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Abstract—In 1939 P. Turán started to derive lower estimations on the norm of the derivatives
of polynomials of (maximum) norm 1 on I := [−1, 1] (interval) and D := {z ∈ C : |z| ≤ 1} (disk)
under the normalization condition that the zeroes of the polynomial in question all lie in I or D,
respectively. For the maximum norm he found that with n := deg p tending to infinity, the
precise growth order of the minimal possible derivative norm is

√
n for I and n for D. J. Erőd

continued the work of Turán considering other domains. Finally, about a decade ago the growth
of the minimal possible ∞-norm of the derivative was proved to be of order n for all compact
convex domains. Although Turán himself gave comments about the above oscillation question
in Lq norms, till recently results were known only for D and I. Recently, we have found order n
lower estimations for several general classes of compact convex domains, and conjectured that
even for arbitrary convex domains the growth order of this quantity should be n. Now we prove
that in Lq norm the oscillation order is at least n/logn for all compact convex domains.
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1. INTRODUCTION

Denote by K � C a compact subset of the complex plane, with the most notable particular
cases being the unit disk D := {z ∈ C : |z| ≤ 1} and the unit interval I := [−1, 1].

As a kind of converse to the classical inequalities of Bernstein [5, 6, 27] and Markov [19] on
the upper estimation of the norm of the derivative of polynomials, in 1939 Paul Turán [29] started
to study inequalities of the form ‖p′‖K ≥ cKnA‖p‖K . Clearly such a converse can only hold if
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TURÁN–ERŐD TYPE CONVERSE MARKOV INEQUALITIES 79

further restrictions are imposed on the occurring polynomials p. Turán assumed that all zeroes
of the polynomials belong to K. So denote the set of complex (algebraic) polynomials of degree
(exactly) n by Pn, and the subset with all the n (complex) roots in some set K ⊂ C by Pn(K).

Denote by Γ the boundary of K. The (normalized) quantity under our study in the present
paper is the “inverse Markov factor” or “oscillation factor”

Mn,q := Mn,q(K) := inf
p∈Pn(K)

Mq(p) with Mq(p) :=
‖p′‖Lq(Γ)

‖p‖Lq(Γ)
, (1.1)

where, as usual,

‖p‖q := ‖p‖Lq(Γ) :=

⎛
⎝
∫

Γ

|p(z)|q |dz|

⎞
⎠
1/q

, 0 < q < ∞,

‖p‖K := ‖p‖∞ := ‖p‖L∞(Γ) = ‖p‖L∞(K) = sup
z∈Γ

|p(z)| = sup
z∈K

|p(z)|.

(1.2)

Note that for 0 < q < ∞ the Lq(Γ) norm remains finite if Γ is a rectifiable curve.
Theorem A (Turán). If p ∈ Pn(D), then we have

‖p′‖D ≥ n

2
‖p‖D. (1.3)

If p ∈ Pn(I), then we have

‖p′‖
I
≥

√
n

6
‖p‖

I
. (1.4)

Inequality (1.3) of Theorem A is best possible. Regarding (1.4), Turán pointed out by example
of (1 − x2)n that the

√
n order cannot be improved upon, even if the constant is not sharp (see

also [4, 18]). The precise value of the constants and the extremal polynomials were computed for
all fixed n by Erőd in [13].

We are discussing Turán-type inequalities (1.1) for general convex sets, so some geometric pa-
rameters of the compact convex domain K are involved naturally. We write d := dK := diam(K)
for the diameter of K, and w := wK := width(K) for the minimal width of K. That is,

d := dK := max
z′,z′′∈K

|z′ − z′′|, w := wK := min
γ∈[−π,π]

(
max
z∈K

Re(zeiγ)−min
z∈K

Re(zeiγ)
)
. (1.5)

Note that a compact convex domain is a closed bounded convex set K ⊂ C with nonempty interior ;
hence 0 < wK ≤ dK < ∞.

The key to (1.3) is the following straightforward observation.
Lemma B (Turán). Assume that z ∈ ∂K and there exists a disk DR = {ζ ∈ C : |ζ − z0| ≤ R}

of radius R such that z ∈ ∂DR and K ⊂ DR. Then for all p ∈ Pn(K) we have

|p′(z)| ≥ n

2R
|p(z)|. (1.6)

For the easy and direct proof see any of the references [29, 18, 25, 26, 14]. Levenberg and
Poletsky [18] found it worthwhile to formally define the crucial property of convex sets used here.

Definition 1 (Levenberg–Poletsky). A set K � C is called R-circular if for any z ∈ ∂K there
exists a disk DR of radius R such that z ∈ ∂DR and DR ⊃ K.

Thus for any R-circular K and p ∈ Pn(K), at the boundary point z ∈ ∂K we can draw the
disk DR and get (1.6) to hold for p ∈ Pn(K) and z ∈ ∂K.
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80 P.Yu. GLAZYRINA, Sz.Gy. RÉVÉSZ

Erőd continued the work of Turán already in the same year, investigating the inverse Markov
factors of domains with some favorable geometric properties. The most general domains with
Mn,∞(K) 
 n found by Erőd were described in [13, Theorem IV].

Theorem C (Erőd). Let K be any convex domain bounded by finitely many Jordan arcs,
joining at vertices with angles less than π, with all the arcs being C2-smooth and being either
straight line segments of length less than Δ(K), where Δ(K) stands for the transfinite diameter
of K, or having positive curvature bounded away from zero by a fixed constant κ > 0. Then there
is a constant c(K) such that Mn,∞(K) ≥ c(K)n for all n ∈ N.

As discussed in [14], this result covers the case of regular k-gons for k ≥ 7, but not the square,
which was also proved to have order n oscillation but only much later, by Erdélyi [12].

A lower estimate of the inverse Markov factor for all compact convex sets (of the same order
√
n

as was known for the interval) was obtained in full generality by Levenberg and Poletsky (see [18,
Theorem 3.2]).

Since
√
n was already known to be the right order of growth for the inverse Markov factor of I,

it remained to clarify the right order of oscillation for compact convex domains with nonempty
interior. This was solved about a decade ago in [24].

Theorem D (Halász–Révész). Let K ⊂ C be any compact convex domain. Then for all
p ∈ Pn(K) we have

‖p′‖K ≥ 3 · 10−4 wK

d2K
n‖p‖K . (1.7)

For the fact that it is indeed the precise order—moreover, Mn,∞(K) can only be within an
absolute constant multiple of the above lower estimation—see [25, 14, 26].

There are many papers dealing with the Lq-versions of Turán’s inequality for the disk D, the
interval I, or the period (one-dimensional torus or circle) T := R/2πZ (here with considering only
real trigonometric polynomials). A nice review of the results obtained before 1994 is given in [20,
Subsects. 6.2.6, 6.3.1].

Already Turán himself mentioned in [29] that on the perimeter of the disk D actually the
pointwise inequality (1.6) holds at all points of ∂D. As a corollary, for any q > 0,

⎛
⎝
∫

|z|=1

|p′(z)|q |dz|

⎞
⎠
1/q

≥ n

2

⎛
⎝
∫

|z|=1

|p(z)|q |dz|

⎞
⎠
1/q

.

Consequently, Turán’s result (1.3) extends to all weighted Lq norms on the perimeter, including all
Lq(∂D) norms.

The estimation of the boundary Lq norm, or any weighted Lq norm on the boundary, goes the
same way if we have a pointwise estimation for all (or for linearly almost all) boundary points. This
observation was explicitly utilized first in [18].

In case we discuss maximum norms, one can assume that |p(z)| is maximal, and it suffices to
obtain a lower estimation of |p′(z)| only at such a special point; for general norms, however, this is
not sufficient. The above results work only if we have a pointwise inequality of the same strength
everywhere, or almost everywhere. The situation becomes considerably more difficult when such
a statement cannot be proved. For example, if the domain in question is not strictly convex, i.e.,
if there is a line segment on the boundary, then the zeroes of the polynomial can be arranged so
that even some zeroes of the derivative lie on the boundary, and at such points p′(z)—and even
p′(z)/p(z)—can vanish. As a result, at such points no fixed lower estimation can be guaranteed,
and lacking a uniformly valid pointwise comparison of p′ and p, one cannot draw a direct conclusion
either.
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This explains why already the case of the interval I proved to be much more complicated for Lq

norms. In a series of papers [37–41] Zhou proved the inequality

⎛
⎝

1∫

−1

∣∣p(k)(x)∣∣p dx
⎞
⎠
1/p

≥ C(k)
p,q (n)

⎛
⎝

1∫

−1

|p(x)|q dx

⎞
⎠
1/q

for k = 1 and 0 < p ≤ q ≤ ∞, 1 − 1/p + 1/q ≥ 0, with C
(1)
p,q (n) = cp,q(

√
n )1−1/p+1/q. The best

constants C(k)
p,q (n) were found by Babenko and Pichugov [3] for p = q = ∞ and k = 2, by Bojanov [7]

for 1 ≤ p ≤ ∞, q = ∞, and 1 ≤ k ≤ n, and by Varma [34] for p = q = 2 and k = 1.
For more discussions on these results, as well as related results on the interval, period, and circle,

see the detailed survey in [14] and the introduction of [15], as well as the original works of Babenko
and Pichugov [4], Bojanov [8], and Tyrygin [30, 31] (see also [32, 33, 35, 17]).

The classical inequalities of Bernstein and Markov are generalized for various differential op-
erators (see [2]). In this context, Turán-type converses have also been already investigated, for
example, by Akopyan [1] and Dewan et al. [11].

Involving the Blaschke rolling ball theorem, and even recent extensions of it, we proved that
certain classes of domains admit order n oscillation factors in Lq (see [15, Theorem 2]). More
importantly, however, combining these R-circular classes and the most general classes considered
by Erőd in Theorem C (for ‖·‖∞), we could obtain the next result (see [15, Theorem 1]).

Theorem E (Glazyrina–Révész). Let K � C be an E(d,Δ, κ, ξ, δ)-domain. Then for any
q ≥ 1 there exists a constant c = cK (depending explicitly on the parameters q, d, Δ, κ, ξ, and δ)
such that for all n ∈ N and p ∈ Pn(K) we have ‖p′‖q ≥ cKn‖p‖q.

Here the definition of a “generalized Erőd-type domain” E(d,Δ, κ, ξ, δ) is basically the one used in
Theorem C, but with skipping the assumption of C2 smoothness and relaxing the γ̈ ≥ κ everywhere
assumptions on the curved pieces of the boundary: here γ̈ ≥ κ is assumed only (linearly) almost
everywhere.

Further discussion of this definition would lead us aside from our main line of progress, so we
refer the reader for more details and explanations (as well as for the proof) to the original paper [15].

Recently, we obtained some order n oscillation results for certain further convex domains without
any condition on the curvature. To formulate this, let us first recall another geometric notion,
namely, the depth of a convex domain K:

hK := sup
{
h ≥ 0: ∀ζ ∈ ∂K ∃ a normal line 	 at ζ to K with |	 ∩K| ≥ h

}
. (1.8)

We say that a convex domain K has fixed depth or positive depth if hK > 0. The class of convex
domains having positive depth contains all smooth compact convex domains, and also all polygonal
domains with no vertex with an acute angle. However, observe that the regular triangle has hK = 0,
as well as any polygon having some acute angle. For more about this class see [14], where the
following was also proved.

