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Abstract—We consider an effective action of a compact (n− 1)-torus on a smooth 2n-manifold
with isolated fixed points. We prove that under certain conditions the orbit space is a closed
topological manifold. In particular, this holds for certain torus actions with disconnected sta-
bilizers. There is a filtration of the orbit manifold by orbit dimensions. The subset of orbits
of dimensions less than n − 1 has a specific topology, which is axiomatized in the notion of
a sponge. In many cases the original manifold can be recovered from its orbit manifold, the
sponge, and the weights of tangent representations at fixed points. We elaborate on the in-
troduced notions using specific examples: the Grassmann manifold G4,2, the complete flag
manifold F3, and quasitoric manifolds with an induced action of a subtorus of complexity 1.
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1. INTRODUCTION

An action of a compact torus G on a topological space X is a classical object of study [4]. For
a point x ∈ X let Gx ⊂ G denote the stabilizer subgroup and Gx the orbit of x. Let p : X → X/G
be the projection to the orbit space. Let S(G) denote the set of all closed subgroups of G endowed
with the lower interval topology. There is a continuous map

˜λ : X/G → S(G),

which sends an orbit x ∈ X/G to the stabilizer subgroup Gx (see [6]).
The classical idea in the study of torus actions is the following. It is assumed that the projection

map p : X → X/G admits a continuous section. Then, given the orbit space Q = X/G and
a continuous map ˜λ : Q → S(G), one builds a topological model

X
(Q,˜λ)

= (Q×G)/∼,

which is equivariantly homeomorphic to the original space X. The method of constructing model
spaces was used by Davis and Januszkiewicz [11] for the classification of manifolds which are now
called quasitoric [5]. This idea of model spaces traces back to the works of Vinberg [21].

The method can be naturally extended to the locally standard actions of G ∼= T n on 2n-mani-
folds [22]. In this case the projection may not admit the global section; however, it always admits
a section locally. This allows one to construct a model space using principal G-bundles.

Buchstaber and Terzić [7–9] developed a theory of (2n, k)-manifolds in order to study the orbit
spaces of more general torus actions and to obtain topological models for such actions. Grassmann
manifolds and flag manifolds are important families of (2n, k)-manifolds. In this theory a man-
ifold is subdivided into strata Xσ so that the action has the same stabilizer Tσ for all points of

a Faculty of Computer Science, National Research University “Higher School of Economics,” Kochnovskii proezd 3,
Moscow, 125319 Russia.
E-mail address: ayzenberga@gmail.com

16



TORUS ACTIONS OF COMPLEXITY 1 17

a stratum. It is essential in the definition of (2n, k)-manifold that there is a convex polytope P k

and a T k-equivariant generalized moment map X2n → P k. Every stratum Xσ is then represented
as a principal T/Tx-bundle over the product P ◦

σ ×Mσ, where Pσ is a certain subpolytope of P k and
Mσ is an auxiliary space of dimension 2(n − k), called the space of parameters. Therefore, the orbit
space X2n/T k is represented as the union

⊔

σ(Pσ ×Mσ). The theory of (2n, k)-manifolds provides
specific methods to describe the topology of this union.

Whenever a compact k-tours acts effectively on a 2n-manifold, we call the number n − k the
complexity of the action. While actions of complexity zero are well studied, the actions of positive
complexity are harder to analyze. The actions of complexity ≥ 2 are extremely complicated in
general. The actions of complexity 1 occupy an intermediate position: they were studied from
several different viewpoints. An algebraic theory of complexity 1 actions was developed in the works
of many authors; in particular, the classification of such actions, including the nonabelian case, was
given by Timashev [19, 20]. The Hamiltonian complexity 1 actions on symplectic manifolds are also
well studied (see, e.g., the work of Karshon and Tolman [14] and references therein). A circle action
on a 4-manifold is a classical subject (see, e.g., [10, 12, 17, 18]).

In this paper we study complexity 1 actions from the topological viewpoint. Our approach is
different from the one used in [6] and [8]. Instead of trying to stratify the manifold so that the
action on each stratum admits a section, we partition the manifold by orbit types. Under two
restrictions we prove that the orbit space Q = X/T is a topological manifold (see Theorem 2.10 for
the precise statement). Note that for this result it is not required that the stabilizers of the action
be connected. Such a restriction was imposed in the theory of (2n, k)-manifolds; however, there
exist natural examples of actions with finite stabilizers for which the orbit space is still a manifold.

We make a remark on the main difference from the situations considered in toric topology: the
typical action of complexity 1 does not admit a section, even locally.

In the study of complexity 1 actions we are guided by the following important examples:

(1) the T 3 action on the complex Grassmann manifold G4,2;
(2) the T 2 action on the manifold F3 of full complex flags in C

3;

(3) quasitoric manifolds X2n
(P,Λ) with induced action of a generic subtorus T ⊂ G, dimT = n− 1;

(4) the space of isospectral periodic tridiagonal Hermitian matrices of size n ≥ 3.

Using the theory of (2n, k)-manifolds, Buchstaber and Terzić proved [8] that the orbit space of
the Grassmann manifold G4,2 is S5 and the orbit space of the flag manifold F3 is S4. These two
examples motivated our study. In Section 5 we prove that the orbit space of a quasitoric manifold
with respect to the action of an (n− 1)-torus T is also homeomorphic to a sphere: X(P,Λ)/T ∼= Sn+1

(see Theorem 5.1). The recent result of Karshon and Tolman [15] (see also [14]) states that for any
Hamiltonian action of complexity 1 in general position the orbit space is homeomorphic to a sphere.
This general statement includes the cases of G4,2 and F3 and a series of other natural examples.

A space of isospectral tridiagonal n× n matrices is a more interesting object, in particular due to
the fact that the torus action on this space is not Hamiltonian. This space is studied in detail in [2].
This space depends on the spectrum, and for some degenerate spectra it is not smooth. However,
we prove that if it is a smooth manifold, then its orbit space is homeomorphic to the product
S4 × T n−3. In [2] we describe the non-free part of the torus action using the regular permutohedral
tiling of the Euclidean space. This allows us to understand the topology of the whole space rather
than just of its orbit space.

