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Abstract—We formulate an extremal problem of constructing a trajectory of a moving object
that is farthest from a group of observers with fixed visibility cones. Under some constraints
on the arrangement of the observers, we give a characterization and a method of construction
of an optimal trajectory.
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Let M be a fixed set in R
2 such that it is the closure of an open set, and let t be a moving

object. The setM hinders the motion and visibility of the object. A continuous non-self-intersecting

trajectory T0, T0 ∩ M = ∅, connecting some points t∗ �= t∗ is given in R
2. The object t moves

inside a corridor

Y =
⋃
t∈T0

Vr(t),

where r = r(t) = min{‖t−m‖ : m ∈ M} and Vr(t) is the closed ball of radius r centered at t. We

assume that Vr(t∗) ∩ Vr(t
∗) = ∅. Denote by T the set of continuous trajectories

T = {t(τ) : 0 ≤ τ ≤ 1, t(0) = t∗, t(1) = t∗} ⊂ Y. (1)

Let bdY be the boundary of the corridor Y , and let Γ = (bdY )\(Vr(t∗) ∪ Vr(t
∗)). The set Γ

is decomposed into two parts: the left part Γl and the right part Γr with respect to the object

moving from t∗ to t∗ along T0. It is assumed that a finite group of observers S = {S}, S �∈
◦
Y , is

given. For simplicity, we assume that S ⊂ Γ. Each observer S has a fixed visibility cone K(S),

which is the union of S and a convex open cone at the vertex S. The intersection of K(S) and Y

may consist of several connected components. We denote by KY (S) the component containing S.

For every S, the cone K(S) is such that each trajectory T ∈ T intersects KY (S). The groups of

observers belonging to Γl and Γr will be denoted by S
l and Sr, respectively.

We define the “distance” from a point t ∈ Y to S as follows:

ρ(t, S) =

{
‖t− S‖ for t ∈ KY (S),

+∞ for t �∈ KY (S).

The problem consists in finding a trajectory T ∗ = T (S) (1) implementing the maximum

M = M(S)
def
= max

T ∈T
min{ρ(t, S) : t ∈ T , S ∈ S} = min{ρ(t, S) : t ∈ T ∗, S ∈ S}. (2)
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In the present paper, we establish characteristic properties of optimal (best) trajectories and

give a method of construction of the trajectories. It is easy to see that there are many such

trajectories. We give a method of construction of optimal trajectories consisting of segments of

straight lines, circular arcs, and segments of the boundary of the corridor Y , which are defined by

the arrangement of observers and cones K(S), S ∈ S.

A similar problem was considered in [1] without studying methods of construction of an optimal

trajectory.

Denote by L(x, y) the straight line containing points x �= y and by Q the closure of a set Q.

Consider special cases of problem (2).

I. For S ∈ S
l (for S ∈ Sr), we denote by p = p(S) the point of Γr (of Γl) nearest to S and

define

M(S) = ρ(p(S), S). (3)

The following statement is obvious.

Proposition 1. Let a group of observers S be such that KY (S
l)∩KY (Sr)∩ Y = ∅ for every

Sl ∈ S
l and Sr ∈ Sr. An optimal trajectory T ∗ ∈ T is characterized by the following properties:

p(S) ∈ T ∗ for all S implementing the minimum M = min{M(S) : S ∈ S};
ρ(S,T ∗) ≥ M for all S ∈ S.

Every trajectory T containing all segments of the boundaries KY (S
l)∩Γr and KY (Sr)∩Γl and

satisfying the condition ρ(S,T ) ≥ M is optimal.

II. Let S = {Sl, Sr} be a pair of observers such that (KY (S
l) ∩KY (Sr)) �= ∅. Define

Q = {x ∈ KY (Sl) ∩KY (Sr) : ‖x− Sl‖ = ‖x− Sr‖}.

There are two possible subcases: (II1) Q �= ∅ and (II2) Q = ∅.

Every trajectory intersects the sets KY (S), S ∈ S. The best trajectory T ∗ must intersect them

as far as possible from the vertices and can be arbitrary outside the set KY (Sl) ∪KY (Sr) by the

definition of the distance ρ(t, S).