Theorem F (Glazyrina–Révész). Assume that K � C is a compact convex domain having
positive depth hK > 0. Then for any q ≥ 1, n ∈ N, and p ∈ Pn(K) it holds that

‖p′‖q ≥ cKn‖p‖q, cK :=
h4K

3000 d5K
. (1.9)

From the other direction, we also proved that one cannot expect more than order n growth of
Mn,q(K). In fact, in this direction our result was more general, but here we recall only a combination
of Theorem 5 and Remark 6 of [14].
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Theorem G (Glazyrina–Révész). Let K � C be any compact convex domain. Then for any
q ≥ 1 and any n ∈ N there exists a polynomial p ∈ Pn(K) satisfying ‖p′‖q < 15d−1

K n‖p‖q.
In [14] we formulated the following conjecture.
Conjecture 1. For all compact convex domains K � C there exist cK > 0 such that for any

p ∈ Pn(K) we have ‖p′‖Lq(∂K) ≥ cKn‖p‖Lq(∂K). That is, for any compact convex domain K the
growth order of Mn,q(K) is precisely n.

Also we pointed out that in the positive (Turán–Erőd type oscillation) direction, apart from
the above findings for various classes, no completely general result is known, not even with a lower
estimation of any weaker order than conjectured. This situation was compared to the situation in
the development of the ∞-norm case, where a general lower estimation result, valid for all compact
convex domains, was first proved only in 2002.

The aim of the present work is to prove the validity of a general lower estimation.
Theorem 1. Let K � C be any compact convex domain and q ≥ 1. Then there exist a

constant cK and n0(q, k) ∈ N such that for n ≥ n0(q,K) and all p ∈ Pn(K) we have

‖p′‖q ≥ cK
n

log n
‖p‖q. (1.10)

In other words, for compact convex domains we always have cKn/log n ≤ Mn,q ≤ CKn.
Note that this, although indeed falling short of Conjecture 1, clearly exceeds the order

√
n,

known for the interval I.

2. SOME BASIC GEOMETRIC NOTATION AND FACTS

We need to fix geometric notation. Let us start with a convex compact domain K � C. Then its
interior intK is nonempty and K = intK, while its boundary Γ := ∂K is a convex Jordan curve.
More precisely, Γ = R(γ) is the range of a continuous convex closed Jordan curve γ on the complex
plane C.

If the parameter interval of the Jordan curve γ is [0, L], then this means that γ : [0, L] → C

is continuous, convex, and one-to-one on [0, L), while γ(L) = γ(0). While this compact interval
parametrization is the most used setup for curves, we need the essentially equivalent interpretations
with this, too: one is the definition over the torus T := R/LZ and the other is the periodically
extended interpretation with γ(t) := γ(t − [t/L]L) defined periodically all over R. If we need to
distinguish, we will say that γ : R → C and γ∗ : T := R/LZ → C, or equivalently, γ∗ : [0, L] → C

with γ∗(L) = γ∗(0).
As the curves are convex, they always have finite arc length L := |γ∗|. Accordingly, we will

restrict ourselves to parametrization with respect to arc length. The parametrization γ : R → ∂K
defines a unique ordering of points, which we assume to be positive in the counterclockwise direction,
as usual. When considered locally, i.e., with parameters not extending over a set longer than the
period, this can be interpreted as an ordering of the image (boundary) points themselves: we always
implicitly assume that a proper cut of the torus T is applied at a point to which the consideration
is not extended, and then for the part of boundary we consider, the parametrization is one-to-one
and carries over the ordering of the cut interval to the boundary.

The arc length parametrization has an immediate consequence also regarding the derivative,
which must then have |γ̇| = 1, whenever it exists, i.e., (linearly) a.e. on [0, L) ∼ T. Since γ̇ : R → ∂D,
we can as well describe the value by its angle or argument: the derivative angle function will be
denoted by α := arg γ̇ : R → R. Since, however, the argument cannot be defined on the unit circle
without a jump, we decide to fix one value and then define the extension continuously: this way
α will not be periodic, but we will have rotational angles depending on the number of (positive
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or negative) revolutions, if started from the given point. With this interpretation, α is an a.e.
defined nondecreasing real function with α(t)− (2π/L)t periodic (with period L) and bounded. By
convexity, the angular values attained by α(t) are then ordered in the same way as the boundary
points and parameters. In particular, for a subset not extending to a full revolution, the angular
values are uniquely attached to the boundary points and parameter values, and they are ordered in
the same way by considering a proper cut.

With the usual left and right limits, α− and α+ are the left- and right-continuous extensions
of α, respectively. The geometric meaning is that if for a parameter value τ the corresponding
boundary point is γ(τ) = ζ, then [α−(τ), α+(τ)] is precisely the interval of values β ∈ T such that
the straight lines {ζ + eiβs : s ∈ R} are supporting lines to K at ζ ∈ ∂K. We will also talk about
half-tangents: the left and right half-tangents are the half-lines emanating from ζ and progressing
towards −eiα−(τ) and eiα+(τ), respectively. The union of the half-lines {ζ + eiβs : s ≥ 0} for all
β ∈ [α+(τ), π − α−(τ)] is precisely the smallest cone with vertex at ζ that contains K.

We will interpret α as a multi-valued function, assuming all the values in [α−(τ), α+(τ)] at the
point τ . Restricting to the periodic (finite interval) interpretation of γ∗ : [0, L) → C, without loss
of generality we may assume that α∗ := arg(γ̇∗) : [0, L] → [0, 2π]. In this regard, we can say that
α∗ : R/LZ → T is of bounded variation, with total variation (i.e., total increase) 2π; the same holds
for α : R → R over one period.

The curve γ is differentiable at ζ = γ(θ) if and only if α−(θ) = α+(θ); in this case the unique
tangent of γ at ζ is ζ + eiαR with α = α−(θ) = α+(θ).

It is clear that interpreting α as a function on the boundary points ζ ∈ ∂K, we obtain a
parametrization-independent function: to be fully precise, we would have to talk about γ̃, γ̃∗, α̃,
and α̃∗. In line with the above, we consider α̃ and α̃∗ as multivalued functions, all admissible
supporting line directions belonging to [α−(τ), α+(τ)] at ζ = γ(τ) ∈ ∂K being considered as
α̃-function values at ζ. At points of discontinuity, α± or α∗

± and similarly α̃± and α̃∗
± are the left-

and right-continuous extensions, respectively, of the same functions.
A convex domain K is called smooth if it has a unique supporting line at each of its boundary

points. This occurs if and only if α± := α is continuously defined for all values of the parameter.
For obvious geometric reasons we call the jump function Ω := α+ − α− the supplementary angle
function. This is identically zero almost everywhere (and in fact except for a countable set) and
has positive values such that the total sum of the (possibly infinite number of) jumps over a period
does not exceed the total variation of α, i.e., 2π.

For a supporting line ζ + eiβR at the boundary point ζ ∈ ∂K that is oriented positively (so that
K lies in the half-plane {z ∈ C : β ≤ arg(z − ζ) ≤ β + π}) the corresponding (outer) normal vector
is ν(ζ) := ei(β−π/2).

The family of all the (outer) normal vectors consists precisely of the vectors satisfying the condi-
tion 〈z − ζ,ν〉 ≤ 0 (for all z ∈ K) with the usual R2 scalar product, or equivalently, Re((z − ζ)ν) ≤ 0
(where ν is just the conjugate of the complex number ν).

Here we introduce some additional notation, too. First, we will write δ(ζ, ϕ) := δK(ζ, ϕ) :=
|K ∩ (ζ + eiϕR)|. Further, to denote the “opposite endpoint” of the intersection line segment, we
will use the notation

D := D(ζ) := D(ζ, ϕ) := DK(ζ, ϕ),

so that K ∩ (ζ + eiϕR) = [ζ,D(ζ)]; of course, in particular cases even D(ζ) = ζ and δ(ζ, ϕ) = 0 is
possible.

The following easy but useful observation will be used several times in various situations.
Proposition 1. Let ζ �= ζ ′ ∈ ∂K and assume that t = ζ + eiϕR+ and t′ = ζ ′ + eiϕ

′
R+ are

two half-lines emanating from ζ and ζ ′, respectively, and having the (subderivative or half-tangent)
property that t ∩ intK = ∅ and also t′ ∩ intK = ∅. Assume that these half-lines intersect at
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a point T := t ∩ t′. Write 	 for the straight line connecting ζ and ζ ′, and assume that neither t
nor t′ is included in (so is not parallel to) 	, so that T is in one of the open half-planes of C \ 	;
denote this half-plane by H. Finally, let � := �ζ,T,ζ′ := con(ζ, T, ζ ′) be the triangle with vertices ζ,
T, and ζ ′.

Then we have H ∩K ⊂ �.

Proof. Assume, as we may, that ζ = −i and ζ ′ = i, whence 	 is the imaginary axis, and that
H = {Re z > 0} is the right half-plane, say. This means that both half-lines t and t′ are contained
in H, cutting H into four convex components, all bounded by (parts of the) straight lines 	, t,
and t′: number them as H1, . . . ,H4. One is essentially the triangle � but beware of the boundary:
in precise terms, H1 = � \ [ζ, ζ ′], as the side [ζ, ζ ′] of � falls on 	, not contained in the open
half-plane H. Also there are three other unbounded components H2, H3, and H4.

The only component which has both points ζ and ζ ′ on its boundary ∂Hj is necessarily the one
with ζ ′′ := (ζ + ζ ′)/2 = 0 in its boundary: this is H1. Note that there exists a small r > 0 with the
property that {z = ρeiϕ : −π/2 < ϕ < π/2, 0 < ρ < r} ⊂ H1. Also, 0 ∈ K by the convexity of K.

If intK ∩ H = ∅, then also K ∩ H = ∅ because H is an open half-plane and K is fat [36,
Corollary 2.3.9]; i.e., all its (interior or boundary) points are limits of interior points. So in this case
there remains nothing to prove.

So let us consider the case when intK ∩H �= ∅. As H is open, (intK) ∩H = int(K ∩H). Now
we want to prove that then intK ∩H ⊂ �. Once we prove this, it will suffice, as for K ∩H being a
convex domain with nonempty interior it is also fat, and thus K ∩H ⊂ cl(intK ∩H) ⊂ cl(�) = �,
as needed.

So take any point Z ∈ intK ∩H and assume for contradiction that Z /∈ �.
Let now z := ρei arg(Z) = ρZ/|Z| with some ρ < r; then z ∈ � ∩ H. As 0 ∈ K, we will have

(0, Z] ⊂ intK in view of the convexity of K; so in particular [z, Z] ⊂ intK.
As z ∈ � and Z /∈ �, there exists a boundary point B ∈ ∂� on the segment [z, Z]: B ∈

∂� ∩ [z, Z]. So, B ∈ ∂� ∩ intK = ∂H1 ∩ intK. But it is also within H, while the boundary line
segments of any component of H can only consist of pieces of t ∪ t′, free of intK by assumption,
which is a contradiction. �

There are obvious, yet important, consequences of the above, which we will use throughout our
reasoning. First, if ζ, ζ ′ ∈ ∂K are two boundary points with s := |ζ − ζ ′| < w, then the tangent
lines at these points cannot be distinct and parallel (as K is not contained in any strip of width
less than wK). So, if we assume that t �= 	 and t′ �= 	, then appropriate half-lines of these tangents
intersect at a point T . Therefore, when the plane, and hence K, is cut into two parts by the
line 	 of ζ and ζ ′, one part—the part of K in the same half-plane as T—will be contained in the
triangle �ζ,T,ζ′.