The study of the space of periodic tridiagonal matrices raised several questions about actions
of complexity 1. One of the questions is the topological classification of such actions. In this paper
we prove that under certain restrictions the space X with a complexity 1 action is determined
by the orbit manifold Q = X/T , the set of non-free orbits Z ⊂ Q, and the weights of tangent
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18 A.A. AYZENBERG

representations at fixed points (see Theorem 5.5 and Proposition 5.7). The set of non-free orbits
has a specific topology, which is axiomatized in the notion of sponge. Sponges seem to be the objects
of independent interest.

2. APPROPRIATE ACTIONS OF COMPLEXITY 1

In what follows, T denotes a compact torus of dimension n − 1 and G denotes compact tori of
other dimensions. We refer to the classical monograph of Bredon [4] for general information about
group actions on manifolds.

Let us specify the type of actions to be considered in the paper. For a smooth action of G on a
smooth manifold X, define the fine partition on X by orbit types:

X =
⊔

H∈S(G)

XH .

Here H runs over all closed subgroups of G and XH = ˜λ−1(H) = {x ∈ X | Gx = H}.
Definition 2.1. An effective action of G on a compact smooth manifold X is said to be

appropriate if

• the fixed point set XG is finite;
• (adjoining condition) the closure of every connected component of any element XH , H �= G,

of a fine partition contains a point x′ with dimGx′ > dimH.

If, moreover, the stabilizer subgroup of every point is a torus, we call the action strictly appro-
priate.

Remark 2.2. The adjoining condition implies that whenever a subset XH is closed in the
topology of X, one has H = G.

Remark 2.3. A closed subgroup H of a torus has the form Ht × Hf, where Ht is a torus
and Hf is a finite abelian group. For strictly appropriate actions the finite components Hf of all
stabilizers vanish. In other words, a strictly appropriate action is an action with all stabilizers being
connected.

Example 2.4. Let an algebraic torus (C×)k act algebraically on a smooth complex variety X
with finitely many fixed points. Then the induced action of a compact subtorus T k ⊂ (C×)k on X
is appropriate, as follows from the Bialynicki-Birula method [3]. Indeed, given a point x ∈ X \XT ,
consider the one-dimensional algebraic torus C

× ⊂ (C×)k which acts on x nontrivially. Consider
the point x′ = limt→0 tx, where 0 < t ≤ 1, t ∈ R

× ⊂ C
×. The point x′ is connected with x and

has stabilizer of greater dimension (since x is stabilized by (C×)kx as well as by C
×). Iterating this

procedure, we arrive at some fixed point.
In particular, the action of a compact torus on a complex GKM-manifold (see [13]) is appropriate.
Example 2.5. The effective action of T n−1 on Fn, the manifold of complete complex flags

in C
n, is strictly appropriate. The effective action of T n−1 on the Grassmann manifold Gn,k of

complex k-planes in C
n is also strictly appropriate.

Example 2.6. Let the action of G ∼= T n on a smooth manifold X2n be locally standard (see
the definition in Section 5 below). The orbit space P = X2n/G is a manifold with corners. This
action is appropriate whenever every face of P contains a vertex. If it is appropriate, then it is
strictly appropriate. In particular, quasitoric manifolds provide examples of strictly appropriate
torus actions.

Example 2.7. Let the action of G on X be appropriate and the induced action of a subtorus
T ⊂ G on X have the same fixed points as the G-action. Then the T -action is also appropriate.
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Indeed, the partition element (X ′)K of the T -action for K ⊆ T has the form

(X ′)K =
⋃

H⊆G, H∩T=K

XH .

Therefore, the adjoining condition for the G-action implies the adjoining condition for the induced
T -action.

From now on we restrict ourselves to actions of complexity 1, that is, to the case of dimT = n− 1
and dimX = 2n. Let x ∈ XT be a fixed point and

α1, . . . , αn ∈ N = Hom(T, S1) ∼= Z
n−1

be the weights of the tangent representation at x. This means that

TxX ∼= V (α1)⊕ . . .⊕ V (αn),

where V (α) is the standard one-dimensional complex representation given by

tz = α(t)z, t ∈ T, z ∈ C.

If there is no complex structure on X, then there is ambiguity in the choice of the signs of αi. These
signs are inessential in the following definitions.

Definition 2.8. A representation of T n−1 on C
n is said to be in general position if every n− 1

of its n weights are linearly independent. An action of T = T n−1 on X = X2n is called an action
in general position if its tangent representation at any fixed point is in general position.

Remark 2.9. For an n-tuple of weights α1, . . . , αn, there is a relation c1α1 + . . . + cnαn = 0
in N ∼= Z

n−1. The action is in general position if and only if ci �= 0 for all i = 1, . . . , n.
Theorem 2.10. Consider an appropriate action of T = T n−1 on X = X2n and assume it is

in general position. Then the orbit space Q = X/T is a topological manifold.
Proof. First we prove the local statement near fixed points.
Lemma 2.11. For a representation of T = T n−1 on C

n in general position we have
C
n/T ∼= R

n+1.
Proof. Consider the standard action of G = T n on C

n which rotates the coordinates.
The weights e1, . . . , en of the standard action form the standard basis of the character lattice
Hom(G,S1) ∼= Z

n. Consider the lattice homomorphism φ : Zn → N given by φ(ei) = αi,
i = 1, . . . , n. This homomorphism is induced by some homomorphism φ∗ : T → G of tori. The
given action of T is the composition of φ∗ with the standard action.

So we may assume that there is an action of a subtorus T ′ = f(T ) ⊂ G where G acts in a
standard way. The torus T ′ is given by {tc11 . . . tcnn = 1}, where (c1, . . . , cn) is the set of coefficients
of a linear relation on the weights αi and gcd{ci} = 1. The condition of general position implies that
ci �= 0 for all i. Hence the intersection of T ′ with each coordinate circle in G is a finite subgroup.

Let us denote the space C
n/T = C

n/T ′ by Q. We have the map g : Q → C
n/G ∼= R

n
≥0, which

sends a T -orbit to its G-orbit. For every x ∈ R
n
>0 the preimage g−1(x) is a circle G/T ′. For

every x ∈ ∂Rn
≥0, the preimage g−1(x) is a single point, since the product of T ′ with any nontrivial

coordinate subtorus generates the whole torus G. Therefore, we have Q = (Rn
≥0 × S1)/∼, where

factoring by ∼ collapses circles over ∂Rn
≥0. We have

(

(Rn
≥0 × S1)/∼

) ∼=
(

(Rn−1 × R≥0 × S1)/∼
) ∼= R

n−1 × C,

which proves the lemma. �
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20 A.A. AYZENBERG

Fig. 1. Local structure of the sponge for n = 4.