In subcase II1, the trajectory T ∗ obviously intersects the set KY (Sl) ∩KY (Sr); more exactly,

it contains a point p = p(Sl, Sr) ∈ Q implementing the minimum

M(Sl, Sr)
def
= min
p∈KY (Sl)∩KY (Sr)

max
{
‖Sl−p‖, ‖Sr−p‖

}
= max

{
‖Sl−p(Sl, Sr)‖, ‖Sr−p(Sl, Sr)‖

}
, (4)

and

M(Sl, Sr) = ‖Sl − p‖ = ‖Sr − p‖. (5)

Let the point p belong to the boundary of one of the cones K(Sl) and K(Sr); for example, let

p ∈ bdK(Sl). Then the following inequality holds for points t from this cone that lie between the

arcs C ′(Sl) and C ′(Sr) intersecting K(Sl) ∩K(Sr) with the end point p and radius M(Sl, Sr) and

centered at Sl and Sr, respectively:

min{ρ(t, Sl), ρ(t, Sr)} ≥ M(Sl, Sr). (6)

This inequality also holds for points located inside the cone K(Sr) between the arc C ′(Sr), where

C ′(Sr) ∩K(Sl) = ∅, and the segment [p, Sl]. Constructing the trajectory T ∗, we will use

(N′) the arcs C ′(Sl) and C ′(Sr) and the segment [p, Sl]; they contain points t satisfying

inequality (6).
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If the point p belongs to the interior of the set KY (S
l) ∩ KY (Sr), then (6) also holds for points t

from this intersection lying between the circles C ′(Sl) and C ′(Sr).

In what follows, for a point p = (·, ·), we will use the notation p′(Sl, Sr) in which the first

argument is the vertex for which the boundary of its cone contains the point p. If p ∈ (bdK(Sl)) ∩
(bdK(Sr)) or p is contained in the interior of the set KY (S

l) ∩ KY (Sr), then the order of vertices

that are arguments in p′(·, ·) is not fixed.
In subcase II2, the best trajectory also contains the point p(Sl, Sr) that is a solution of

problem (4). Assume for definiteness that

‖Sl − p‖ < ‖Sr − p‖ ∀ p ∈ K(Sl) ∩K(Sr). (7)

Then

M(Sl, Sr) = ‖Sr − p‖. (8)

Inequality (6) holds for points t located in K(Sr) between the segment [p, Sl] and the arc C ′′(Sr)

of radius ‖Sr − p‖ centered at Sr. Constructing the trajectory T ∗, we will use

(N′′) the segment L(p, Sl) ∩ Y and the arc C ′′.

For a point p, we will use the notation p = p′′(Sl, Sr), where the first argument is the vertex at

which min{‖Sl − p‖, ‖Sr − p‖} is attained.

The point p is an end point of the arcs C ′(Sl) ∩ K(Sl) and C ′(Sr) ∩ K(Sr). Denote the other

end points of these arcs by ql and qr, respectively.

The following statement holds (see (2)–(8)).

Proposition 2. In case II, M(S) = min{M(Sl, Sr),M(Sl),M(Sr)}. In subcase II1, the

required optimal trajectory is formed by the segment [p′, Sl] ∩ Y, the arc C ′(Sl) ∩ K(Sl) (or the arc

C ′(Sr) ∩ K(Sl)), and the segment (L(Sl, ql)\[Sl, ql]) ∩ Y (or the segment (L(Sl, qr)\[Sl, qr]) ∩ Y )

and is completed by parts of the boundaries Γl and Γr. In subcase II2, the optimal trajectory is

formed by the segment L(Sl, p′′) ∩ Y and is completed by parts of the boundaries Γl and Γr.

III. Let a triple of observers S = {Sl
1, S

l
2, Sr} be given such that Sl

1, S
l
2 ∈ Γl, Sr ∈ Γr, and(

KY (S
l
1) ∩KY (Sr)

)
∩
(
KY (S

l
2) ∩KY (Sr)

)
= ∅. (9)

Proposition 3. The following equality holds:

M(S) = min{M(Sl
1, Sr), M(Sl

2, Sr), M(Sl
1), M(Sl

2), M(Sr)}, (10)

and there exists an optimal trajectory containing the points p(Sl
1, Sr) and p(Sl

2, Sr). This trajectory

is formed by the arcs and segments listed in (N′) and (N′′) and by parts of the boundaries Γl and Γr.