We want to underline that this part is smaller in a precise sense than the other, left-over,
part of K. For example, the maximal chord in the direction of ζ ′ − ζ is s = |ζ ′ − ζ| < w (for
it cannot exceed the maximal chord of �ζ,T,ζ′ in the same direction). Note that we are talking
about the direction of 	, whence the part of K in the other half-plane must have maximal chord
in this direction at least w, as the maximal chord of K in any direction is at least w (cf. [36,
Theorem 7.6.1]). Similarly, the part of K lying in �ζ,T,ζ′ has width in the direction orthogonal to t
at most the height of the �ζ,T,ζ′, which does not exceed the chord s < w, while the minimal with
of the totality of K is w, whence the left-over part also has points at least w-far from t, and at the
same time ζ is also in the boundary of this part, so the width (in this direction) of this left-over part
must be at least w. In this sense thus it is precise if we distinguish these two sides as the “smaller
side/part of K” (in the same half-plane as T ) and the “bigger/larger side/part of K.”

Further, considering the positive orientation of the boundary curve, we may fix a branch of
the arc length parametrization which is continuous over the small part; equivalently, we may apply
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TURÁN–ERŐD TYPE CONVERSE MARKOV INEQUALITIES 85

a cut, or fix a starting point of parametrization, in the complementary part. In this sense the
parametrization defines a unique ordering of points over the smaller part, even if the whole bound-
ary ∂K cannot be ordered. In the following we will always say that two points—or their parameter
values—are in precedence according to this choice of ordering, so that we compare only points in
some unambiguously given “smaller part” and then ζ ≺ ζ ′ has the meaning of precedence in the
positively ordered arc length parametrization, used continuously along this smaller part. We will
also assume the tangent angle function α being defined according to the same continuity condition,
so that ζ ≺ ζ ′ if and only if α(ζ) < α(ζ ′) (or, more precisely, with ζ = γ(a) and ζ ′ = γ(b), we have
α(a) < α(b)).

As for the precedence of boundary points of ∂K, we can equivalently say that whenever ζ, ζ ′ ∈
∂K and some positively oriented tangents to K at ζ and ζ ′ are t and t′, then we say that ζ ≺ ζ ′ if
and only if the positively oriented half-tangent of t intersects the negatively oriented half-tangent
of t′. Of course, these tangents intersect only if they are not parallel; but distinct parallel tangents
can exists only if they are at least at a distance of w from each other, so, for example, if the chord
length s := |ζ − ζ ′| is less than w, then it is certainly not the case. In the case when ζ and ζ ′

lie in a straight line segment piece of ∂K (and when again either the intersection of the positively
oriented half-tangent of t and the negatively oriented half-tangent of t′ is empty or, conversely,
the intersection of the negatively oriented half-tangent of t and the positively oriented half-tangent
of t′ is empty), this definition of precedence also works. Finally, if t and t′ are distinct and not
parallel, then there is a unique such point T , and the precedence is unambiguously defined. So,
defining precedence only for point pairs (ζ, ζ ′) ∈ ∂K × ∂K this way, we create a partial relation in
∂K × ∂K, which is asymmetric but is not transitive (so we cannot consider it an ordering); yet it is
quite consistent with ordering of points if we apply a certain fixed cut of the boundary and consider
the ordering of points of ∂K accordingly.

Proposition 2. Let ζ, ζ ′ ∈ Γ, 0 < |ζ − ζ ′| = s < w, and let t := ζ + eiαR and t′ := ζ ′ + eiα
′
R

be two positively oriented tangent lines at these points. Assume that neither t nor t′ is equal to
the chord line 	 := ζζ ′. Then there exists a unique point of intersection T := t ∩ t′; moreover, we
have T /∈ 	.

Furthermore, writing H for the open half-plane of C \ 	 with T ∈ H and H for its closure, we
also have

(i) K ∩H ⊂ � := �ζ,T,ζ′ := con(ζ, T, ζ ′);

(ii) if, in the triangle �, β := ∠(ζ, T, ζ ′) = |arg((ζ − T )/(ζ ′ − T ))|, then β ≥ arcsin((w − s)/d);

(iii) diam(K ∩H) ≤ sd/(w − s) and, in particular, diam(K ∩H) ≤ 2sd/w;

(iv) |Γ ∩H| ≤ 2sd/(w − s) and, in particular, |Γ ∩H| ≤ 4sd/w.

Note that in this fully general case α′ − α and sin|α′ − α| can be arbitrarily small (in case α′ is
not much different from α), but in the other direction we assert that their difference is bounded away
from reaching π. In fact, even α′ = α would be possible (exactly if [ζ, ζ ′] is a part of the boundary
curve Γ and both tangents t and t′ coincide with 	), but for easier formulation we assume in the claim
that neither t nor t′ is 	, which entails that α′ �= α. The degenerate cases when [ζ, ζ ′] ⊂ ∂K and
some of t and t′ equals 	 are somewhat inconvenient, for then even the assertions may fail in cases
when 	 ∩ ∂K exceeds [ζ, ζ ′]. Instead of describing these situations in an overcomplicated manner
right here, we will also avoid dealing with them in the forthcoming applications of Propositions 1
and 2 either by assuming ζζ ′ ∩K = [ζ, ζ ′] or by discussing concretely the cases when t′ = 	 or t = 	.

We also note that working with the maximal chord parallel to the chord [ζ, ζ ′], one can get in a
somewhat easier way the estimate1 β ≥ arctan((w − s)/d); as arcsin exceeds arctan, we opted for
the presentation of this slightly sharper version.

1An observation kindly offered to us by Sándor Krenedits in personal communication.
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Proof of Proposition 2. First, let us check that t �= 	 and t′ �= 	 implies α �= α′. For a convex
domain and positively oriented tangents, α = α′ would be possible only if t = t′, while ζ ∈ t and
ζ ′ ∈ t′ entails that t = t′ could happen only if t, t′ = 	, which is excluded; so t �= t′ and α �= α′.
Second, t ‖ t′ while t �= t′ (i.e., with positive orientation, α′ = α+ π mod 2π) is also impossible, for
then K would have two parallel tangents with a positive distance not exceeding s < w, which then
would imply that width(K) < w, a contradiction. So, t and t′ are not parallel and indeed T := t ∩ t′

exists uniquely; moreover, T /∈ 	 is clear (for in case T ∈ 	 either T �= ζ and so t = Tζ = 	 or
T �= ζ ′ and t′ = ζ ′T = 	, but these possibilities were both excluded by assumption). This proves
the assertions about T itself.

As for (i), we have K0 := K ∩ H ⊂ � := con(ζ, T, ζ ′) in view of Proposition 1, so it remains
to see that the same also holds for the closure H in this case. In other words, we must show
additionally that 	 ∩ K ⊂ �, or, equivalently, that 	 ∩ K ⊂ [ζ, ζ ′], i.e., 	 ∩ K = [ζ, ζ ′]. Now the
tangent line t, not matching to 	, must cut this chord line into proper half-lines starting from ζ,
with only one of these half-lines containing points of K; so the said half-line must be the half-line
emanating from ζ towards ζ ′. Arguing in the same way for t′ and ζ ′, we find that K ∩ 	 is covered
by [ζ, ζ ′], as stated. (Note that this latter property may easily fail if t = 	 or t′ = 	 is allowed.)

For the following assume, as we may, that the precedence of points ζ and ζ ′ is chosen so that
ζ ≺ ζ ′, or, equivalently, α < α′ < α+ π. Note that this is equivalent to T being the intersection of
the half-lines t+ := ζ + eiαR+ and t′− := ζ ′ − eiα

′
R+. Therefore, in the triangle � = �ζ,T,ζ′, the

angle at T is

β := ∠(ζ, T, ζ ′) = arg(ζ − T )− arg(ζ ′ − T ) = α+ π − α′ = π − (α′ − α) < π.

Further, the tangent angle function can be fixed so that it changes nondecreasingly between α
and α + π, with the cut (negative jump by −2π) occurring at some point with tangent direction,
say, α+ 3π/2 (mod 2π).

So, let us prove (ii). Our task is to estimate the angle β from below: we want to show that
β ≥ arcsin((w − s)/d). Note that β can be close to π, even if it cannot reach it, but we claim that
it cannot be too small.

For an arbitrary point A ∈ ∂K with tangent direction α(A) = α+ π (so with a tangent parallel
to t but oriented oppositely), we have α < arg(ζ ′ − ζ) < α′ < α + π = α(A), and ζ ≺ ζ ′ ≺ A. In
fact from the very definition of width it follows for the point A that a := dist(A, t) ≥ w, while for
boundary points P with ζ ≺ P ≺ ζ ′, i.e., for points of Γ ∩H ⊂ K ∩ H ⊂ � we necessarily have
dist(P, t) ≤ maxz∈� dist(z, t) = m := dist(ζ ′, t) ≤ s < w, so that P = A is not possible.

As A /∈ H (because that would entail A ∈ K ∩H ⊂ �), we also find that A ∈ C \H, whence
also [ζ ′, A] ⊂ C \H. So let us draw the chord line f := ζ ′A. By convexity, for the positively oriented
direction ϕ of the chord f we have α′ = α(ζ ′) ≤ ϕ = arg(A − ζ ′) ≤ α(A) = α + π. Note that for
points z ∈ f+ on the positive half-line f+ := ζ ′ + eiϕR+ we have dist(z, t) ≥ dist(ζ ′, t) = m > 0,
whence t ∩ f+ = ∅. On the other hand, the intersection point C := f ∩ t exists uniquely, as f is not
parallel to t (for a := dist(A, t) �= dist(ζ ′, t) = m). So, C ∈ f− ∩ t, i.e., C = f− ∩ t+ (in accordance
with ζ ≺ A). It follows that at C the angle

θ := ∠(ζ, C, ζ ′) = arg(ζ − C)− arg(ζ ′ − C) = (α+ π)− ϕ ≤ α+ π − α′ = β.

Consider the orthogonal projection of ζ ′ to t, and denote this point by M ; then the height of �
at ζ ′ is m = |ζ ′ −M |, and 0 < m ≤ s. Further, take also the orthogonal projection of A to t and
denote this point by B; then a = dist(A, t) = |A−B| ≥ w.

It remains to estimate sin θ from below. Note that the triangles �A,B,C and �ζ′,M,C are similar
triangles with right angles at B and M , respectively, whence for the angle ∠(BCA) = ∠(MCζ ′)
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at the homothety center point C we have sin∠(BCA) = |A− B|/|A− C| = |ζ ′ −M |/|ζ ′ − C| and
so also sin∠(MCζ ′) = (a − m)/|A − ζ ′|. However, either ∠(MCζ ′) = θ or ∠(MCζ ′) = π − θ,
depending on whether

−−→
CM is directed to the negative or positive direction of t (both cases are

possible), i.e., arg(M − C) = α + π or arg(M − C) = α. So finally sin θ = sin∠(MCζ ′) in both
cases, and we are led to sin θ = (a−m)/|A− ζ ′|. Therefore, since A, ζ ′ ∈ K entails |A− ζ ′| ≤ d, we
find that sin θ ≥ (a −m)/d ≥ (w − s)/d, and so in particular β ≥ θ ≥ arcsin((w − s)/d), proving
assertion (ii).

Let us prove (iii). Using (i) we get diam(K ∩H) ≤ diam(K ∩�ζ,T,ζ′) = max{s, |ζ −T |, |ζ ′−T |}.
As for |ζ ′ − T |, with the above notation and using (ii) we easily obtain |ζ ′ − T | = m/sin β ≤

s/sin θ ≤ sd/(w − s).
At this point, however, one may apply the symmetry of the situation; if the distance from one

endpoint of the chord [ζ, ζ ′] to T = t ∩ t′ cannot exceed sd/(w − s), then neither the distance from
the other endpoint can do so: i.e., |T − ζ| ≤ sd/(w − s) holds, too. Consequently, diam(K ∩H) ≤
sd/(w − s), as s ≤ sd/(w − s) is immediate.