We now prove the theorem by induction on the dimension of the stabilizer subgroup. If
dimH = n − 1, that is, H = T , Lemma 2.11 shows that X/T is a manifold near the fixed point
set XT /T . Now let [x] ∈ X/T be an orbit such that Tx = H, that is, x ∈ XH . Due to the adjoining
condition, there exists a point x′ such that the local representations at x and x′ coincide and x′ is
close to a partition element XH′ with dimH ′ > dimH. Here by the local representation we mean
a representation of Tx on the normal space TxX/Tx(Tx) to the orbit.

By the induction hypothesis, the space X/T is a manifold near XH′
/T ; therefore, there exists a

neighborhood of [x′] homeomorphic to R
n+1. Therefore, there exists a neighborhood of [x] home-

omorphic to R
n+1. Indeed, both neighborhoods are homeomorphic to the orbit space of the local

representation according to the slice theorem. �
Construction 2.12. Let v1, . . . , vn−1 ∈ R

n−1 be a basis of a vector space and let vn =
−v1 − . . . − vn−1. Consider the subset C of Rn−1 given by

C =
⋃

I⊂[n], |I|=n−2

Cone(vi | i ∈ I).

This subset is homeomorphic to the (n − 2)-skeleton of the standard nonnegative cone R
n
≥0.

The subset C is the (n − 2)-skeleton of a simplicial fan Δn−1 corresponding to the toric vari-
ety CPn−1; it comes equipped with the filtration

C0 ⊂ . . . ⊂ Cn−2 = C

where Ck is the union of k-dimensional cones of Δn−1. This filtration can be defined topologically:
we say that x ∈ R

n−1 has type k if C cuts a small disc Bx around x into n− k chambers. Then Ck

consists of all points of type ≤ k.
Next we introduce a notion of the subspace in a topological manifold which is locally modeled

by the subset C ⊂ R
n−1 ⊂ R

n+1. Assume we are given a topological manifold Q of dimension n+ 1
and a subset Z ⊂ Q.

Definition 2.13. A subset Z ⊂ Q is called a sponge if, for any point x ∈ Z, there is a
neighborhood Ux ⊂ Q such that (Ux, Ux ∩ Z) is homeomorphic to (V × R

2, (V ∩ C) × R
2), where

V is an open subset of the space R
n−1 ⊃ C.

Every sponge is filtered in a natural way compatible with the filtration of C. We say that a point
x ∈ Z ⊂ Q has type k if H2(Ux \ Z;Z) ∼= Z

n−k−1 for a small disc neighborhood Ux  x, Ux ⊂ Q.
Then Zk consists of all points of type at most k. Note that dimZk = k. Informally speaking, the
sponge set is a collection of (n − 2)-manifolds with corners, and the corners are stacked together
like maximal cones in C. The case n = 4 is shown in Fig. 1.

Construction 2.14. For an arbitrary action of a torus G, dimG = m, on a space X we can
consider the coarse filtration

X0 ⊂ X1 ⊂ . . . ⊂ Xm = X,

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 302 2018
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where Xi =
⋃

dimH≥m−iX
H is the union of all orbits of dimension at most i. In particular, the

set X \Xm−1 is the locus of an almost free action (i.e., an action that has only finite stabilizers).
There is an induced coarse filtration on Q = X/G:

Q0 ⊂ Q1 ⊂ . . . ⊂ Qm.

Remark 2.15. The terms “fine partition” and “coarse filtration” refer to the following fact:
a fine partition distinguishes different subgroups of the torus; however, a coarse filtration distin-
guishes only the dimensions of the subgroups.

Proposition 2.16. For an appropriate action in general position of T n−1 on X2n we get a
topological manifold Q = X/T . The coarse filtration on Q has the form

Z0 ⊂ Z1 ⊂ . . . ⊂ Zn−2 = Z ⊂ Q,

where Z ⊂ Q is a sponge. The coarse filtration coincides with the sponge filtration defined topologi-
cally.

Proof. The local statement near fixed points is proved in Lemma 2.11. The proof in the global
case uses the adjoining condition and is similar to that of Theorem 2.10. �

3. CHARACTERISTIC DATA

Assume there is an appropriate action of T = T n−1 in general position on X = X2n. We
allow X to have a boundary; however, in this case we require that the action is free on ∂X. The
same arguments as before show that Q = X/T is a topological manifold with boundary and its
boundary ∂Q is ∂X/T .

In this section we assume that the actions are strictly appropriate. This means that there are no
finite components in the stabilizer subgroups and, therefore, the face partition of a coarse filtration
coincides with the fine partition on Q. With a strictly appropriate action in general position we
assign the characteristic data (Q,Z, μ, e) consisting of the following elements:

• Q = X/T , the orbit space;
• Z ⊂ Q◦, the sponge subset determined by the action:

Z0 ⊂ Z1 ⊂ . . . ⊂ Zn−2 = Z,

where Zi ⊂ Q is the set of orbits of dimension at most i;
• μ, a characteristic map,

μ : F → {One-dimensional subgroups of T n−1} = Hom(S1, T n−1) ∼= Z
n−1,

which is defined on the set F = {F1, . . . , Fm} of all facets of Z and sends a facet Fk to
the oriented stabilizer subgroup TFk

of any of its interior points (we introduce orientation
arbitrarily; see Section 4 for details);

• e ∈ H2(Q \ Z;H2(BT )), the Euler class of the free part of the action.

Let us describe some of these elements in more detail.
The closure of a connected component of Zi \ Zi−1 is called a face of Z of dimension i. The

faces of dimension n − 2 are called facets. Every face of dimension i is contained in exactly
(n−i

2

)

different facets. The stabilizer remains the same for all points in the interior of any given face F ,
since no finite components are allowed in the stabilizers. This stabilizer will be denoted by TF .

