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Abstract—A linear semidefinite programming problem in the standard statement is consid-
ered, and a variant of the dual simplex method is proposed for its solution. This variant
generalizes the corresponding method used for linear programming problems. The transfer from
an extreme point of the feasible set to another extreme point is described. The convergence of
the method is proved.
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INTRODUCTION

Linear semidefinite programming problems are an important generalization of linear program-

ming problems [1,2]. In turn, they are a particular case of conic programming problems, where the

variables must belong to a closed convex cone (in semidefinite programming, the cone of symmetric

positive semidefinite matrices is taken for this purpose). Many convex nonlinear problems of

mathematical programming, as well as problems of discrete and combinatorial optimization, are

reduced to such statements [3,4], which explains the interest in numerical methods for solving these

problems.

The interior point methods, mainly, of affine scaling type [4], are ones of the most developed

among such methods at present. In addition, generalizations of the primal simplex method were

proposed both for semidefinite programming problems and for conic programming problems [5–7].

One of the difficulties in extending the simplex method to semidefinite programming problems

in the standard statement is that the number of equality type constraints, as a rule, is not a

triangular number, i.e., the number of elements of a symmetric matrix located on its diagonal and

under the diagonal. This requires a special passage from one extreme point of the admissible set

to another extreme point. A possible scheme of this passage in the primal simplex method was

described in [8]. Here we use a similar technique to generalize the dual simplex method.

The paper consists of three sections. In Section 1 we give the problem statement and optimality

conditions. In Sections 2 and 3 we consider the passage from one extreme point of the admissible

set of the dual problem to another extreme point in two cases depending on whether the inequality

that connects the rank of the dual residual matrix with the number of constraints in the problem

turns into an equality. In the end of Section 3, we prove the local convergence of the method.
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1. PROBLEM STATEMENT AND OPTIMALITY CONDITIONS

Let S
n denote the space of symmetric matrices of order n, and let S

n
+ be the subset of S

n

consisting of positive semidefinite matrices. The set Sn+ is a cone in S
n. To specify that a matrix

M ∈ S
n is positive semidefinite, we will also use the inequality M � 0. The cone S

n
+ is not

polyhedral; its dimension is the triangular number n� = n(n+ 1)/2.

The scalar (inner) product of two matrices M1 and M2, denoted by M1 • M2, is defined as

follows: M1 • M2 = tr (MT
1 M2); i.e., it is the sum of products of the elements of M1 and M2

located at the same positions. If M1 and M2 are two positive semidefinite matrices from S
n, then

M1 •M2 ≥ 0 and M1 •M2 = 0 if and only if M1M2 = M2M1 = 0nn. The cone S
n
+ is self-dual [4].

Consider the semidefinite programming problem

min C •X, Ai •X = bi, 1 ≤ i ≤ m, X � 0. (1.1)

Here the matrices C, X, and Ai, 1 ≤ i ≤ m, belong to the space S
n. We assume that the

matrices Ai, 1 ≤ i ≤ m, are linearly independent.

The dual problem to (1.1) is the problem

max 〈b, u〉, V = V (u) = C −
m∑
i=1

uiAi � 0, (1.2)

where b = (b1, . . . , bm)T ∈ R
m and the angular brackets stand for the usual Euclidean scalar product

in R
m. We assume that both problems (1.1) and (1.2) have solutions and b �= 0m.

Let FD be the admissible set in the dual problem (1.2); i.e.,

FD =
{
[u, V ] ∈ R

m × S
n
+ : V = V (u)

}
.

The projection of FD to the space R
m is the set

FD,u =
{
u ∈ R

m : [u, V ] ∈ FD for some V ∈ S
n
+

}
.

The optimality conditions for the pair of problems (1.1) and (1.2) consist in the existence of

X � 0 and V � 0 satisfying the system of equalities

X • V = 0, Ai •X = bi, 1 ≤ i ≤ m, V = C −
m∑
i=1

uiAi. (1.3)

Let us write these equalities in a slightly different form using the operation of vectorization of

matrices.