Finally, if 0 < s ≤ w/2 then diam(K ∩ H) ≤ sd/(w − s) ≤ 2sd/w is obvious, while for
w/2 < s < w we trivially have diam(K ∩H) ≤ d ≤ 2sd/w.

Let us prove (iv). Since Γ is convex, the arc length of the part of Γ in �ζ,T,ζ′ joining ζ and ζ ′

cannot exceed the sum |ζ − T | + |ζ ′ − T | (because it is well known for convex curves that the
included one is not longer than the including one; see, e.g., [9, § 7, Sect. 31, property 5]). As
discussed above, this can be estimated by 2sd/(w − s) and also by 4sd/w, as claimed. �

In the following we will use the notation Sz[α, β] := {z + ρeiϕ : ϕ ∈ [α, β]} and Sz(α, β) :=
{z + ρeiϕ : ϕ ∈ (α, β)} for sectors with vertex at z ∈ C and angles between α and β.

Proposition 3. Let ζ ∈ ∂K and ν = −eiσ be (one) outer normal vector to K at ζ, and let
t := ζ + eiαR be the corresponding positively oriented tangent line at ζ with α = σ − π/2. Fix any
angle 0 < ϕ < π/2. Define

	− := ζ + e−ϕiνR = ζ + e(σ−ϕ)i
R, [ζ,D−] := 	− ∩K, and δ− := |D− − ζ| = |	 ∩K|

and similarly

	+ := ζ + e+ϕiνR = ζ + e(σ+ϕ)i
R, [ζ,D+] := 	+ ∩K, and δ+ := |D+ − ζ| = |	 ∩K|.

If 0 < δ− ≤ δ+ < w, then any tangent line t′− drawn to K at D− has negative slope with
respect to t, i.e., t′− is not parallel to t and the point of intersection T = t ∩ t′− is on the half-line
ζ + ei(σ−π/2)

R+; equivalently, ζ ≺ D− in the sense discussed above, and from the parts of K arising
from the cut of C (and thus of K) by the straight line 	−, the one in the sector Sζ [σ − π/2, σ − ϕ]
is the “small part” of K.

Symmetrically, if 0 < δ+ ≤ δ− < w, then any tangent line t′+ drawn to K at D+ has positive
slope, D+ ≺ ζ, T ∈ ζ − ei(σ−π/2)

R+, and from the two parts of K determined by 	+, the small part
lies in the sector Sζ [σ + ϕ, σ + π/2].

Note that we assumed here the condition max(δ−, δ+) < w; but this is not necessary. How-
ever, the slightly weaker assumption that min(δ−, δ+) < w/cosϕ cannot be dropped: if both
δ± ≥ w/cosϕ, then the tangents can go in any direction (with both positive or negative slope)
including the possibility of being parallel to t. We do not discuss these because in our later appli-
cation in Lemma 4 we will be at ease if any of the chords is as large as w, and so we do not need
further details. Similarly, it will also be easy to deal with the case when either δ− or δ+ vanishes,
whence our other assumption on min(δ−, δ+) > 0 is not too restrictive. Note that in the case
min(δ−, δ+) = 0, for example if δ− = 0, 	− is also tangent to K (as it does not contain any interior
points, only ζ ∈ ∂K); thus K lies entirely in some of the sectors lying above t and determined by
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the line 	−; however, we cannot always tell which side is the small/large side, as any of these two
sectors Sζ [σ − π/2, σ − ϕ] or Sζ [σ − ϕ, σ + π/2] may contain K. Of course, if the other chord is
nonzero, i.e., δ+ > 0, then clearly that side, i.e., the latter sector, will contain K. The situation is
similar if we start with δ+ = 0.

Proof of Proposition 3. By symmetry, we may, and hence will, assume 0 < δ− ≤ δ+ < w.
It is clear that the tangent t′− cannot be parallel to t, for in this case we would have K contained

between the distinct parallel supporting lines t and t′− at a distance of (0 <) δ− cosϕ < δ− < w, a
contradiction. Now if t′− had a positive slope, i.e., T = t ∩ t′− fell on the half-line ζ − ei(σ−π/2)

R+,
then we would obviously have D+ below this tangent, and δ+ < δ−, contrary to the assumption.

So there remains the only possibility of t′− having negative slope. That is, T ∈ ζ + ei(σ−π/2)
R+,

ζ ≺ D−, and the above Proposition 1 applies. It means that the triangle �ζ,T,D− covers the part
of K in the respective sector Sζ [σ − π/2, σ − ϕ], whence this can only be the “small part” of K. �

3. TECHNICAL PREPARATIONS FOR THE INVESTIGATION OF Lq(∂K) NORMS

Lemma 1. For any polynomial of degree at most n we have

‖p‖Lq(∂K) ≥
(

d

2(q + 1)

)1/q
‖p‖L∞(∂K) n

−2/q. (3.1)

For a proof of this Nikolskii-type estimate, see [14, Lemma 1].
Next, let us define the subset H := Hq

K(p) ⊂ ∂K in the following way:

H := Hq
K(p) :=

{
ζ ∈ ∂K : |p(ζ)| > cn−2/q‖p‖∞

}
, c :=

1

2
(8π(q + 1))−1/q . (3.2)

Then in [14, Sect. 3.1] it was deduced from the above lemma that we have
Lemma 2. Let H ⊂ ∂K be defined according to (3.2). Then for all p ∈ Pn we have2

∫

H

|p|q ≥ 1

2
‖p‖qLq(∂K). (3.3)

Furthermore, for any point ζ ∈ H and for any p ∈ Pn(K) we also have

log
‖p‖∞
|p(ζ)| ≤ log(16π) + 2 log n ∀n ∈ N, log

‖p‖∞
|p(ζ)| ≤

107

40
log n ∀n ≥ 73. (3.4)

The other key and innovative feature of the original work of Erőd was invoking Chebyshev’s
lemma, which we recall here.

Lemma H (Chebyshev). Let J = [u, v] be any interval on the complex plane with u �= v.
Then for all k ∈ N we have

min
w1,...,wk∈C

max
z∈J

∣∣∣∣∣
k∏

j=1

(z − wj)

∣∣∣∣∣ ≥ 2

(
|J |
4

)k
. (3.5)

Actually, we will also use this lemma in the next slightly more general form of an estimation
using the transfinite diameter.

Lemma I (transfinite diameter lemma). Let K � C be any compact set and p ∈ Pn(K)
be a monic polynomial, i.e., assume that p(z) =

∏n
j=1(z − zj) with all zj ∈ K. Then we have

‖p‖∞ ≥ Δ(K)n.
2Hereinafter all integrals are understood with respect to the arc length measure.
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Lemma H is essentially the classical result of Chebyshev for a real interval [28] (cf. [21, Part 6,
Problem 66; 10; 20]). The form with the transfinite diameter was first proved in various forms by
Fekete, Faber, and Szegő. For details and references see [14, Lemma P] and its discussion there.

In the below proofs we will need the following straightforward calculation of the type usually
considered in connection with transfinite diameter.

Lemma 3. Let K ′ � K � C be two compact sets with diameters d′ := diam(K ′) and d :=
diam(K), and assume d′ ≤ d/k with some parameter k > 10, say. If a polynomial p ∈ Pn(K) has
m ≥ 3(log 2/log k)n zeroes in K ′, then ‖p‖K ′ < 2−n‖p‖K .

Proof. Assume, as we may, that the leading coefficient of p is just 1, so p(z) =
∏n

j=1(z − zj).
It is well known (see, e.g., [15] or [22, Sect. 1.7.1]3) that the capacity, or transfinite diameter, of a
compact set is at least its diameter divided by 4 (and is, on the other hand, at most the diameter di-
vided by 2). Using this or directly Chebyshev’s lemma, we certainly have ‖p‖K(≥ Δ(K)n) ≥ (d/4)n.

Estimating from the other side, we have for any point z′ ∈ K ′ the estimate |p(z′)| ≤ d′mdn−m,
whence ‖p‖K ′ ≤ d′mdn−m, and after dividing these two estimates we get

‖p‖K ′

‖p‖K
≤ d′mdn−m

(d/4)n
= 4n

(
d′

d

)m
≤ 4nk−m = 22n−m log k/ log 2 ≤ 22n−3n = 2−n. �

4. REFINED ESTIMATE BY TILTING THE NORMAL LINE

The method in our recent works [14, 15] was to consider an upper subinterval J ⊂ [ζ,D] :=
ν ∩K, with ν a normal line at ζ ∈ ∂K, apply a suitable classification of zeroes, and, for the, say,
k zeroes lying close to J , select a maximum point τ0 of the corresponding product of the respective
k terms (z − zj). This direct approach can be used to get some general infinity norm estimates (in
fact, an order n2/3 lower estimation [23]) even if the depth may tend to zero. Also, we succeeded to
obtain the right order (i.e., order n) lower estimate for some special classes of domains in [14, 15].
However, this method incorporates some losses with respect to depth, and for fully general cases
there seems to be no way to obtain the optimal or close-to-optimal order by this method.

Instead, here we pursue a significantly modified method based on an insightful idea of G. Halász
and exploited, for the case of the maximum norm, in the proof of Theorem D in [24]. For more
explanations and the heuristic reasons for the key idea of tilting the normal line in this approach,
the interested reader may consult [24, 26].

In the main proof in [24] one could make use of the maximality of |p(z)|; as before in [14, 15], we
now have to take a general boundary point and derive pointwise estimates in this more general case.

Here we work out the following version of the main proof from [24].

Lemma 4 (tilted normal estimate). Let ζ ∈ ∂K and ν = −eiσ be (some) outer normal vector
to K at ζ. Fix the angles

ψ := arctan
w

d
∈
(
0,

π

4

]
and θ :=

ψ

20
∈
(
0,

π

80

]
. (4.1)

Define

	± := ζ + e±2θiνR = ζ + e(σ±2θ)i
R, [ζ,D±] := 	± ∩K, and δ± := |D± − ζ| = |	 ∩K|,

with the two alternatives with respect to ± understood separately. Then we have the following.
3However, note a disturbing misprint in this fundamental reference: in Section 1.7.2, the first two displayed
formulas must be corrected to have the opposite direction of the inequality sign.
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(i) If 	+ ∩ intK = ∅ or 	− ∩ intK = ∅—in particular, if either δ− = 0, i.e., D− = ζ and
	− ∩K = {ζ}, or δ+ = 0, i.e., D+ = ζ and 	+ ∩K = {ζ}—then

∣∣∣∣
p′

p
(ζ)

∣∣∣∣ ≥
1

2d
n.

(ii) If both intersections 	± ∩ intK are nonempty—entailing that δ± > 0—and 0 < δ± < w, then
∣∣∣∣
p′

p
(ζ)

∣∣∣∣ > 10−3 w

d2
n− 2

39δ±
log

maxK∩�± |p|
|p(ζ)| ≥ 10−3 w

d2
n− 2

39δ±
log

‖p‖∞
|p(ζ)| , (4.2)

where the choice of the sign has to be such that δ± = min(δ−, δ+). In particular, if ζ ∈ H (with H
defined in (3.2)) and n ≥ 73, then according to the last estimate of (3.4)

∣∣∣∣
p′

p
(ζ)

∣∣∣∣ > 10−3 w

d2
n− 3

20δ±
log n. (4.3)

(iii) Finally, if max(δ−, δ+) ≥ w/2, then the above estimates (4.2) and (4.3) hold for both choices
of the sign, so also with the one providing max(δ−, δ+), irrespective of the size of the various parts
of K as cut by the chord lines or of whether intK ∩ 	± = ∅ or not.

