)\GLd(R) is naturally diffeomorphic to the Lie group L.

Putting this all together, we have
Summary 2.1. Let (v0, v1, . . . , vk) be a (k + 1)-point configuration in R

d with k ≥ d and the
first d+ 1 vectors affinely independent. Then we define uj = vj − v0, 1 ≤ j ≤ k, and make a matrix
A ∈ GLd with u1, . . . , ud as column vectors. The data (A, ud+1, . . . , uk) ∈ GLd × R

d(k−d) encodes
the origin-pinned configurations or equivalently the translation classes of nonsingular configurations.

We then change coordinates to a moving frame coordinate system Acj = uj for d+ 1 ≤ j ≤ k.
The data (A, cd+1, . . . , ck) also encodes pinned configurations, but now the O(d) action is only on
the A-coordinate.

Finally we mod the O(d) action to get the space of congruence classes of nonsingular (k + 1)-
point configurations in R

d, which is called Md(k)(R
d),

Md(k)(R
d) = L× R

d(k−d),

where the final data is (C, cd+1, . . . , ck) with A = BC, B ∈ O(d), C ∈ L, the UL-decomposition
of A. Here L is the Lie group of upper triangular matrices with positive real entries on the diagonal.

2.2. Proof of Theorem 1.1. To prove Theorem 1.1, we will use the following famous theorem
of Guth and Katz that resolved the Erdős distance problem in the plane (see [10]). To do so, we
recall that a rigid motion θ acting on a finite point set E is t-rich when |E ∩ θE| ≥ t.

Theorem 2.2 (Guth–Katz). Suppose that E is a finite point set in R
2, and let Rt(E) be the

set of rigid motions that are at least t-rich. Then

|Rt(E)| � |E|3
t2

.

Proof of Theorem 1.1. For S in M2(k)(E), let λ(S) be the orbit of S under the O(2) action.
Then

|E|2(k+1) =

( ∑
S∈M2(k)(E)

λ(S)
)2

≤ |M2(k)(E)|
∑
S∈M

λ2(S).

Focusing on the sum, note that two configurations are congruent if and only if there is a (k + 1)-
rich rigid motion taking one to the other. By a simple counting argument each such motion can
have at most

( t
k+1

)
configurations associated to it. Thus, letting R=t(E) be the set of rigid motions

of richness exactly t, we have

∑
S∈M

λ2(S) ≤
∑

t≥k+1

(
t

k + 1

)
|R=t(E)| =

∑
t>k+1

(
t− 1

k

)
|Rt(E)|+ Error term

�
∑

t>k+1

(
t− 1

k

)
|E|3
t2

∼ |E|3
∑

k+1<t≤|E|
tk−2 ∼ |E|k+2.

Rearranging gives |M2(k)(E)| � |E|k, as required. �

3. PROOF OF THEOREM 1.20

The proof of Theorem 1.20 follows from the fact that there can only be a constant number,
dependent only on the number of points k and the dimension d, of congruences associated to a
minimally infinitesimally rigid graph. To prove this result, we will follow the outline of [4].

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 303 2018
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For a tuple x in R
d(k+1) it is useful to define the following preimage of fGk+1,m

(x):

Nx =
{
y ∈ R

d(k+1) : fGk+1,m
(y) = fGk+1,m

(x)
}
. (3.1)

Proposition 3.1 [4, Sect. 3.4]. Suppose Gk+1,m is a minimally infinitesimally rigid graph and
x is any tuple (not necessarily regular). Let b0(Nx/∼) denote the number of connected components
of Nx under the congruence relation given by the O(d) action. Then b0(Nx/∼) ≤ Ck,d for some
number Ck,d > 0 depending only on the dimension d and the number of points k.

Proposition 3.2 [4, Proposition 4.11]. Suppose Gk+1,m is a minimally infinitesimally rigid
graph and x is any regular tuple of Gk+1,m. If y and z are in the same connected component
of Nx, then there is some θ in ISO(Rd) such that y = θz.

For a more precise version of Proposition 3.1 see [3]; we gain a sharp result without requiring
this. We can combine the above two results to give us the theorem.

Let us first define the following set:

v(t) =
{
x ∈ Ek+1 : fGk+1,m

(x) = t
}
.

Using Proposition 3.1, we can divide v(t) into a finite union of connected components ṽi. Thus

v(t) =

Ck,d⋃
i=1

ṽi(t),

where some ṽi(t) may be empty. Letting ṽ0(t) be the largest of these connected components, we
have the following estimate:

|E|2(k+1) =

( ∑
t∈Δ(Gk+1,m,Ek+1)

v(t)

)2

=

(∑
t∈Δ

Ck,d∑
i=1

ṽi(t)

)2

≤ C2
k,d

(∑
t∈Δ

ṽ0(t)

)2

≤ C2
k,d|Δ(Gk+1,m, Ek+1)|

∑
ṽ 2
0 (t).