For a square matrix M of order n, denote by vecM the column vector of length n2 that is

the direct sum of the columns M . If the matrix M is symmetric, then, instead of vecM , it is

reasonable to use the column vector svecM of the smaller dimension n�. This vector contains the

lower parts of the columns of M starting from the diagonal element, and each off-diagonal elements

is multiplied by
√
2. Then the scalar product M1 •M2 of two matrices M1 ∈ S

n and M2 ∈ S
n is

written as the usual scalar product in the space R
n� ; i.e., M1 • M2 = 〈svecM1, svecM2〉. Thus,

equality (1.3) takes the following form in terms of the vector representations of matrices:

〈svecX, svec V 〉 = 0, Asvec svecX = b, svecV = svecC −AT
svec u. (1.4)

Here Asvec is the matrix of size m× n� with the rows svecAi, 1 ≤ i ≤ m.
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In what follows, we consider a numerical method for solving problem (1.2) and, consequently,

problem (1.1), based on solving system (1.4) in a special way. This method can be interpreted as a

generalization of the dual simplex method for linear programming problems. All the points of the

iterative process in the space R
m belong to the boundary of the set FD,u and are extreme points

of this set.

Take a point u ∈ FD,u and consider the corresponding dual residual V = V (u). Let rankV = s

and define the sth triangular number s� = s(s+1)/2. If u is an extreme point of the set FD,u, then

the rank of the matrix V satisfies the inequality s� ≤ n�−m (see [4]). Since there are gaps between

neighboring triangular numbers, it may happen that, for specific n and m from the statement of

problem (1.1), this inequality is strict. Let us call an extreme point u regular if s� = n� − m.

Otherwise, when s� < n� −m, an extreme point u will be called irregular.

2. ITERATION AT A REGULAR POINT

Given an initial extreme point u0 ∈ FD,u, we construct a sequence of extreme points {uk} so

that the corresponding values of the objective function in problem (1.2) monotonically increase

from iteration to iteration.

Assume that u ∈ FD,u is a current extreme point and the dual residual matrix V = V (u) at this

point has rank s < n. For the matrix V , we have a decomposition V = HD(θ)HT , where H is an

orthogonal matrix and θ is the vector of eigenvalues of V . Since V is rank deficient, we can divide

the matrix H and the vector θ into two parts in accordance with the zero and positive eigenvalues

of V . We assume for definiteness that this decomposition has the form

H = [HB,HN ] , θ = [θB, θN ] , θB = 0r, θN > 0s, r = n− s. (2.1)

In accordance with (2.1), we decompose the space S
n into linear subspaces S

n
B and S

n
N . The

second subspace SnN consists of matrices M ∈ S
n in which only the lower right block of order s may

contain nonzero elements. On the contrary, the first subspace S
n
B consists of matrices M ∈ S

n in

which the lower right block contains only zeros. These two subspaces are orthogonal to each other,

and any matrix M ∈ S
n can be represented as M = M1 +M2, where M1 ∈ S

n
B and M2 ∈ S

n
N .

If we pass from the matrix V to the matrix V H = HTV H, i.e., to the representation of V in the

basis given by the columns of the orthogonal matrix H, we come to the relation V H = V H
B + V H

N ,

where

V H
B = HTVBH = 0nn, V H

N = HTVNH =

[
0ss 0sr
0rs D(θN )

]
. (2.2)

We will treat the matrices X, C, and Ai, 1 ≤ i ≤ m, in a similar manner; i.e., we pass to the

representations XH = HTXH, CH = HTCH, and AH
i = HTAiH and decompose each of them

into two matrices. For example,

XH = XH
B +XH

N , XH
B =

[
HT

BXHB HT
BXHN

HT
NXHB 0rr

]
, XH

N =

[
0ss 0sr
0rs HT

NXHN

]
.

The matrix XH
B is a bordering matrix if its off-diagonal blocks are nonzero. A point u ∈ FD,u is

extreme if and only if the matrices AH
i,B , 1 ≤ i ≤ m, are linearly independent [4].

Since X • V = trV HXH = V H • XH , the first equality in (1.4) can be written in the form

〈svecX, svec V 〉 = 〈svecXH , svecV H〉 = 0. In addition, this equality is equivalent to the following:

〈svecXH , svec V H〉 = 〈svecXH
B , svec V H

B 〉+ 〈svecXH
N , svec V H

N 〉 = 0. (2.3)
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Note that the corresponding matrices V H
B and V H

N at the point u have the form (2.2). Hence,

svecV H
B is the zero vector, and the vector svecV H

N is svecD(θ); i.e., its first n� − s� components

are also zeros. Therefore, equality (2.3) holds if the matrix XH is such that the corresponding

matrix XH
N is zero. The number n� − s� plays an important role and is hereinafter denoted by l.