For any face F of dimension i we have F =
⋂

i∈I Fi for a certain subset I ⊂ [m], |I| =
(n−i

2

)

.
The stabilizer TF is the product of μ(Fi) = TFi inside the torus T n−1. Note that this product is
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generally not free, since it has dimension n− 1− i < |I|. However, it can be seen that characteristic
map μ determines the stabilizers of all points.

Every orbit in Q \ Z is full-dimensional and there are no finite stabilizer subgroups; therefore,
the free part of the action is a principal T -bundle p : X free → Q \ Z. This bundle is classified by
the homotopy class of a map

Q \ Z → BT ∼= (CP∞)n−1 ∼= K(Zn−1; 2).

Such maps also classify the second cohomology group of Q \ Z. Therefore, we have the classifying
element

e ∈ H2(Q \ Z;Zn−1), where Z
n−1 ∼= H2(BT ;Z) ∼= H1(T ;Z).

Remark 3.1. Note that unlike the half-dimensional torus actions the characteristic data of
complexity 1 actions cannot be arbitrary. It will be shown in this and the next section that the
Euler class e and the characteristic function μ determine each other to much extent. Moreover, the
Euler class of complexity 1 actions is always nontrivial.

Let x ∈ Z ⊂ Q be a point of type k ≤ n − 2. Let Ux be a small neighborhood of x in Q
homeomorphic to an open disc. Let ix : Ux → Q be the inclusion map. We have an induced
homomorphism

H2(Q \ Z;H1(T )) → H2(Ux \ Z;H1(T )).

The image of e ∈ H2(Q \ Z;H1(T )) under this homomorphism is denoted by

ex ∈ H2(Ux \ Z;H1(T )) ∼= Z
n−k−1 ⊗H1(T )

and called the local Euler class at x. Recall that the type of the point is defined by the rank of the
second cohomology of Ux \ Z (see Section 2).

In particular, if x has type n− 2 (i.e., x lies in the interior of a facet), the neighborhood Ux can
be chosen in such a way that Ux ∩ Z ∼= R

n−2. In this case we have Ux \ Z ∼= R
n+1 \Rn−2 and

H2(Ux \ Z;H1(T )) ∼= H2(Rn+1 \ Rn−2;H1(T )) ∼= H1(T ).

The last isomorphism is canonical provided Q (and hence Ux) is oriented.
Definition 3.2. The Euler class e and characteristic function μ are said to be compatible if

the following condition holds: for any x ∈ Z, the map H1(T ) → H1(T/Tx) induced by the quotient
map T → T/Tx sends ex ∈ H1(T ) to zero.

Proposition 3.3. Assume there is an appropriate action in general position of T = T n−1 on
a manifold X = X2n. Then its characteristic data e and μ are compatible.

Proof. As before, let Q = X/T be the orbit space, Z ⊂ Q the set of orbits of dimen-
sions ≤n − 2, and p : X → Q the projection map. Take any point x ∈ Z ⊂ Q. We can choose a
small neighborhood Ux  x, Ux ⊂ Q, such that the stabilizers of any point y ∈ Ux are contained
in Tx and Ux

∼= R
n+1. Consider the map

f : p−1(Ux)/Tx
T/Tx−−−→ Ux

taking the remaining quotient. Since all stabilizers of points in Ux are contained in Tx, the map f
is a principal T/Tx-bundle. It is a trivial bundle since Ux is contractible; therefore, the induced
T/Tx-bundle over Ux \ Z is also trivial. Hence its Euler class vanishes. However, this Euler class
is the image of ex ∈ H2(Ux \ Z;H1(T )) under the induced map H1(T ) → H1(T/Tx), which proves
the statement. �
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Remark 3.4. For a point x in the interior of a facet Fi, the stabilizer Tx is one-dimensional.
In this case the compatibility condition states that ex is proportional to the fundamental class
of Tx = μ(Fi):

ex = kiμ(Fi) ∈ H1(T ;Z) ∼= Hom(S1, T ).

The constants ki ∈ Z can be determined from the weights of the tangent representation at any
fixed point adjacent to Fi. It will be shown in Section 4 that all these constants are actually ±1 for
strictly appropriate actions.

Construction 3.5. Let us construct a topological model space given abstract compatible char-
acteristic data. Assume a topological (n+ 1)-manifold Q is given, and let Z ⊂ Q be a sponge with
facets F1, . . . , Fm. Let μ be a map assigning a one-dimensional subgroup of T = T n−1 to any
facet Fi with the following property: if a k-dimensional face F of the sponge lies in facets Fi with
labels i ∈ I, |I| =

(n−k
2

)

, then

dim
∏

i∈I
μ(Fi) = k.

The subgroup
∏

i∈I μ(Fi) will be denoted by Tx if x lies in the interior of F . If x ∈ Q \ Z, we
set Tx = {1} ⊂ T . Finally, fix a class e ∈ H2(Q \ Z;H1(T )) compatible with μ. With all this
information fixed, introduce a space Y = Y(Q,Z,μ,e). We define Y as a set by putting

Y =
⊔

x∈Q
T/Tx.

The topology is introduced in two steps.
1. The topology on a subset

Y free =
⊔

x∈Q\Z
T/Tx =

⊔

x∈Q\Z
T ⊂ Y

is introduced in such a way that the natural projection Y free → Q \ Z is the principal T -bundle
classified by e ∈ H2(Q \ Z;H1(T )).

2. For a point y in
⊔

x∈Z T/Tx we specify the base of topology. Let x ∈ Z and tx ∈ T/Tx ⊂ Y .
To define the base of topology near tx, we fix a small open neighborhood Ux ⊂ Q of x and for each
x′ ∈ Ux take a projection of tori px′ : T/Tx′ → T/Tx. This is well defined since Ux is assumed to be
small enough so that Tx contains any other stabilizer Tx′ . Let V be a neighborhood of tx in T/Tx.
The subsets of the form

⊔

x′∈Ux

p−1
x′ (V )

constitute the base of topology around tx.
Note that since e and μ are compatible, we have a trivial principal T/Tx-bundle over A → Ux \ Z;

therefore, the topology defined at step 2 is compatible with the one defined at step 1 on a sub-
set Ux \ Z.

Finally, define the T -action on each fiber T/Tx as given by the projection T → Tx. It can be
seen that Y is a compact Hausdorff topological space carrying the continuous action of T . Its orbit
space is homeomorphic to Q.