Proof. Assume, as we may, ζ = 0 and ν = ν(ζ) = ν(0) = −i; i.e., the selected supporting
line is the real line R (oriented positively) and σ = π/2. So, K lies in the upper half-plane:
K ⊂ {z : Im z ≥ 0}.

Consider now the situation in (i); for example, let us consider the case when intK ∩ 	− = ∅,
the other case being symmetrical. The ray (straight half-line) ei(π/2−2θ)

R+ = 	 ∩ {z : Im z ≥ 0},
emanating from ζ = 0 in the direction of ei(π/2−2θ) intersects K along the segment [0,D], and if
	− ∩ intK = ∅, then we necessarily have [0,D] ⊂ ∂K. So, 	− is a supporting line of K, and either
K ⊂ S[0, π/2 − 2θ] or K ⊂ S[π/2 − 2θ, π]. In either case a standard argument using, for example,
Turán’s Lemma B yields directly |p′(ζ)/|p(ζ)| ≥ n/(2d). Hence assertion (i) is proved.

It remains to discuss the cases when intK ∩ 	± �= ∅, entailing that both δ± are positive.
Again we choose to deal with one of the two entirely symmetrical cases and suppose that

0 < δ− ≤ δ+ < w if min(δ−, δ+) < w/2 and 0 < δ+ ≤ δ− otherwise. Therefore, we can take δ− in
both cases (ii) and (iii). To further ease the notation, we will drop the minus sign from the index
and will simply write δ, D, etc., for the previously given δ−, D−, etc., in the rest of the argument.

The small geometric claim whose proof ramifies here is the statement that we necessarily have

|z| ≤ 2δd

w
for z ∈ K ∩ S[0, θ]. (4.4)

This is clearly true if δ ≥ w/2, because |z| = |z − ζ| ≤ d. However, if δ < w/2, then Proposition 3 ap-
plies with ϕ := 2θ, which in turn furnishes diam(K ∩ S[0, π/2 − 2θ]) ≤ 2δd/w, according to Propo-
sition 2(iii). As S[0, θ] ⊂ S[0, π/2 − 2θ], it is all the more true that diam(K ∩ S[0, θ]) ≤ 2δd/w;
so again |z| = |z − ζ| ≤ diam(K ∩ S[0, θ]) ≤ 2δd/w, as wanted. This small statement will be soon
used in the calculations with points of the forthcoming set Z1.

Denote by Z := {zj = rje
iϕj : j = 1, . . . , n} the n-element set of zeroes (listed according to

multiplicities) of the fixed polynomial p ∈ Pn(K). Note that 0 ≤ ϕj ≤ π for j = 1, . . . , n.
Observe that for any subset W ⊂ Z and M := |p′(ζ)/p(ζ)| we have

M =

∣∣∣∣
p′

p
(0)

∣∣∣∣ ≥ − Im
p′

p
(0) =

n∑
j=1

Im

(
− 1

zj

)
≥
∑
zj∈W

Im

(
− 1

zj

)
=
∑
zj∈W

sinϕj

rj
, (4.5)

because all terms in the full sum are nonnegative.
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ζ t

	

D

J

B5δ/4(0)

eiθ
ei(π−θ)

ei(π/2−2θ)

K

Z1

Z2

Z3

Z4

Z5

Fig. 1. The classification of zeroes according to location.

The segment J is defined to be

J :=

[
ζ + 3D

4
,D

]
=

{
τ := tei(π/2−2θ)δ :

3

4
≤ t ≤ 1

}
. (4.6)

Clearly, by convexity we have J ⊂ K.
Setting Br(0) := {z : |z| ≤ r} and writing Z[α, β] := Z ∩ S[α, β] and Z(α, β) := Z ∩ S(α, β),

we split the set Z into the following parts (Fig. 1):

Z1 := Z[0, θ], μ := #Z1,

Z2 := Z(θ, π − θ) ∩
{
Im(ei2θz) <

3

8
δ

}
, ν := #Z2,

Z3 := Z(θ, π − θ) ∩
{
Im(ei2θz) ≥ 3

8
δ

}
∩B5δ/4(0), κ := #Z3,

Z4 := Z(θ, π − θ) ∩
{
Im(ei2θz) ≥ 3

8
δ

}
\B5δ/4(0) = Z(θ, π − θ) \ (Z2 ∪ Z3), k := #Z4,

Z5 := Z[π − θ, π], m := #Z5.

(4.7)

In the following we estimate |p(τ)/p(ζ)| from below.
First we estimate the distance of any zj ∈ Z1 from J . In view of the above discussed small

claim (4.4), for any z = reiϕ ∈ K ∩ S[0, θ] we have |z| ≤ 2δd/w, whence from the convexity of the
tangent function

r sin θ ≤ 2δd

w
sin θ ≤ 2δ

d

w
tan θ = 2δ

tan θ

tan(20θ)
<

δ

10
. (4.8)

Now dist(z, J) = min3/4≤t≤1 |z − τ | (where τ := tei(π/2−2θ)δ), and by the cosine theorem
|z − τ |2 = r2 + t2δ2 − 2rtδ cos(π/2 − ϕ − 2θ). Because of cos(π/2 − ϕ − 2θ) = sin(ϕ + 2θ) ≤
sin(3θ) ≤ 3 sin θ, (4.8) implies

|z − τ |2 = r2 + 10t2δr sin θ − 6tδr sin θ = r2 + (10t2 − 6t)δr sin θ,

and thus min3/4≤t≤1 |z − τ |2 = |z − τ |2
∣∣
t=3/4

= r2 + (9/8)δr sin θ. It follows that we have

|z − τ |2
|z|2 ≥ 1 +

9

8

δ sin θ

r
> 1 +

9

8

δ sin θ

d
, τ ∈ J.
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Now δ/d ≤ 1 and sin θ < π/80 < 1/10; hence we can apply log(1 + x) ≥ x− x2/2 ≥ 9x/10 for
0 < x < 1/10 to get

|z − τ |2
|z|2 ≥ exp

(
9

10

9δ sin θ

8d

)
> exp

(
δ sin θ

d

)
, τ ∈ J.

Applying this estimate for all the μ zeroes zj ∈ Z1, we finally find

∏
zj∈Z1

∣∣∣∣
zj − τ

zj

∣∣∣∣ ≥ exp

(
1

2

δμ sin θ

d

)
, τ = tδei(π/2−2θ) ∈ J. (4.9)

The estimate of the contribution of zeroes from Z5 is somewhat easier, as now the angle between
zj and τ exceeds π/2. By the cosine theorem again, we obtain for any z = reiϕ ∈ S[π − θ, π] ∩K
the estimate

|z − τ |2 = r2 + t2δ2 − 2rtδ cos
(
ϕ−
(π
2
− 2θ

))

≥ r2 + t2δ2 + 2rtδ sin θ > r2
(
1 +

3δ sin θ

2d

)
, τ ∈ J, (4.10)

as t ≥ 3/4 and r ≤ d. Hence, using again δ/d ≤ 1 and (3/2) sin θ < (3/2)π/80 < 1/10, we can
again apply log(1 + x) ≥ 9x/10 for 0 < x < 1/10 to get

|z − τ |
|z| ≥ exp

(
1

2

9

10

3δ sin θ

2d

)
> exp

(
δ sin θ

2d

)
, τ ∈ J,

which then yields
∏

zj∈Z5

∣∣∣∣
zj − τ

zj

∣∣∣∣ ≥ exp

(
δm sin θ

2d

)
, τ = tδei(π/2−2θ) ∈ J. (4.11)

Observe that the zeroes belonging to Z2 have the property that they fall to the opposite side of
the line Im(ei2θz) = 3δ/8 than J ; hence they are closer to 0 than to any point of J . It follows that

∏
zj∈Z2

∣∣∣∣
zj − τ

zj

∣∣∣∣ ≥ 1, τ = tδei(π/2−2θ) ∈ J. (4.12)

Next we use Chebyshev’s Lemma H to estimate the contribution of zero factors belonging to Z3.
We find

max
τ∈J

∏
zj∈Z3

∣∣∣∣
zj − τ

zj

∣∣∣∣ ≥ 2

(
|J |
4

)κ ∏
zj∈Z3

1

rj
≥
(

1

20

)κ
> exp(−3κ) (4.13)

since |J | = δ/4, rj ≤ 5δ/4, and log 20 = 2.9957 . . . < 3.
Note that for any point z = reiϕ ∈ B5δ/4(0) ∩ {Im(ei2θz) ≥ 3δ/8} we must have

3δ

8
≤ Im(ei2θreiϕ) = r sin(ϕ+ 2θ);

hence, by r ≤ 5δ/4 also

sin(ϕ+ 2θ) ≥ 3δ

8r
≥ 3

10
and sinϕ ≥ sin(ϕ+ 2θ)− 2θ ≥ 3

10
− π

40
>

1

5
.

Applying this for all the zeroes zj ∈ Z3, we are led to

1 ≤ 5δ/4

rj
≤ 25

4
δ
sinϕj

rj
, zj ∈ Z3. (4.14)
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On combining (4.13) with (4.14) and writing in 3 · 25/4 < 19, we are led to

max
τ∈J

∏
zj∈Z3

∣∣∣∣
zj − τ

zj

∣∣∣∣ > exp

(
−19δ

∑
zj∈Z3

sinϕj

rj

)
. (4.15)

Finally we consider the contribution of the zeroes from Z4, i.e., the “far” zeroes, for which we
have Im(zje

2iθ) ≥ 3δ/8, ϕj ∈ (θ, π − θ), and |rj | ≥ 5δ/4. Put now Z := zje
2iθ = u+ iv = rei(ϕj+2θ),

and s := |τ | = tδ, say. We then have
∣∣∣∣
zj − τ

zj

∣∣∣∣
2

=
|Z − tδi|2

r2
=

u2 + (v − s)2

r2
= 1− 2vs

r2
+

s2

r2
> 1− 2vs

r2
+

s2

r2
v2

r2

=
(
1− vs

r2

)2
≥
(
1− |v|δ

r2

)2
=

(
1− δ| sin(ϕj + 2θ)|

r

)2
. (4.16)

Recall that log(1 − x) > −x− x2/(2(1 − x)) ≥ −3x whenever 0 ≤ x ≤ 4/5. We can apply this for
x := δ|sin(ϕj + 2θ)|/rj ≤ δ/rj ≤ 4/5 using r = rj = |zj | = |u + iv| ≥ 5δ/4. As a result, (4.16)
leads to ∣∣∣∣

zj − τ

zj

∣∣∣∣ ≥ exp

(
−3δ

| sin(ϕj + 2θ)|
rj

)
, (4.17)

and using |sin(ϕj + 2θ)| ≤ sinϕj + sin 2θ ≤ 3 sinϕj (in view of ϕj ∈ (θ, π − θ)), we finally get

∏
zj∈Z4

∣∣∣∣
zj − τ

zj

∣∣∣∣ ≥ exp

(
−9δ

∑
zj∈Z4

sinϕj

rj

)
, τ = tδei(π/2−2θ) ∈ J. (4.18)

If we collect estimates (4.9), (4.11), (4.12), (4.15), and (4.18), we find for a certain point of
maximum τ0 ∈ J in (4.15) the inequality

|p(τ0)|
|p(0)| =

∏
zj∈Z

∣∣∣∣
zj − τ0

zj

∣∣∣∣ > exp

{
1

2
δ
μ+m

d
sin θ − 19δ

∑
zj∈Z2∪Z3∪Z4

sinϕj

rj

}
,

or, after taking logarithms and canceling by δ/2,

2

δ
log

∣∣∣∣
p(τ0)

p(0)

∣∣∣∣ ≥ (μ+m)
sin θ

d
− 38

∑
zj∈Z2∪Z3∪Z4

sinϕj

rj
. (4.19)

Observe that for the zeroes in Z2 ∪ Z3 ∪ Z4 we have sinϕj > sin θ, whence also

(ν + κ+ k)
sin θ

d
−

∑
zj∈Z2∪Z3∪Z4

sinϕj

rj
≤ 0. (4.20)

Adding (4.20) to the right hand-side of (4.19) and taking into account #Z =
∑5

j=1#Zj , we obtain

2

δ
log

∣∣∣∣
p(τ0)

p(0)

∣∣∣∣ ≥
sin θ

d
n− 39

∑
zj∈Z2∪Z3∪Z4

sinϕj

rj
. (4.21)

Making use of (4.5) with the choice of W := Z2 ∪ Z3 ∪ Z4, we arrive at

2

δ
log

∣∣∣∣
p(τ0)

p(0)

∣∣∣∣ ≥
sin θ

d
n− 39

∣∣∣∣
p′

p
(0)

∣∣∣∣;

that is, writing in again the normalization ζ := 0,∣∣∣∣
p′

p
(ζ)

∣∣∣∣ >
1

39

sin θ

d
n− 2

39δ
log

∣∣∣∣
p(τ0)

p(ζ)

∣∣∣∣. (4.22)

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 303 2018



94 P.Yu. GLAZYRINA, Sz.Gy. RÉVÉSZ

It remains to recall (4.1) and to estimate

sin θ = sin
arctan(w/d)

20
.