Assume that u is not an optimal solution of the dual problem (1.2), and it is desirable to pass

to a new extreme point ū with a larger value of the objective function. Let us first assume for

simplicity that u is a regular extreme point. In this case, m = l.

Along with the decomposition of the matrix M ∈ S
n into components MB ∈ S

n
B and MN ∈ S

n
N ,

we will need a decomposition of the vector svecM into two subvectors; specifically, svecM =

[svecBM, svecNM ]T , where the dimensions of the components svecBM and svecNM are l and s�,

respectively. In particular, svecV H =
[
svecBV

H , svecNV H
]T

and the following relations hold in

view of the regularity of the point u:

svecBV
H = svecBV

H
B = 0m, svecNV H = svecNV H

N = svecD(θN ) ∈ R
s� .

Let AH
svec be the (m × n�)-matrix whose rows are the vectors svecAH

i , 1 ≤ i ≤ m, and let

AH
svecB be its submatrix consisting of the first m columns, i.e., of the rows svecB AH

i . The second

equality in the optimality conditions (1.4) can be written with the use of the introduced notation

in an equivalent vector form as AH
svec svecX

H = b. If we now require that svecNXH = 0s� , then

this equality is reduced to a system of linear equations with respect to the vector svecB XH :

AH
svecB svecBX

H = b. (2.4)

Since u is an extreme point, the matrix of this system is nonsingular. Hence, solving system (2.4),

we obtain

svecBX
H =

(
AH

svecB

)−1
b. (2.5)

For the whole matrix XH ∈ S
n, we have the vector representation

svecXH = svecXH
B =

[ (
AH

svecB

)−1
b

0s�

]
.

Hence, in particular, the lower right block of order s in the matrix XH consists of zeros. Therefore,

if XH is a bordering matrix, there are negative numbers among its eigenvalues.

If the matrix XH is positive semidefinite, then the matrix X, which is similar to it, is also

positive semidefinite. In this case, the point u and the corresponding weak dual variable V (u)

form a solution of the dual problem (1.2), because the optimality conditions (1.3) are fulfilled. The

point X will be a solution of the original problem (1.1).

Further, assume that X is not a positive semidefinite matrix. Consider its decomposition

X = QD(η)QT , where Q is an orthogonal matrix and η is the vector of eigenvalues of X, which

coincide with the eigenvalues of the matrix XH = XH
B . Vectorizing the matrix X using the known

formula

vecM1M2M3 = (MT
3 ⊗M1) vecM2, (2.6)

where ⊗ denotes the Kronecker product of matrices, we obtain vecX = (Q ⊗ Q) vecD(η).

We pass in this formula from vecX and vecD(η) to svecX and svecD(η). For this, we will

need special elimination and duplication matrices (see [9]), denoted by L̃n and D̃n. They are full
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rank matrices of size n� × n2 and n2 × n�, respectively. If M is a symmetric matrix of order n,

then svecM = L̃nvecM and vecM = D̃nsvecM . Using the introduced matrices, we get

svecX = L̃n(Q⊗Q)vecD(η) = L̃n(Q⊗Q)D̃n svecD(η).

Note that L̃n and D̃n are somewhat different from the elimination and duplication matrices Ln

and Dn from [9]; specifically, L̃n = Diag (svecEn)Ln and D̃n = DnDiag−1(svecEn). Here En is

the square matrix of order n all of whose elements are equal to one, and Diag (a) is the diagonal

matrix with vector a on its diagonal.

Let qi, 1 ≤ i ≤ n, be the columns of the orthogonal matrix Q (i.e., the eigenvectors of the

matrix X). Then X can also be written in the following matrix and vector forms:

X =
n∑

i=1

ηiqiq
T
i , vecX =

n∑
i=1

ηi (qi ⊗ qi) . (2.7)

Assume that ηk is a negative eigenvalue of X and qk is the corresponding eigenvector. We pass to

a new point ū, setting

ū = u− αΔu, (2.8)

where α > 0. We require that the vector Δu ∈ R
m satisfy the system of linear equations(

AH
svecB

)T
Δu = svecB QH

k . (2.9)

Here and below, QH
k = HTQkH and Qk = qkq

T
k . The symmetric matrix Qk is positive

semidefinite and has unit rank.