Proof. If the points p(Sl
1, Sr) and p(Sl

2, Sr) have the form p′′(Sr, S
l
1) and p′′(Sr, S

l
2), then they

lie on the same side of the cone K(Sr). The part of this side belonging to Y and completed by

parts of the boundaries Γl and Γr forms the trajectory T ∗. If these points have the form p′′(Sl
1, Sr)

and p′′(Sl
2, Sr) and

‖Sr − p′′(Sl
2, Sr)‖ < ‖Sr − p′′(Sl

1, Sr)‖,

then we include in T ∗ the part of the side of the cone K(Sl
2) that lies in Y and the part of the side

of the cone K(Sl
1) from the point p′′(Sl

1, Sr) to the point of its intersection with Γr. The remaining

part of the trajectory belongs to bdY .

Let the points p(Sr, S
l
1) and p(Sr, S

l
2) have the form p′′(Sl

1, Sr) and p′′(Sr, S
l
2). Then we include

in T ∗ the part of the side of the cone K(Sr) that lies in Y and contains the point p′′(Sr, S
l
2) as well
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Fig. 1.

as the part of the side of the cone K(Sl
1) containing the point p′′(Sl

1, Sr). Let these points have the

form p′′(Sl
1, Sr) and p′(Sr, S

l
2) (see Fig. 1). Then we include in T ∗ the arc C ′(Sr) and the following

three segments: one on the side of the cone K(Sr) from the point p′′(Sl
1, Sr) to this arc, one on

the side of the cone K(Sl
1) from the point p′′(Sl

1, Sr) to Γr, and one on the side of the cone K(Sr)

from the point p′(Sr, S
l
2) to Lr. Finally, consider the case of the points p′(Sl

1, Sr) and p′(Sr, S
l
2).

By relation (9), we have

‖Sr − p(Sr, S
l
2)‖ < ‖Sr − p′(Sl

2, Sr)‖.

We include in T ∗ the arcs C ′(Sr) ∩ K(Sr) and C ′(Sl
1) ∩ K(Sl

1), the segment on the side of the

cone K(Sl
1) from ql to Γr, the segment on the side of the cone K(Sr) that does not contain the

point qr from C ′(Sr) to the boundary Lr, and the segment on the side of the cone K(Sr) from qr
to K(Sl

1) if qr �∈ K(Sl
1). The constructed curve (shown by dots in the figure) is completed by parts

of the boundary Lr. Proposition 3 is proved. �
IV. Consider the case of an arbitrary (finite) number of observers. It is natural to arrange them

economically in a certain sense, in particular, to restrict from above the multiplicity of covering the

corridor Y by the sets KY (S), S ∈ S. It is clear that a group of observers located on one “coast,”

for example, on Γl, provides a more complete cover near Γr than near Γl. The number of observers

on both “coasts” must be roughly the same (in view of the openings of the cones KY (S)). We will

number them from t∗ to t∗ using upper indices for the left boundary and lower indices for the right

boundary. Thus, we have the sets of cones {K(Si), Si ∈ Sl} and {K(Sj), Sj ∈ Sr}. Assume that

KY (S
i) ∩KY (S

n) = ∅, KY (Sj) ∩KY (Sm) = ∅ for i �= n, j �= m. (11)

Then (
KY (S

i) ∩KY (Sj)
)
∩
(
KY (S

k) ∩KY (Sm)
)
= ∅ for (i, j) �= (k,m), (12)

which means that the multiplicity of covering the corridor Y by the cones K(S) is at most 2.

In addition to requirements (11)–(12) on the set {K(S) : S ∈ S}, we impose a regularity

condition without which the general picture can be chaotic for a large number of observers. Let a

pair of vertices (Sl, Sr) be such that

K l
r
def
= KY (S

l) ∩KY (Sr) �= ∅.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 300 Suppl. 1 2018



MOVING OBJECT AND OBSERVERS S53

The segment [Sl, Sr] divides the corridor Y into two parts. We agree to call the part containing

the point t∗ left and the part containing the point t∗ right. We will call the pair (Sl, Sr)

– left if K
l
r ∩ [Sl, Sr] = ∅ and the set K l

r lies on the left-hand side of the corridor;

– right if K
l
r ∩ [Sl, Sr] = ∅ and the set K l

r lies on the right-hand side of the corridor;

– mean if K
l
r ∩ [Sl, Sr] �= ∅.