The constructed space Y = Y(Q,Z,μ,e) is not necessarily a manifold.
Example 3.6. Assume ex = 0 for some point x lying in the interior of a facet Fj . Then Y

is not a manifold over x. Indeed, by construction, a neighborhood of x in Y is homeomorphic to
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(Ux × T )/∼, where (x′, t′) ∼ (x′′, t′′) whenever x′ = x′′ ∈ Z and t′(t′′)−1 ∈ μ(Fj). This subset is not
a manifold, which can be shown by computing its local homology groups for points lying over Z.

Proposition 3.7. Let X = X2n be a manifold with strictly appropriate action of T = T n−1

in general position. Let (Q,Z, μ, e) be its characteristic data. Let Y be the model space constructed
from the data (Q,Z, μ, e). Then there is a T -equivariant homeomorphism h : Y → X which induces
the identity homeomorphism on the orbit space Q:

Y

pY

X

pX

Q Q

Proof. The equivariant homeomorphism over Q \ Z follows immediately, since both p−1
X (Q \ Z)

and p−1
Y (Q \ Z) are principal T -bundles classified by e. For a point x ∈ Z ⊂ Q, the equiv-

ariant homeomorphism h : p−1
Y (Ux \ Z) → p−1

X (Ux \ Z) is extended uniquely to the equivari-
ant homeomorphism h : p−1

Y (Ux) → p−1
X (Ux). Indeed, there is a unique equivariant homeomor-

phism ˜h : p−1
Y (Ux)/Tx → p−1

X (Ux)/Tx which extends the homeomorphism h/Tx : p
−1
Y (Ux \ Z)/Tx →

p−1
X (Ux \ Z)/Tx, since both spaces are trivial T/Tx-bundles over Ux (according to the compatibility

condition) and Ux \ Z is dense in Ux. For a point tx ∈ T/Tx ⊂ p−1
Y (Ux) over x there is a unique

point α ∈ p−1
X (Ux) such that ˜h([tx]) = [α], since the projection map p−1

X (Ux) → p−1
X (Ux)/Tx is a

bijection over x. Hence we can extend h by putting h(tx) = α.
This procedure defines an equivariant continuous bijection between compact spaces Y and X.

Since X is compact and Y is Hausdorff, it is an equivariant homeomorphism. �

4. ORIENTATION ISSUES AND DETAILS

Consider a representation of the torus T = T n−1 on C
n in general position. The weights

α1, . . . , αn ∈ Hom(T, S1) are defined up to sign.
Definition 4.1. An omniorientation is a choice of the orientation of T (and hence of the

orientation of the lattice N = Hom(T, S1)) and a choice of signs of all vectors αi.
Construction 4.2. Assume there is a fixed basis in the lattice N , so that αj is written in

coordinates as αj = (αj,1, . . . , αj,n−1). For each i = 1, . . . , n consider the determinant of the matrix
formed by αj with j �= i:

c̃i = (−1)iα1 ∧ . . . ∧ α̂i ∧ . . . ∧ αn ∈ Λn−1N ∼= Z.

Since αi are in general position, we have c̃i �= 0 for all i = 1, . . . , n. Cramer’s rule implies

c̃1α1 + . . . + c̃nαn = 0.

Let cgcd = gcd(c̃1, . . . , c̃n) and ci = c̃i/cgcd. Let G = T n act on C
n in a standard way:

(t1, . . . , tn) · (z1, . . . , zn) = (t1z1, . . . , tnzn),

and let T ′ be a subtorus
T ′ = {tc11 . . . tcnn = 1} ⊂ G. (4.1)

The proof of Lemma 2.11 implies that the orbit space of the representation of T on C
n coincides

with the orbit space of the induced action of T ′ on C
n; therefore, we need not distinguish these two

cases.
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Lemma 4.3. The representation action of T = T ′ on C
n in general position is strictly appro-

priate if and only if ci = ±1, that is, all parameters c̃i coincide up to sign.
Proof. The point (0, . . . , 0, 1, 0, . . . , 0) with unit at the jth position has the stabilizer T ′ ∩Gj ,

where T ′ is given by (4.1) and Gj is the jth coordinate circle of G ∼= T n. This stabilizer is isomorphic
to the cyclic group Z|cj |. If the action is strictly appropriate, then there are no finite components
in the stabilizer subgroups, so ci is necessarily ±1.

The converse statement is proved in a similar way. The stabilizers of the T ′-action on C
n have

the form T ′ ∩ GI for all possible coordinate subtori GI ∈ G, I ⊆ [n]. This group has a finite
component of order gcd(ci | i ∈ I). Hence, if all ci are ±1, these finite components are trivial. �

Recall that C ⊂ R
n−1 ⊂ R

n+1 denotes the (n− 2)-skeleton of the fan Δn−1 corresponding to the
toric variety CPn−1. This space is the sponge of an appropriate representation action of T = T n−1

on C
n.

In the following we only consider strictly appropriate actions. The facets {Fi,j | 1 ≤ i < j ≤ n}
of Z are labeled in such a way that Fi,j is “spanned” by all weights except αi and αj . Let us fix an
orientation on the one-dimensional stabilizers of the action (this corresponds to a choice of the signs
of the characteristic values μ(Fi,j) ∈ Hom(S1, T )). These orientations determine the orientation
of the orbit Tx ∼= T/μ(Fi,j) for x ∈ F ◦

i,j . The preimage of F ◦
i,j under the projection map has the

form {(z1, . . . , zn) ∈ C
n | zi = zj = 0, zk �= 0 for k �= i, j}. This space has a canonical orientation

determined by the complex structure on C
n. Therefore, the orientations of the stabilizer circles

determine the orientations of facets Fi,j . Finally, since the orientation on C
n/T ∼= R

n+1 is fixed, the
orientation of Fi,j determines the orientation of a small 2-sphere S2

i,j around Fi,j . Let us describe
the Euler class of the free part of the action.

Proposition 4.4. The Euler class e ∈ H2(Q \ Z;H1(T )) of a strictly appropriate representa-
tion action of T on C

n is given by the condition

〈e, [S2
i,j ]〉 =

ci
cj
μ(Fi,j) ∈ H1(T ) ∼= Hom(S1, T )

for a small 2-sphere around the facet Fi,j , 1 ≤ i < j ≤ n.
The constants ci were defined earlier in this section. Lemma 4.3 shows that for strictly appro-

priate actions ci = ±1. Note that ci/cj = c̃i/c̃j and the parameters c̃i and c̃j can be computed from
the weight vectors.