As θ ∈ (0, π/80], we have sin θ > θ(1− θ2/6) ≥ θ(1−π2/38 400) > (1− 10−3)θ, and as 0 < w/d ≤ 1,
we have arctan(w/d) ≥ (w/d)(π/4), whence

sin θ ≥ (1− 10−3)
arctan(w/d)

20
≥ (1− 10−3)π

80

w

d
> 39 · 10−3w

d
.

If we substitute this last estimate into (4.22), we get
∣∣∣∣
p′

p
(ζ)

∣∣∣∣ > 10−3 w

d2
n− 2

39δ
log

∣∣∣∣
p(τ0)

p(ζ)

∣∣∣∣,

and the lemma follows. �

5. COMBINED ESTIMATE FOR VALUES OF THE LOGARITHMIC DERIVATIVE

Lemma 5. Let ζ, ζ ′ ∈ ∂K, ζ ≺ ζ ′, and let (some) tangents (supporting lines to K) be given
at these points as t := ζ + eiαR and t′ := ζ ′ + eiα

′
R, respectively, with the directional vectors eiα

and eiα
′ oriented positively and α < α′ < α + π. Define the angle β := π − (α′ − α) and write

s := |ζ ′ − ζ|. If s ≤ s0 := s0(β) := min(1, 2 sin β)d/384, then for any p ∈ Pn(K) we have the
following alternative:

(i) either |p(ζ)|, |p(ζ ′)| ≤ 2−n‖p‖∞ (in particular, ζ, ζ ′ /∈ H for n ≥ 15),
(ii) or |p′(ζ)/p(ζ)|+ |p′(ζ ′)/p(ζ ′)| ≥ 3 sin β · n/(8d).
Proof. Let T := t ∩ t′. Then with the above notation we have ∠(ζTζ ′) = β. Moreover, since

t and t′ are tangents of K, we have K ⊂ S, where S = ST [α
′, π − α] is the sector with vertex T

containing the chord [ζ, ζ ′].
Let now z ∈ K ⊂ S be arbitrary. We can describe the location of z with respect to each of the

three points ζ, ζ ′, and T . Let us write

r := |z − ζ|, r′ := |z − ζ ′|, ρ := |z − T |,

ϕ := ∠(zζT ), ϕ′ := ∠(zζ ′T ), φ := ∠(zTζ), φ′ := ∠(zTζ ′).

Then, of course, φ+ φ′ = β. Now, if the distances (heights) of z from the tangents are m := dist(z, t)
and m′ := dist(z, t′), then we have m = r sinϕ = ρ sinφ and m′ = r sinϕ′ = ρ sinφ′. If we further
take ρ ≥ R := 3max(|T − ζ|, |T − ζ ′|), then we also have r, r′ ≤ d and r ≤ ρ+ |ζ − T | ≤ (4/3)Rρ,
r′ ≤ ρ+ |ζ ′ − T | ≤ (4/3)ρ, whence

sinϕ

r
+

sinϕ′

r′
=

r sinϕ

r2
+

r′ sinϕ′

r′2
=

ρ sinφ

r2
+

ρ sinφ′

r′2
≥ 3

4d
(sinφ+ sinφ′)

=
3

2d
sin

φ+ φ′

2
cos

φ− φ′

2
≥ 3

2d
sin

β

2
cos

β

2
=

3 sin β

4d
.

Denote now the subset of zeroes of K which lie at least R far from T by Z(R), i.e., write Z(R) :=
Z \ BR(T ). Then for any zj ∈ Z(R) we have |zj − T | ≥ R and zj ∈ K ⊂ S, i.e., the above
calculation is valid, and we obtain

sin(arg(zj − ζ)− α)

|zj − ζ| +
sin(arg(zj − ζ ′)− α′)

|zj − ζ ′| ≥ 3 sin β

4d
.
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Observe that the terms here are the general terms for the expression Im(e−iα/(ζ − zj)) +
Im(e−iα′

/(ζ ′ − zj)), whence denoting ν := #Z(R) we get similarly to (4.5)
∣∣∣∣
p′

p
(ζ)

∣∣∣∣+
∣∣∣∣
p′

p
(ζ ′)

∣∣∣∣ ≥ Im

(
p′

p
(ζ)e−iα

)
+ Im

(
p′

p
(ζ ′)e−iα′

)

=
n∑

j=1

{
Im

e−iα

ζ − zj
+ Im

e−iα′

ζ ′ − zj

}
≥
∑

z∈Z(R)

3 sin β

4d
=

3 sin β

4d
ν. (5.1)

Next we would like to estimate the number μ := n − ν of zeroes of a fixed p ∈ Pn(K) in
Z \ Z(R), i.e., in Z∗ := Z ∩ BR(T ). Recall that K ⊂ S, whence also Z∗ ⊂ K∗ := K ∩ BR(T ) ⊂
S ∩ BR(T ) =: S∗. For the sectorial part S∗ of BR(T ) the diameter is either the radius or the
chord, depending on the central angle (on whether it exceeds π/3); so we obtain d∗ := diam(K∗) ≤
diam(S∗) = max(R, 2R sin(β/2)). Recall the definition of R as three times the maximum of the
two sides from T of the triangle �(Tζζ ′). Calculating from the sine theorem, we thus obtain
R ≤ 3s/sin β, and, moreover, in the case β > π/2 we even get R ≤ 3s (as then the side ζζ ′, opposite
to the largest angle β > π/2, is necessarily the longest side of the triangle). On combining these
estimates, we finally get

d∗ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

3

sinβ
s if β ≤ π

3
,

3

cos(β/2)
s ≤ 3

√
2s if

π

3
≤ β ≤ π

2
,

3max

(
1, 2 sin

β

2

)
s ≤ 6s if β >

π

2
,

d∗ ≤ 6

min(1, 2 sin β)
s.

Now let us assume that s ≤ s0. This means that

d∗ ≤ 6

min(1, 2 sin β)

min(1, 2 sin β)

384
d =

d

64
.

Consider now the case when the number μ of zeroes of p in K∗ is at least n/2; we claim that
then (i) of the stated alternative holds true.

The condition μ ≥ n/2 can be written with k = 64 as μ ≥ 3 log 2/log kn. Therefore, an
application of Lemma 3 with k = 64 provides that we necessarily have |p(ζ)| and |p(ζ ′)| rather
small, smaller than 2−n‖p‖∞, proving the first part of the claim in (i). (In fact, in this case we
also find that the same must hold throughout all of K∗, so in particular at all points of the arc ζ̃ζ ′

between ζ and ζ ′.)
As for the second part of (i), we certainly have ζ, ζ ′ /∈ H whenever cn−2/q ≥ 2−n with the

constant c defined in (3.2); reformulating, it suffices to have

1

2

(
1

n28π(q + 1)

)1/q
≥ 2−n.

As q ≥ 1 and the left-hand side is easily seen to increase as a function of q ≥ 1, it suffices
to show this for q = 1; and for q = 1 the inequality becomes 2n/n2 ≥ 32π, which holds for
n ≥ 15, as for n ≥ 15 the left-hand side is an increasing function of n and its value at n = 15 is
215/152 > 215/162 = 32 · 4 > 32π. Thus (i) is satisfied, concluding the proof in this case.

In the other case (when μ < n/2), however, we must have ν ≥ n/2. Therefore, in this case (5.1)
furnishes (ii) of the stated alternative and the proof concludes in this case as well. �
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6. PROOF OF THEOREM 1

In this section we prove the main result of the paper, that is, Theorem 1. More precisely, we
also get the following explicit estimate of Mn,q for large values of n.

Theorem 1′. Let K � C be any compact convex domain. Then for any q ≥ 1, n ≥ n0(K) =
max(1021, d5/w5) and all p ∈ Pn(K), we have

‖p′‖q ≥
1

24 · 104
w2

d3
n

log n
‖p‖q, i.e., Mn,q ≥

1

24 · 104
w2

d3
n

log n
.

Proof. The proof is divided into four parts. In Subsection 6.1 we introduce the set G of “good
points,” for which the tilted normal estimate (4.3) may be applied. In Subsection 6.2 we construct
and describe a set L which covers Γ \ G. The integral of |p′|q over H is estimated in Subsections 6.3
and 6.4. These subsections are computationally quite expansive.

6.1. The subset G of “good points.” As before in Lemma 4, we fix here the angle θ as
θ := arcsin(w/d)/80, so that the angle ϕ := π/2 − 2θ will satisfy 2π/5 < ϕ < π/2. Further, we
will fix a parameter r > 0. The value of this will be of the order log n/n, so very small for n large.
Later in Subsection 6.3 the “tilted normal estimate” of Lemma 4 will be applied with chord lengths
at least r.

At the outset we will assume r < w/108; later we will need more restrictions on r, but r < w/108
will certainly be satisfied. In all, our condition on r will be expressed as 0 < r ≤ r0 = r0(w, d),
so that r0 depends only on the parameters d = dK and w = wK , but not on anything else, in
particular not on the degree n. On the other hand, we will also assume that n ≥ n0 := n0(w, d),
again depending only on w and d, and on nothing else. The bound r0 will be specified later; n0 will
be equal to the n0(K), already set in the assertion of Theorem 1′.

At any point ζ ∈ ∂K = Γ one can consider all normals and the respective tangents; and the
tilted normal lines with angles ϕ from the tangent measured from half-lines of the tangent lines, i.e.,
with ±2θ = ±(π/2 − ϕ) from the (inner) normal directions.

If any of these tilted lines intersects K along a sufficiently long chord, i.e., along a chord at least
as long as r, or if one of the tilted lines does not intersect the interior of K at all, then we will
apply the “tilted normal estimate” (4.3) of Lemma 4. Later in Subsection 6.3 we will see how for
these points an application of Lemma 4 suffices. So we will call these points good points, the full
set of good points being G ⊂ Γ. Our main concern will be to deal with points in Γ \ G.