The regularity requirement consists in the following: the vertex set can be divided into groups

of the form

(Si, Si+1, . . . , Si+n; Sj, Sj+1, . . . , Sj+m) (n ≥ 0, m ≥ 0)

such that either every pair (Si+n1 , Sj+m1), 0 ≤ n1 ≤ n, 0 ≤ m1 ≤ m, is left or every such pair is

right. If there are several such groups, then they alternate and there can be a group of mean pairs

(Si, Sj), (S
i+1, Sj+1), . . . , (S

i+k, Sj+k) between neighboring groups of left and right pairs.

Theorem. The following equality holds:

M(S) = min
{
M(Si, Sj),M(Si),M(Sj) : K(Si) ∩K(Sj) �= 0, Si ∈ Sl, Sj ∈ Sr

}
. (13)

The best trajectory T ∗ ∈ T is characterized by the properties:

(i) T ∗ contains the points p(Si) and p(Sj) for all singular observers Si and Sj and the point

p(Si, Sj) for all pairs (S
i, Sj) of observers from each group implementing the minimum (13), Sj ∈ S

l,

Sj ∈ Sr;

(ii) ρ(S,T ∗) ≥ M for all S ∈ S.

There exists the best trajectory containing all points p(Si, Sj) for Si ∈ S
l and Sj ∈ Sr such that

KY (S
i) ∩KY (Sj) �= ∅.

Proof. Denote by Di (by Dj) the closed domain in Y between the cones K(Si) and K(Si+1)

(the cones K(Sj) and K(Sj+1), respectively), and consider the following sets of points:

Ki
j = KY (S

i) ∩ KY (Sj) (see (13)) is an open set with the multiplicity of covering equal to 2;

KY (S
i) ∩ Dj and KY (S

j) ∩ Di are open-closed sets with the multiplicity of covering equal to 1;

Di
j = Di ∩ Dj is a closed set of points with zero multiplicity of covering.

Note that ρ(t, S) = +∞ ∀ t ∈ Di
j ∀ S ∈ S. Hence, there are no constraints on the position of

trajectories T ∗ in the set Di
j .

An optimal trajectory in neighborhoods of the sets Ki
j was constructed in cases I–III. The

construction is based on a solution p(Si, Sj) of problem (4), which, in the two possible subcases II1
and II2, was denoted by p′(·, ·) and p′′(·, ·) with the order of the arguments Si and Sj depending

on the mutual arrangement of the cones K(Si) and K(Sj).

Consider the group of left pairs (see Fig. 2). Fix an index i and consider the position of points

p(Si, Sj) on the cone K(Si). If the point nearest to the vertex Si has the form p′′(Si, Sj), then

there can be several consecutive points of the same form with indices j monotonically decreasing

from the index j to some index j(i) + 1 with the growth of their distance to the vertex Si. They

all lie on the side of the cone K(Si) facing the segment [Si, Sj(i)]. The point p(Si, Sj(i)) next in

order of distance from Si belongs to the boundary of Ki
j(i) and is either (a) a p′(Sj(i), S

i)-point or

a p′(Si, Sj(i))-point or (b) a point of the form p′′(Sj(i), S
i) lying on the side of the cone K(Sj(i))

facing the segment [Si, Sj(i)]. In these cases (see I and II), the half-open segment of the straight

line L(Si, p′′(Si, Sj)) from Si to the point of intersection with the set K
i
j(i) (we denote this segment

by Δi, Si �∈ Δi) can be included in the optimal trajectory. Let p′′(Sj(i), S
m) be the point nearest

to Sj(i). Repeating the above argument, we see that the half-open segment of the straight line

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 300 Suppl. 1 2018



S54 BERDYSHEV

Δi−1

Δi

C ′(Si)

Di−1
j(i)−1

Ki
j(i)

Di
j(i)

C ′(Sr)

p′(Si, Sj(i))

Si Si+1 ′′(i/j(i) + 1)

′(i/j(i))

′′(j(i)\i + 1)

P (Si+2)

Sj(i)

Fig. 2.