Proof of Proposition 4.4. Assume i = 1 and j = 2 for simplicity. The preimage of a
sphere S2

1,2 in the space C
n has the form

M =
{

(z1, . . . , zn) ∈ C
n
∣

∣ z1|2 + |z2|2 = ε, |zk| = ε, k > 2
}

for small ε > 0.

The subtorus T = {tc11 . . . tcnn = 1} ⊂ G acts freely on M . The stabilizer Tx = μ(F1,2) for x ∈ F ◦
1,2

has the form

Tx = {tc11 tc22 = 1, tk = 1, k > 2}.

The induced action of T/Tx on M/Tx is a trivial principal bundle; therefore, the Euler class of the
T -action on M coincides with the image of the Euler class of the Tx-action on M under the inclusion
map ix : Tx → T . The Tx-action on M is the Hopf bundle if c1 and c2 have the same sign, and it is
the “anti-Hopf” bundle if c1 and c2 have different signs. Its Euler class is μ(F1,2) ∈ H2(S2

1,2;H1(T ))
in the first case and −μ(F1,2) in the second case. �

Remark 4.5. Note that there exist relations on the cycles [Si,j] ∈ H2(Q \ C;Z) ∼= Z
n−1.

Every triple of indices i, j, k determines an (n− 3)-face Fi,j,k ∈ C which lies in the facets Fi,j , Fj,k,
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Fi,j

Fi,k
Fj,k

Fi,j,k

Fig. 2. Orienting three facets with a common face of codimension 1.

and Fi,k. If we choose a small circle around Fi,j,k ⊂ R
n−1 and orient the facets Fi,j , Fj,k, and Fi,k

consistently (see the schematic Fig. 2), we get a relation in H2(Q \ C;Z):

[Si,j] + [Sj,k] + [Si,k] = 0.

It implies the cocycle relation for stabilizers:

ci
cj
μ(Fi,j) +

cj
ck

μ(Fj,k) +
ci
ck

μ(Fi,k) = 0. (4.2)

This relation is not surprising. Indeed, the product of the circle subgroups μ(Fi,j), μ(Fj,k),
and μ(Fi,k) inside the torus T has dimension 2; therefore, there should be exactly one linear relation
for their fundamental classes.

Proposition 4.4 implies that for strictly appropriate torus actions we have ex = ±[μ(F )] for
x ∈ F ◦, since this holds in the local chart around a fixed point.

5. REDUCTIONS OF LOCALLY STANDARD ACTIONS

A smooth manifold X = X2n with an action of G = T n is said to be locally standard if the action
is locally modeled by the standard representation of G = T n on C

n. Since C
n/T n ∼= R

n
≥0, the orbit

space P = X/G has a natural structure of a manifold with corners. Manifolds with locally standard
actions are classified up to equivariant homeomorphism (see [22]) by the following characteristic
data:

(1) the manifold with corners P , dimP = n, such that each of its k-dimensional faces is contained
in precisely n− k facets (such manifolds with corners are called nice in [16] or just manifolds
with faces);

(2) the characteristic function λ which maps a facet F of P into a circle subgroup of G, the
stabilizer of any interior point of F ;

(3) the Euler class e ∈ H2(P ;H1(G)) ∼= H2(P ◦;H1(G)), which classifies the principal G-bundle
X free → X free/G = P ◦, where X free is the free part of the G-action.

The characteristic function λ satisfies the celebrated (∗)-condition: whenever facets F1, . . . , Fk

intersect in P , the subgroups λ(F1), . . . , λ(Fk) form a direct product inside G. Since every circle
subgroup of G determines a primitive integral vector in Hom(S1, G) ∼= Zn up to sign, it will be
convenient to assume that λ takes values in the lattice Z

n.
In the following we assume that every face of P contains a vertex so that the action is appropriate.
A manifold X with a locally standard action of G is called a quasitoric manifold if P = X/G is

isomorphic to a simple polytope as a manifold with corners. The free part of the action is a trivial
G-bundle, since P is contractible. So the Euler class vanishes for quasitoric manifolds.

A fixed point v of a locally standard action of G on X corresponds to a vertex v of P (we
denote them by the same letter). We have v = F1 ∩ . . . ∩ Fn for some facets Fi ⊂ P . Then the
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weights α1, . . . , αn ∈ Hom(G,S1) = N of the tangent representation at v form the dual basis to
λ(F1), . . . , λ(Fn) ∈ Hom(S1, G) = N∗.

Let {αv,i} be the collection of all weights at all fixed points. We can choose a generic homomor-
phism of the lattices

φ : Hom(G,S1) ∼= Z
n → Z

n−1

such that the images φ(αv,1), . . . , φ(αv,n) ∈ Z
n−1 are in general position for any fixed point v. The

homomorphism φ is determined by some homomorphism of tori φ∗ : T n−1 → G. Therefore, the
action of the subtorus T = φ∗(T n−1) ⊂ G on X is in general position.

Theorem 5.1. Let X = X2n be a quasitoric manifold with an action of G ∼= T n. Let T ⊂ G
be a subtorus of dimension n − 1 such that the induced action of T on X is an action in general
position. Then X/T ∼= Sn+1.

Proof. Denote the orbit space X/T by Q and the orbit space X/G by P . By the definition of
a quasitoric manifold, P is a simple polytope, dimP = n. We have a map g : Q → P , which sends
a T -orbit to the G-orbit in which it lies. For any point x in the interior of P we have g−1(x) ∼= S1.
Since the action is in general position, the preimage of a point x ∈ ∂P is a single point (this fact
was actually proved in Lemma 2.11 for a local chart). Since P is contractible, the map g : Q → P
admits a section over P ◦. Therefore, we have

Q ∼= (P × S1)/∼,

where factoring by ∼ collapses circles over ∂P . Since P is homeomorphic to the n-disc Dn, we have

Q ∼= ((Dn × S1)/∼) ∼= ∂(Dn ×D2) ∼= Sn+1,

which completes the proof. �
We further investigate the characteristic data of the induced action of T ∼= T n−1 on a quasitoric

manifold. The arguments in the proof of Theorem 5.1 imply the following statement.
Proposition 5.2. The sponge of the T -action on a quasitoric manifold X has the form

Z ⊂ Sn−1 ⊂ Σ2Sn−1 ∼= Q,

where Sn−1 is identified with the boundary of the polytope P and Z is its (n − 2)-skeleton. The
facets of Z are exactly the faces of P of codimension 2.