6.2. The subsets F and L of ∂K.
6.2.1. The family I of “elementary small arcs.” Once ζ /∈ G, it means that for any (outer)

normal direction ν = −eiσ to K at ζ, at least one of the two chords (ζ + ei(σ±2θ)
R) ∩K is short—

shorter than r. As stated in Propositions 2 and 3, the “small part of Γ” and the respective small
part of K, encircled by this part of the boundary, are always proportional to the chord length
δ = δ(ζ, σ ± 2θ) = |(ζ + ei(σ±2θ)

R) ∩K| and hence are small, too.
Together with ζ ∈ Γ \ G, there is thus a chord line 	 of direction ±2θ from the inner normal

direction eiσ with 	 ∩ K = [ζ,D] with D := D(ζ, σ ± 2θ) ∈ Γ and |D − ζ| = δ(ζ, σ ± 2θ) < r.
Consider the smaller arc of Γ bounded by these two points ζ and D (endpoints included). Such
arcs will be called elementary small arcs; thus ζ /∈ G if and only if ζ defines such an elementary
small arc I, for which it is one of the endpoints and so in particular ζ ∈ I. The family of all such
elementary small subarcs will be denoted by I , and their union, by E , so that E :=

⋃
I∈I I. We

clearly have Γ \ G ⊂ E . Note that the name “elementary small arc” is well justified because any
elementary small arc I ⊂ Γ is of length not exceeding 4dr/w in view of Proposition 2(iv).

However small these arcs I ∈ I are, they exhibit certain largeness, too. Namely, along any
elementary small subarc I the total variation Var[α, I] of α is at least ϕ. To see this, assume that
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I = ζ̃D := {P ∈ Γ: ζ ≺ P ≺ D}, say, with the chord [ζ,D] = K ∩ (ζ + ei(σ−2θ))R small. (The
other case when I = D̃ζ, i.e., D ≺ ζ and [ζ,D] = K ∩ (ζ + ei(σ+2θ))R small, is entirely symmetrical
again.) So the (positively oriented) directional angle of (some) tangent t at ζ is σ − π/2, the chord−→
ζD is of direction σ − 2θ, and by convexity of Γ any tangent t′ at D must have direction α′ ≥ σ − 2θ.
Thus we indeed find Var[α, I] = α+(D)− α−(ζ) ≥ α′ − (σ − π/2) ≥ (σ − 2θ)− (σ − π/2) = ϕ.

As an immediate result, there can be at most four disjoint such subarcs in Γ: for already
along five disjoint elementary subarcs the total variation would be at least 5ϕ > 2π = Var[α,Γ],
a contradiction. So let us choose, once and for all, a maximal family of such disjoint elementary
small subarcs Ij, j = 1, . . . , k, k ≤ 4. We of course have then only F :=

⋃k
j=1 Ij ⊂ E , and cannot

state that even F covers Γ \ G, but on the other hand, we know that any point z ∈ E belongs to
some elementary arc I ∈ I , which intersects some of these Ij . As we have |I| ≤ 4rd/w, always, it
means that a point z ∈ E cannot be farther (measured in arc length along Γ) from F than 4rd/w.

6.2.2. A covering L of the sets F and E. In view of the above, extending each Ij along Γ in
both directions by 4dr/w in arc length, we obtain a subset

L :=

{
z ∈ Γ: dist(z,F) ≤ 4rd

w

}
⊂ Γ,

which will contain all points of E , and thus also cover Γ \ G again. So we find G ∪ L = Γ. Let us also
record right here that the total arc length measure of the so constructed set L is |L| ≤ 4 · 12rd/w =
48rd/w.

So there are points in Γ \ L, and fixing one such point C ∈ Γ \ L, we can start the parametriza-
tion of Γ from that point. It means that γ : [0, L] → Γ will define a unique ordering of points of
Γ \ {C}, so in particular of points of L. In this ordering let us write Ij = P̃jP

′
j ; so it can be the case

that P ′
j = D(Pj), but also that Pj = D(P ′

j), depending on the initial point of small chord length in
the construction of the arc.

So, L :=
⋃k

j=1 Q̃jQ
′
j , where Qj ≺ Pj ≺ P ′

j ≺ Q′
j, and the arc length measures are |Q̃jPj | =

4rd/w, |P̃jP
′
j | ≤ 4rd/w, |P̃ ′

jQ
′
j | = 4rd/w, and altogether |Q̃jQ

′
j | ≤ 12rd/w.

There is only a slight technicality here: these vicinities Q̃jQ
′
j of the disjoint small elementary arcs

Ij = P̃jP
′
j need not remain disjoint. However, no three of them may chain together. Indeed, assume

this to happen: that would result in a subarc Γ′ of Γ, altogether not longer than 3 · 12rd/w =
36rd/w, with a total variation of the tangent direction already exceeding 3ϕ > 6π/5. This is,
however, impossible. Indeed, then the tangents t and t′ at the endpoints ζ ≺ ζ ′ of Γ′ would intersect
at a point T on the other side of Γ′, and the triangle � = con(T, ζ, ζ ′) would contain Γ \ Γ′; and
then using

diam(Γ \ Γ′) ≤ diam(�) ≤ 1

sin(π/5)
|ζ ′ − ζ| < 2|ζ ′ − ζ|,

we would get

diam(K) = diam(Γ) ≤ diam(Γ \ Γ′) + diam(Γ′) < 2|ζ ′ − ζ|+ diam(Γ′)

≤ 2|Γ′|+ |Γ′| ≤ 3
36rd

w
=

108rd

w
< d,

a contradiction.
In view of the above, L =

⋃k0
m=1 Am, where Am are to denote the connected components of L,

their number is k0 ≤ k ≤ 4, and each of the components has arc length exceeding 8rd/w. More
precisely, each of the connected components (arcs) of L consists of some (one or two) of the prefixed
disjoint elementary arcs Ij = P̃jP

′
j—among which we can now choose one arbitrarily, if there are
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Q

Q′

P = P1

P ′ = P ′
1

P2

P ′
2

A = Q̃Q′

A− = Q̃P

A+ = P̃ ′Q′

Γ

I1

I2

|Q̃P | = 4rd/w
|I1| ≤ 4rd/w

|P̃ ′
1P2| ≤ 8rd/w

|I2| ≤ 4rd/w

|P̃ ′
2Q| = 4rd/w

Fig. 2. One connected component A of the set L.

two—and also some part preceding and some other part following this selected elementary arc. For
one arbitrary connected component Am of L we will thus write Am = Q̃mQ′

m with Qm ≺ Pj(m) ≺
P ′
j(m) ≺ Q′

m with the parts Am− := Q̃mPj(m) and Am+ := ˜P ′
j(m)Q

′
m having arc length measure at

least 4rd/w and at most 16rd/w, and the intermediate (“central”) part Ij(m) = ˜Pj(m)P
′
j(m) of arc

length measure at most 4rd/w; and in all,

8rd

w
< |Am| ≤ 24rd

w
, m = 1, . . . , k0. (6.1)

Let us briefly summarize our construction of subsets of ∂K. We started with points ζ /∈ G,
considered the elementary short subarcs I = ζ̃D or D̃ζ generated by any such ζ, and took the
union E :=

⋃
I∈I I of these subarcs, obviously covering Γ \ G. Next, we selected a maximal disjoint

subset of elementary subarcs and their union F :=
⋃k

j=1 Ij , which is only a subset of E ; but then
took a proper neighborhood L of F to cover E , and whence also Γ \ G again. The advantage of
these steps back and forth is that the resulting set L not only covers E ⊃ Γ \ G but also has a
manageable structure: it consists of k0 ≤ k ≤ 4 connected subarcs Am of Γ, all of which have arc
length measure between 8rw/d and 24rd/w, and each of which is easily divided into three parts:
one selected elementary small subarc Ij(m) from the disjoint system {Ij}kj=1 as a “central part,” and
the preceding and following parts Am− and Am+, both of size of order rd/w, too. It is important
that the “central part” exhibits a change of the tangent angle function at least ϕ, and its arc length
is bounded by that of the surrounding parts (i.e., of order rd/w). One such connected subarc
A := Am is depicted in Fig. 2.

We have already seen in Lemma 2 that
∫
H|p|q ≥ (1/2)

∫
Γ|p|q. In the rest of the proof, we

distinguish two cases:

(I)
∫

H∩L

|p|q ≤ 1

2

∫

H

|p|q; (II)
∫

H∩L

|p|q > 1

2

∫

H

|p|q.

6.3. Case (I). Note that in this case we have
∫

H\L

|p|q ≥ 1

2

∫

H

|p|q ≥ 1

4

∫

Γ

|p|q.
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So let then ζ ∈ H \ L be any point. As ζ /∈ L, it follows that ζ ∈ G, that is, its “tilted normal”
chord length is δ(ζ, σ ± 2θ) ≥ r. So, from (4.3) of Lemma 4 we get the estimate

|p′(ζ)| ≥
(
10−3 w

d2
n− 3

20r
log n

)
|p(ζ)|, n ≥ 73. (6.2)

Therefore, if

r := r(n) := 300
d2

w

log n

n
, (6.3)

then |p′(ζ)| ≥ 5 · 10−4wd−2n|p(ζ)|, and we get
∫

H\L

|p′|q ≥
(
5 · 10−4 w

d2
n
)q ∫

H\L

|p|q ≥ 1

4

(
5 · 10−4 w

d2
n
)q ∫

Γ

|p|q.

It follows that in this case

‖p′‖q ≥

⎛
⎝
∫

H\L

|p′|q
⎞
⎠
1/q

≥ 5 · 10−4

41/q
w

d2
n

⎛
⎝
∫

Γ

|p|q
⎞
⎠
1/q

> 10−4 w

d2
n‖p‖q, (6.4)

which closes the argument for all n sufficiently large (so that r(n) < r0 holds). Note that in this
case we obtained a constant times n oscillation, not only of order log n/n.

6.4. Case (II). In the remaining other case we have
∫

H∩L

|p|q > 1

2

∫

H

|p|q; therefore,
∫

L

|p|q ≥
∫

L∩H

|p|q ≥ 1

2

∫

H

|p|q ≥ 1

4

∫

Γ

|p|q.

Recall that L consists of k0 ≤ 4 arcs, each of length between 8rd/w and 24rd/w. Let us select one
arc Am = Q̃mQ′

m, where
∫
Am

|p|q is maximal among these at most four arcs. To relax notation, from
now on let us drop the indices m and m(j) and write A for Am, P for Pj(m), Q for Qm, etc. So, as
it was said before, we fix one elementary small subarc I = Ij(m) = P̃P ′ ⊂ A as the “central part”
of A and write A− := Q̃P and A+ := P̃ ′Q′ for the parts preceding and following it, respectively.

By construction, we necessarily have∫

A

|p|q ≥ 1

4

∫

L

|p|q ≥ 1

16

∫

Γ

|p|q. (6.5)

We also put
u := min

A
|p(z)| and v := max

A
|p(z)| = ‖p‖L∞(A).

With these quantities, we consider two subcases next:

(II1) 2u < v; (II2) 0 < u ≤ v ≤ 2u.