L(Sj(i), p
′′(Sj(i), S

m)) from the point Sj(i) to the point of intersection with the set K
i
j(i) (we denote

this segment by Δj(i), Sj(i) �∈ Δj(i)) can be included in the optimal trajectory. It is clear that the

segments Δi and Δj(i) have a common end point (denoted by vi) satisfying the inclusion

vi ∈ (bdK
i
j(i)) ∩ Di

j(i). (14)

Thus, the two-link polygonal line Δi ∪ Δj(i) (shown with dots in Fig. 2) can be included in the

optimal trajectory so that the value ρ(t,S), t ∈ T , remains not less than the minimum (13).

In case (a), the segment [p(Si, Sj(i)), vi] (see II1, (N
′)) can be included in the trajectory T ∗. In

case (b), according to (N′′) from II2, the whole segment [p′′(Sj(i), S
i), Sj(i)] is included in T ∗.

Now, assume that, for given i, the point nearest to Si has the form p′(Sj, S
i) or p′(Si, Sj) for

some j. Similarly to the above case, we should consider the position of points p(Sj, S
i) in the cone

K(Sj) for different i and fixed j.

Thus, all points p′′(Si, Sj) lie in the set of two-link polygonal lines of the form Δi ∪Δj(i) for i

such that the point p(Si, Sj) nearest to Si is a p′′(Si, Sj)-point and of polygonal lines of the form

Δj∪Δi(j) for j such that the point p(Sj, S
i) nearest to Sj is a p′′(Sj , S

i)-point. As shown above, the

points p′(Si, Sj(i)) and p′(Sj(i), S
i) lie on the boundary of the set K

i
j(i), and one can verify similarly

that the points p′(Sj , S
i(j)) and p′(Si(j), Sj) lie on the boundary of the set K

i(j)
j . In case (a),

using the arcs C ′ (see (N′)), we can connect the set Di−1
j(i)−1

and, hence, by (14), the polygonal line

Δi−1 ∪Δj(i)−1 with the set Di
j(i) and, hence, with the polygonal line Δi ∪Δj(i). In case (b), the

segments Δi and Δi−1 are connected by the segment one end point of which is Sj(i) and the other
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is the intersection point of the segment Δi−1 with the straight line L(Sj(i), p
′′(Sj(i), S

i)). The point

p(Si) (the point p(Sj)), see case I, can be connected by the segment of the boundary Γl (of the

boundary Γr) with the segment Δn(i) (segment Δm(j)) nearest on the left.

Thus, we have constructed the trajectory T ∗ composed from straight line segments, fragments

of the boundary Γ, and circular arcs so that the following inequality holds:

ρ(S,T ∗) ≥ min
{
M(Si, Sj), M(Si), M(Sj) : S

i ∈ S
l, Sj ∈ Sr

}
∀ S ∈ S.

A trajectory for the group of right pairs is constructed similarly. The problem of construction

of a trajectory for two neighboring groups one of which contains left pairs and the other contains

right pairs or for three neighboring groups consisting of left pairs, mean pairs, and right pairs,

respectively, reduces to the problem of construction of a trajectory for two neighboring pairs that

are either left and right pairs, or left and mean pairs, or mean and right pairs, which is easily solved

by the methods presented in case II. The theorem is proved. �
In Fig. 2, we use the following notation for brevity: p′(Si, Sj) =

′ (i/j), p′′(Si, Sj) =
′′ (i/j), and

p′′(Sj , S
i) =′′ (j\i).

The right hand side depicts an enlarged fragment of the whole picture.

An optimal trajectory may contain not all of the points p(Si, Sj), p(S
i), and p(Sj). The above

theorem enables a simplification of the problem of constructing an optimal trajectory from the

parts mentioned above: circular arcs, parts of the boundary bdY , and segments of the boundaries

of cones K(S) in the case when the minimization problem (13) has a large number of solutions.

Remark. The constructed trajectory contains sections with backward motion. Find a shortest

optimal trajectory is an important problem.
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