Note that the characteristic function λ of the G-action determines the characteristic function μ
of the T -action. Let F be a codimension 2 face of P (hence a facet of Z). Then F = F1 ∩ F2, where
F1 and F2 are facets of P . We have

μ(F ) = (λ(F1)× λ(F2)) ∩ T.

Here λ(F1) × λ(F2) is a 2-torus in G, and since T is a codimension 1 subtorus of G in general
position, the intersection (λ(F1)× λ(F2)) ∩ T is a one-dimensional subgroup, which is the stabilizer
of the T -action on the interior of F . If we want this subgroup to be a circle (recall that the definition
of a strictly appropriate action requires that the stabilizers do not have finite components), then the
subgroup T ⊂ G is subject to some additional restrictions. Namely, the subgroup T ⊂ G determines
a character αT ∈ Hom(G,S1), αT : G → G/T . The next lemma follows easily from Lemma 4.3.

Lemma 5.3. The induced action of T on a locally standard G-manifold X is strictly appro-
priate if and only if 〈α, λ(Fi)〉 = ±1 for all facets Fi of a manifold with corners P .

Example 5.4. Let c : {F1, . . . , Fm} → [n] be a proper coloring of facets of a simple polytope P .
This means that whenever Fi and Fj are adjacent, their colors c(Fi) and c(Fj) are different. Given
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such a coloring, we can construct a special characteristic function λc : {F1, . . . , Fm} → Z
n which

sends Fi to the basis vector λ(Fi) = εc(Fi) ∈ Z
n, where ε1, . . . , εn is a fixed basis of the lattice Z

n.
Such characteristic functions and corresponding quasitoric manifolds X(P,λc) were called pullbacks
of the linear model in [11]. It can be seen that the induced action of the subtorus

T = {tc11 tc22 . . . tcnn = 1} ⊂ G, ci = ±1,

on X(P,λc) is strictly appropriate.
Note that there exist other examples of strictly appropriate induced actions which do not come

from colored characteristic functions.
The local Euler classes ex of the induced action of T on a quasitoric manifold X determine its

topology.
Theorem 5.5. Let X ′ and X ′′ be two manifolds with strictly appropriate actions in general

position, dimX ′ = dimX ′′ = 2n, n ≥ 2. Let (Q′ ∼= Sn+1, Z ′, μ′, e′) and (Q′′ ∼= Sn+1, Z ′′, μ′′, e′′)
be their characteristic data. Suppose there is a homeomorphism of pairs (Q′, Z ′) ∼= (Q′′, Z ′′) and
e′x = e′′x for any point x in a sponge. Then X ′ and X ′′ are equivariantly homeomorphic.

Proof. Taking x in the interior of a facet F of a sponge Z ′ ∼= Z ′′, we see that μ′(F ) = μ′′(F ),
since e′x is the fundamental class of μ′(F ) and e′′x is the fundamental class of μ′′(F ). Hence μ′ = μ′′.

Let (Q,Z) be either (Q′, Z ′) or (Q′′, Z ′′) and let U =
⋃

x∈Z Ux be a neighborhood of Z in Q.
As before, Ux denotes a small neighborhood of x ∈ Z homeomorphic to an open ball. The local
classes ex determine the classes e′x ∈ H3(Ux, Ux \ Z;Zn−1) due to the exact sequence

H2(Ux;Z
n−1) H2(Ux \ Z;Zn−1) H3(Ux, Ux \ Z;Zn−1) H3(Ux;Z

n−1)

0 ex e′x 0

The classes {e′x | x ∈ Z} determine a unique element e′ ∈ H3(U,U \ Z;Zn−1) such that i∗x(e
′) = e′x

for an inclusion ix : Ux ↪→ U according to the Mayer–Vietoris argument. By excision, we can view e′

as an element in H3(Q,Q \ Z;Zn−1) ∼= H3(U,U \ Z;Zn−1). Recall that Q ∼= Sn+1. From the exact
sequence

H2(Q;Zn−1) H2(Q \ Z;Zn−1) H3(Q,Q \ Z;Zn−1) H3(Q;Zn−1)

0 e e′

we extract a unique element e ∈ H2(Q \ Z;Zn−1) which projects to ex for any point x ∈ Z.
The characteristic data (Q′ ∼= Sn+1, Z ′, μ′, e′) and (Q′′ ∼= Sn+1, Z ′′, μ′′, e′′) coincide; hence the

spaces X ′ and X ′′ are equivariantly homeomorphic to the model space according to Proposition 3.7.
Thus they are homeomorphic to each other. �

Remark 5.6. Instead of the equality e′x = e′′x one can require the equality of characteristic
functions μ′ = μ′′ and, for a small 2-sphere around each facet F , specify the type of its preimage
(whether it is the Hopf or anti-Hopf bundle, see Proposition 4.4). If the types agree for X and X ′,
then the equality μ′ = μ′′ implies the equality of local classes e′x = e′′x.

In order to study certain examples, we need a modification of Theorem 5.5. Let M be a closed
manifold of dimension n− 1. Assume there is a regular simple cell subdivision on M , which means
that a regular cell structure is given in which every k-dimensional cell is contained in exactly n− k
maximal cells. Its (n − 2)-skeleton ZM = Mn−2 is a sponge. Consider the manifold with boundary
QM = M ×D2. We consider M as a subset M × {0} ⊂ QM .

Proposition 5.7. Let (X, ∂X) be a 2n-dimensional manifold with boundary, and assume there
is an appropriate action of T = T n−1 on X with characteristic data (QM , ZM , μM , eM ). We also

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 302 2018



TORUS ACTIONS OF COMPLEXITY 1 29

assume that the action is free on the boundary ∂X and the principal T -bundle ∂X → ∂X/T =
∂QM

∼= M × ∂D2 is trivial. Then the class eM ∈ H2(Qm \ ZM ;Zn−1) is uniquely determined by
the local classes ex, x ∈ ZM .