Thus, to prove the result, it suffices to prove the following bound:∑
t

ṽ 2
0 (t) � |E|k+2 log|E|.

To do this, we need to use Proposition 3.2. Note that
∑
t

ṽ 2
0 (t) =

∣∣∣{(x,y) : fGk+1,m
(x) = fGk+1,m

(y)

& x, y in same maximal connected component of f−1
Gk+1,m

(Δ)
}∣∣∣.

By Proposition 3.2, x and y being in the same connected component of f−1
Gk+1,m

(Δ(Gk+1,m, Ek+1))

means there is a rigid motion θ such that x = θy. Recalling that these are frameworks, we
have (x1, . . . , xk+1) = (θy1, . . . , θyk+1). Using that fGk+1,m

(x) = fGk+1,m
(θy), we have xi − θyi =

xj − θyj = τ if ij an edge in Gk+1,m, where τ is uniform over the tuple pair (x,y).
So if we define

vθ(τ) =
{
(x, y) ∈ E2 : x− θy = τ

}
,

we have the following result: ∑
t

ṽ 2
0 (t) ≤

∑
τ∈Rd

∑
θ∈ISO(Rd)

vk+1
θ (τ).
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Here we do not necessarily have an equality, as there may be elements counted in the right-hand side
that are outside the maximal connected component of f−1

Gk+1,m
(Δ(Gk+1,m, Ek+1)). But certainly all

pairs from the maximal connected component are counted.1 This bound suffices for our purposes
and will in fact produce a sharp result. To conclude, we note the following trivial bound:

|vθ(τ)| ≤ |E|,

which follows from the fact that the second coordinate is entirely dependent on the choice of the
first (once θ and τ are fixed).

Until this stage the calculation works in any dimension d. However, to conclude we are going
to apply the Guth–Katz result that leads to the resolution of the Erdős distance problem. This
requires that we operate in dimension 2 only. When d = 2, we have

∑
t

ṽ 2
0 (t) ≤

∑
τ∈R2

∑
θ∈ISO(R2)

vk+1
θ (τ) ≤ |E|k−1

∑
τ∈R2

∑
θ∈ISO(R2)

v2θ(τ)

� |E|k−1|E|3 log|E| = |E|k+2 log|E|,

where the final estimate deploys the Guth–Katz result. This was the bound we required. Thus, for
a minimally infinitesimal graph Gk+1,m, we have

|Δ(Gk+1,m, Ek+1)| � |E|k.

4. PROOF OF THEOREM 1.22

Recall we define the pinned-distance set as

Δx(E) = {|x− y| : y ∈ E}

for a pin x ∈ E. We call |Δx(E)| the pin-richness of x (in E) and call a set A an r-rich pin set if
every point in A has pin-richness at least r.

The first part of our proof is to show that if the Erdős pinned-distance conjecture (Conjec-
ture 1.21) holds, then we have many rich pins. We can then use these rich pins as the vertices
for our distance graphs, where their richness allows us to construct sufficiently many variations of
graph-distance tuples.

Lemma 4.1. Suppose the Erdős pinned-distance conjecture is satisfied for a point set E. Then
there are ∼ |E| points x in E such that |Δx(E)| ≈ |E|.

Proof. To see this, we use the Erdős pinned-distance conjecture to find a pin x0 such that
|Δx0(E)| ≈ |E|. We then remove this point from E to gain a modified E0. We then apply the
conjecture to E0 to gain some x1 which is a pin of richness ≈ |E|. We repeat the process |E|/2
times gaining a sufficiently rich pin each time. Thus we have |E|/2 pins with pin-richness between
|E| and |E|/2 as claimed. �

To finish the proof, we count the number of possible distance drawings using the rich-pin subset
of E. Notice that for any graph drawing, once we have determined the position of the vertices, we
have no freedom left to select any other edges. Thus we naturally use spanning trees to determine
the number of ways we have to draw the graph. It is clear that for a graph on k vertices the number
of edges in the spanning tree will be k − 1. As we have k � |E| (in particular, k � |E|/2), we can
choose our edges essentially independently from the set of rich distances.

1In fact the right-hand side counts all pairs from each connected component, but not cross pairs. However, we
have to reduce to one connected component to pass through the Cauchy–Schwarz step above.
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Thus according to Lemma 4.1 the total number of choices for each edge in the spanning tree
is ≈ |E|2/d. As we have k − 1 such choices and our choices are independent, we have a total number
of choices

�
(
|E|2/d

)k−1
= |E|2(k−1)/d.

We note that this is clearly sharp as the grid in R
d satisfies the Erdős distance problem criterion,

in that each point has ∼ |E|2/d unique distances in its pinned-distance set.
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