6.4.1. Subcase (II1): 2u < v. We estimate the integrals using the Hölder inequality and the
trivial estimation of the variation of p on A as follows:

|A|1−1/q

⎛
⎝
∫

A

|p′|q
⎞
⎠
1/q

≥
∫

A

|p′| ≥ |v − u| ≥ v

2
=

1

2
‖p‖L∞(A)

≥ 1

2

⎛
⎝ 1

|A|

∫

A

|p|q
⎞
⎠
1/q

=
1

2
|A|−1/q

⎛
⎝
∫

A

|p|q
⎞
⎠
1/q

; (6.6)
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i.e., we obtain

2|A|

⎛
⎝
∫

A

|p′|q
⎞
⎠
1/q

≥

⎛
⎝
∫

A

|p|q
⎞
⎠
1/q

≥

⎛
⎝ 1

16

∫

Γ

|p|q
⎞
⎠
1/q

,

and so with r = r(n)

‖p′‖q ≥

⎛
⎝
∫

A

|p′|q
⎞
⎠
1/q

≥ 1

2|A|

⎛
⎝ 1

16

∫

Γ

|p|q
⎞
⎠
1/q

≥ ‖p‖q
161/q · 2 · 24rd/w

>
w

800dr(n)
‖p‖q =

w

800d · 300d2w−1n−1 log n
‖p‖q =

1

24 · 104
w2

d3
n

log n
‖p‖q. (6.7)

6.4.2. Subcase (II2): 0 < u ≤ v ≤ 2u. We will consider any two points ζ ∈ A− and ζ ′ ∈ A+.
Note that between these two points there lies an elementary small subarc Ij, whence if t and t′ are
tangent lines at ζ and ζ ′ to K, respectively, with directional angles α and α′, respectively, then we
necessarily have α′ − α ≥ ϕ.

This is the place where we need Lemma 5. The distance between the points is s := |ζ − ζ ′| ≤
|A| ≤ 24rd/w, which must not exceed s0 from the condition of Lemma 5. For the angle β :=
π − (α′ − α) we already know by construction that β ≤ π − ϕ ≤ 3π/5, so sin β ≥ 1/2 unless
β < π/6. Therefore, we need to care for small β only. However, according to Proposition 2
from Section 2, we also know that β > arcsin((w − s)/d), whence sin β ≥ (w − s)/d whenever
0 < β < π/2. So altogether we find that sin β ≥ min(1/2, (w − s)/d) ≥ w/(2d) if we also assume
s ≤ w/2.

At this point we need to specify a sufficient condition in terms of r for the chord length
s := |ζ ′ − ζ| to stay below min(s0, w/2): it suffices to have

24rd

w
≤ w

384

(
≤ min(1, 2 sin β)

384
d

)
, that is, r ≤ 1

24 · 384
w2

d
,

so, for example, r ≤ r1 := 10−4w2/d (which is much smaller than the initial bound w/108).
The alternative of the said Lemma 5 has (i) with rather small values of the polynomial p.

However, the variation of the values all over A remains within a factor of 2 in our case. Thus we
conclude that even for the maximum we must have v := ‖p‖L∞(A) ≤ 21−n‖p‖L∞(K). So from the
above

‖p‖qLq(∂K) =

∫

Γ

|p|q ≤ 16

∫

A

|p|q ≤ 16|A|vq ≤ 16 · 24 d

w
· 300d

2

w

log n

n
· 2q−qn‖p‖qL∞(K).

Next we show that this is not possible. And indeed, according to the Nikolskii-type estimate of
Lemma 1, we must have ‖p‖Lq(K) ≥ (d/(2(q + 1)))1/q‖p‖L∞(K)n

−2/q; so, combining it with the
latter formula, we get

‖p‖qLq(∂K) ≤ 16 · 24 d

w
· 300d

2

w

log n

n
· 2q−qn 2(q + 1)

d
‖p‖qLq(∂K)n

2,

that is
2qn

n log n
≤ 16 · 24 · 300 d2

w2
· 2q+1(q + 1),

which clearly fails for n large enough.
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To be more precise, consider any fixed n ≥ 73 and the function 2(n−1)q/(q + 1); then this is
clearly an increasing function of q ∈ [1,∞), so it suffices to establish a contradiction with q = 1;
and so it suffices to demonstrate a contradiction with

2n

n log n
≤ 16 · 24 · 300 d2

w2
· 8 = 900 · 210 d

2

w2
= 921 600

d2

w2

for sufficiently large n. As for the left-hand side, we can write 2x/(x log x) > 2x/2f(x) with f(x) :=
2x/2/(x log x), and the latter is an increasing function of the variable x for x ≥ 73, so we have
f(x) ≥ f(73) > 310 290 286, x ≥ 73. Therefore, the desired contradiction will arise if 2n/2f(73) >
921 600 d2/w2, in particular, if 2n/2 > d2/w2. Actually, it suffices then to take

n ≥ n1 := max

(
73, 6 log

d

w

)
.

It remains to consider alternative (ii) of Lemma 5. As is clarified above, we already know that
the occurring angle β satisfies arcsin(w − s)/d ≤ β ≤ 3π/5, so this alternative of the assertion of
Lemma 5 works with sin β ≥ w/2d for sure. That is, we have

∣∣∣∣
p′

p
(ζ)

∣∣∣∣+
∣∣∣∣
p′

p
(ζ ′)

∣∣∣∣ ≥
3 sin β

8d
n ≥ 3

16

w

d2
n ∀ ζ ∈ A−, ∀ ζ ′ ∈ A+.

In particular, if there is any point ζ ∈ A− with |p′(ζ)/p(ζ)| ≤ (3/32)wd−2n, then we must have
|p′(ζ ′)/p(ζ ′)| ≥ (3/32)wd−2n all over A+, and, conversely, if there is such a “small value point”
on A+, then we must have this lower estimation all over A−. So, either both subarcs A− and A+

satisfy this lower estimation, or at least one of them must satisfy it at all of its points. So assume,
as we may, that A+ satisfies this lower estimation; this yields

∫

A+

|p′|q ≥
(

3

32

w

d2
n

)q ∫

A+

|p|q.

Recall that |A+| ≥ 4rd/w, while |A| ≤ 24rd/w, and that u ≤ |p(z)| ≤ v ≤ 2u holds all over A.
These furnish

∫

A+

|p|q ≥ |A+|uq ≥
4rd

w
2−qvq ≥ |A|

8
2−qvq ≥ 2−q−3

∫

A

|p|q ≥ 2−q−7

∫

Γ

|p|q,

using also (6.5), established at the beginning of the case under consideration.
So in all, we are led to

‖p′‖qq ≥
∫

A+

|p′|q ≥
(

3

32

w

d2
n

)q ∫

A+

|p|q ≥
(

3

64

w

d2
n

)q 1

27
‖p‖qq.

So in this case, we arrive at

‖p′‖q ≥
3

64 · 27/q
w

d2
n‖p‖q >

3

104
w

d2
n‖p‖q. (6.8)

Collecting the above estimates (6.8), (6.4), and (6.7), we arrive at

‖p′‖q ≥ min

(
3

104
w

d2
n, 10−4 w

d2
n,

1

24 · 104
w2

d3
n

log n

)
‖p‖q =

1

24 · 104
w2

d3
n

log n
‖p‖q

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 303 2018



102 P.Yu. GLAZYRINA, Sz.Gy. RÉVÉSZ

provided that all our conditions are met: r = r(n) ≤ r1 := 10−4w2/d and n ≥ n1 :=
max(73, 6 log(d/w)). Note that here r(n) := 300d2w−1n−1 log n depends on n, decreases to zero,
and it suffices to find an index n0 ≥ n1 such that at n = n0, and hence for all n ≥ n0 too, the
inequality r(n) ≤ r1 holds. That is, we want

300
d2

w

log n

n
≤ 10−4w

2

d
, or equivalently

n

log n
≥ 3 · 106 d

3

w3
.

For example, if n0 := max(1021, d5/w5) and n ≥ n0, then we certainly have n/log n ≥ n11/12 >
n13/42n3/5 ≥ 106.5d3/w3 > 3 · 106d3/w3. Therefore, for any n ≥ n0—which is much larger than
the previously found bound n1—the required estimate r(n) < r1 is satisfied, whence all the above
arguments hold true and Theorem 1′ follows. �

7. CONCLUDING REMARKS

The proof of our main result shows that we can even reach the cn order of oscillation, and even
pointwise estimates, apart from the set of critical small elementary arcs, where the intersection of
the (tilted) normal with K is very small, smaller than c log n/n, but not zero (as in the case of
ζ = D we still have an order n lower estimate at ζ, see Lemma 4(ii)). However, when n → ∞,
the quantity log n/n tends to zero, and in fact we see that for most domains the set of critical
elementary small arcs becomes empty for n large.

More precisely, one can do the following. Let E := E(ϕ, r) be the union of all (closed) elementary
small arcs ζ̃D, defined in Subsection 6.2.1. Then obviously E(ϕ, r) is a decreasing set function of
the parameter r > 0; also it is clarified above that it consists of k ≤ 4 connected arc pieces of Γ.
Each elementary small arc has a total variation of the tangent angle function at least ϕ, so in each
connected component the same holds. Moreover, as discussed in connection with the construction
of L, any such connected component has to be at most of length 24rd/w. Taking the limit when
r → 0, i.e., taking E∗ :=

⋂
r>0 E(ϕ, r), we find that either E∗ = ∅ or E∗ consists of a few (at most

four) isolated points, where the variation (jump) of the tangent angle function α reaches ϕ. In
the case E∗ = ∅, we can still conclude that for n large enough (even if this largeness ineffectively
depends on the geometry of the domain K) this critical part of the proof can be skipped and there
holds a constant times n oscillation estimate. This is not much different from the phenomenon
described in [14]. If, on the other hand, E∗ �= ∅, then we know that ∂K has vertices with (almost)
right angle jumps of the tangents. With a suitable choice of ϕ we can thus prove a sharpening of
the result of Theorem F in the extent that the dependence of the occurring constant is better than
the one in Theorem F.

Actually, we have the following direct corollary of the results of Section 4.
Corollary 1. Assume that the compact convex domain K does not have any boundary points

where the jump of the tangent directional function α would reach ϕ = π/2 − arctan(w/d)/40. Then
we have E(ϕ, r) = ∅ for small enough r, and, as a result, |p′(ζ)/p(ζ)| ≥ cwd−2n at every boundary
point ζ ∈ H for n ≥ n0(K). Furthermore, then we also have

‖p′‖q ≥ c
w

d2
n‖p‖q for n ≥ n0(K).

The above suggests that the truth in general could be as large as cwd−2n, with an absolute
constant c—the same order of magnitude as was found for the ‖·‖∞ case in [24]. It is easy to obtain
polynomials with as small oscillation as C/dn (see Theorem G), but recently Yu. S. Goryacheva in
her master’s thesis [16] has worked out a construction with even smaller oscillation: according to her
work, the oscillation of order Cwd−2n is possible. Based on these observations and the maximum
norm case, there seems to be enough evidence to further sharpen our Conjecture 1.
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Conjecture 2. There exists an absolute constant c > 0 such that for all compact convex
domains K � C and for any p ∈ Pn(K) we have

‖p′‖Lq(∂K) ≥ c
w

d2
n‖p‖Lq(∂K).

Finally, let us analyze the strength of the arguments of the paper. Clearly our considerations are
more involved than the ones used in [24] to derive Theorem D, but from the end result neither this
(for q = ∞) nor the sharper special cases of Theorem F or E (for 1 ≤ q < ∞) follow. However, from
one of the key elements, namely from Lemma 4, a numerical improvement of Theorem D follows.

Corollary 2. Let K � C be any compact convex domain. Then for all p ∈ Pn(K) we have

‖p′‖K ≥ 10−3 w

d2
n‖p‖K . (7.1)

Proof. Choose ζ ∈ ∂K with ‖p‖K = |p(ζ)|, draw any tangent, and apply Lemma 4. If we are
in case (i), then an even better result is obtained. If, on the other hand, we have some positive δ±,
then the actual value of δ± becomes irrelevant as log(‖p‖K/|p(ζ)|) = log 1 = 0. �
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