Proof. There is an exact sequence of the pair (QM \ ZM , ∂QM ):

H2(QM \ ZM , ∂QM ;Zn−1) → H2(QM \ ZM ;Zn−1) → H2(∂QM ;Zn−1).

The class e ∈ H2(QM \ ZM ;Zn−1) maps to zero, since the free part of the action is a trivial T -bundle
over ∂Q. Hence there exists a class

ẽ ∈ H2(QM \ ZM , ∂QM ;Zn−1)

which maps to e, and e is uniquely determined by the class ẽ. We have

(QM \ ZM )/∂QM � Σ2(M \ ZM );

hence H2(QM \ ZM , ∂QM ;Zn−1) ∼= ˜H0(M \ ZM ). The space M \ ZM is the disjoint union of open
top-dimensional cells of M . It can be seen that the cohomology classes of H2(QM \ ZM , ∂QM ;Zn−1)
are localized near ZM and are thus completely determined by the local classes. �

Corollary 5.8. Under the assumptions of Proposition 5.7, the equivariant homeomorphism
type of X is determined by (QM , ZM ) and the weights of all tangent representations at all fixed
points.

Construction 5.9. The examples of the actions above can be constructed in the following
way. We consider a manifold P ∼= M × [0, 1] with boundary ∂P = ∂0P � ∂1P , ∂iP = M × {i}, and
endow it with the structure of a nice manifold with corners. Namely, we subdivide the boundary
component ∂0P according to the subdivision of M and do nothing with ∂1P (this boundary compo-
nent is considered as a single face of dimension n− 1). Now we may take an abstract characteristic
function satisfying the (∗)-condition:

λ : {Facets of ∂0P} → Hom(S1, G) ∼= Z
n,

and construct a topological manifold

X = (P ×G)/∼

with boundary ∂X = ∂1P ×G. Here G ∼= T n and factoring by ∼ collapses tori over ∂0P according
to the characteristic function (see [11, 22, 5] for details). These particular manifolds with boundary
were studied in [1].

We take a generic (n− 1)-dimensional subtorus T ⊂ G so that the induced action of T on X is
strictly appropriate and is in general position. It can be seen that for the orbit space Q = X/T we
have the homeomorphism

Q ∼= ((P × S1)/∼) = ((M × [0, 1]) × S1)/∼,

where the circles are collapsed over ∂0P = M × {0}. Therefore, Q ∼= M × D2. The sponge of
the T -action is the (n − 2)-skeleton of M = M × {0} ⊂ M × D2. Finally, the free T -action
over M × ∂D2 is a trivial bundle, since the G-action is trivial over ∂1P .

6. GRASSMANN AND FLAG MANIFOLDS

Next we review two classical examples that motivated our study.
Example 6.1. The standard action of a compact torus T 4 on C

4 induces the action of T 4

on the Grassmann manifold G4,2 of complex 2-planes in C
4. This action has non-effective kernel

Δ(T 1) ⊂ T 4; hence we have an effective action of T = T 4/Δ(T 1) ∼= T 3 on G4,2, dimR G4,2 = 8.
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Fig. 3. The sponge of G4,2 consists of the boundary of an octahedron with three squares attached
along the equators.

There are six fixed points, and it is not difficult to find the weights of their tangent representations.
The easiest way to do this is to look at the image of the moment map, which coincides with a regular
octahedron Δ4,2. Its vertices correspond to the fixed points, and the primitive lattice vectors along
the edges of the octahedron that emanate from a vertex correspond to the weights of the tangent
representation. For example, the edges emanating from the top vertex (0, 0, 1) of the octahedron are

α1 = (1, 0,−1), α2 = (0, 1,−1), α3 = (−1, 0,−1), α4 = (0,−1,−1).

Every three of them are linearly independent; hence the action is in general position. The action is
strictly appropriate.

It was proved in [8] that the orbit space G4,2/T is homeomorphic to S5. The sponge Z of the
action is obtained by taking the boundary of the octahedron ∂Δ4,2 and by attaching three squares
along the equatorial cycles as shown in Fig. 3 (the squares must not intersect at non-boundary
points). This description actually follows from the methods of [8].

Example 6.2. The standard action of T 3 on C
3 induces the effective action of T = T 3/Δ(T 1)

on the manifold F3 of complete complex flags in C
3. We have dimT = 2 and dimF3 = 6. There

are six fixed points, and the tangent representation at each point is in general position. The action
is strictly appropriate.

Using the technique of [8] (see [2] for an alternative proof), one can show that the orbit
space F3/T is homeomorphic to S4. The sponge of the action has dimension 1. This is simply
the GKM-graph of the action, which is well known. This graph is shown in Fig. 4. As an abstract
graph, it is a complete bipartite graph K3,3. The figure on the right shows how to realize this graph
as a 1-skeleton of a simple cell structure on a 2-torus T . Actually, T can be embedded in S4 = F3/T
in a canonical way, and the preimage of its small neighborhood UT under the projection map is
described by Construction 5.9. This subject is covered in detail in [2].

Note an interesting geometrical difference of these two examples from the induced T -action
on a quasitoric manifold. In the case of a T -action on a quasitoric manifold, the sponge, which
is an (n − 2)-dimensional complex, can be embedded in Sn−1 (since it is the (n − 2)-skeleton of

Fig. 4. Sponge of the complete flag manifold F3.
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a polytope). However the sponges of G4,2 and F3 do not embed in a sphere as codimension 1
complexes. In the case of F3, the graph K3,3 is well-known to be non-planar. The sponge of G4,2,
which is the octahedron with three squares attached, cannot be embedded in R

3, as can be easily
checked.

Remark 6.3. Whenever the orbit space Q = X/T is a sphere Sn+1, the Alexander duality
implies that H2(Q \ Z;R) ∼= Hn−2(Z;R) for a sponge Z ⊂ Q. The homology class corresponding
to e ∈ H2(Q \ Z;H1(T )) is represented by the chain

σ =
∑

F is a facet of Z

ex · [F ] ∈ Cn−2(Z;H1(T )).

Here [F ] is the fundamental chain of a facet F and ex ∈ H2(Ux;H1(T )) ∼= H1(T ) is the local Euler
class at an interior point x ∈ F ◦. The chain σ is a cycle according to relation (4.2).
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