Since the matrix AH
svecB

is nonsingular, we can solve this system and obtain

Δu =
(
AH

svecB

)−T
svecB QH

k , (2.10)

where we use the conventional notation M−T = (MT )−1.

Assertion 1. The vector qk does not belong to the subspace R(HN ) generated by the columns

of the matrix HN .

Proof. Indeed, if assume that qk = HNz for some nonzero vector z ∈ R
s, then we would

have Xqk = XHNz = ηkHNz. Multiplying this equality on the left by the matrix HT
N , we get

HT
NXHNz = ηkz, which is impossible because HT

NXHN is the zero matrix.

The assertion is proved.

Remark. Since the nonzero vector qk does not belong to the subspace R(HN ), it can be

represented in the form

qk = HBq
H,B
k +HNqH,N

k , (2.11)

where qH,B
k = HT

Bqk �= 0r. If q
H,N
k = HT

Nqk = 0s, then qk = HBq
H,B
k . Hence, the matrix Qk belongs

to the face G∗
min(V ;Sn+), which is dual to the minimum face Gmin(V ;Sn+) of the cone S

n
+ containing

the point V = V (u).

Let us consider the change of the value of the objective function in the dual problem (1.2) when

we pass to the new point ū.

Assertion 2. The increment of the value of the objective function in the dual problem satisfies

the formula

〈b, ū〉 = 〈b, u〉 − αηk > 〈b, u〉. (2.12)
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Proof. According to (2.8), we have 〈b, ū〉 = 〈b, u〉 − α〈b,Δu〉. However,

〈b,Δu〉 = 〈b,
(
AH

svecB

)−T
svecB QH

k 〉 = 〈
(
AH

svecB

)−1
b, svecB QH

k 〉

= 〈svecBXH
B , svecB QH

k 〉 = 〈svecXH
B , svecQH

k 〉 = 〈vecXH
B , vecQH

k 〉.

Here we used the fact that the last s� components of the vector svecXH
B are zeros.

Since XH
B = XH , it follows from (2.7) that XH =

m∑
i=1

ηiQH
i , where QH

i = HT qiq
T
i H. Then,

using (2.6), we obtain vecXH
B = (HT ⊗ HT )

m∑
i=1

ηivec (qiq
T
i ) = (H ⊗ H)T

m∑
i=1

ηi(qi ⊗ qi). Since

vecQH
k = (H ⊗H)T (qk ⊗ qk), we come to the relation 〈vecXH

B , vecQH
k 〉 = ηk. Thus, (2.12) is true.

The assertion is proved.

Consider the matrix ΔV H =
∑m

i=1(Δu)iAH
i and decompose it into two matrices: ΔV H =

ΔV H
B +ΔV H

N . For the first matrix ΔV H
B , we obtain

svecB ΔV H
B =

(
AH

svecB

)T
Δu = svecB QH

k . (2.13)

Since the lower right block of the matrices Ai,B , 1 ≤ i ≤ m, is zero, it follows from (2.13)

that ΔV H
B = (QH

k )B . Note that the lower right block of the matrix (QH
k )B is also zero. Let

us calculate ΔV H
N . Vectorizing, we get

svecN ΔV H
N =

(
AH

svecN

)T
Δu =

(
AH

svecN

)T (
AH

svecB

)−T
svecB QH

k . (2.14)

Formula (2.8) corresponds to the formula for calculating the weak dual variable

V̄ H(α) = V H(ū) = V H(u) + αΔV H . (2.15)

Assertion 3. There exists ᾱ > 0 such that V̄ H(α) � 0 for any 0 < α ≤ ᾱ.

Proof. Let us apply the representation (2.11) of the vector qk. Then the vector qHk = HT qk is

decomposed into two subvectors: qHk =
[
qH,B
k , qH,N

k

]T
, where qH,B

k ∈ R
r, qH,N

k ∈ R
s, and qH,B

k �= 0r.

Let us represent the increment matrix ΔV H in the block form:

ΔV H =

[
ΩBB ΩBN

ΩNB ΩNN

]
,

where the diagonal blocks ΩBB and ΩNN have orders r and s, respectively. Since ΔV H
B = (QH

k )B ,

we have ΩBB = qH,B
k (qH,B

k )T and ΩBN = (ΩNB)
T = qH,B

k (qH,N
k )T . The matrix ΩNN has vector

representation (2.14). Therefore, according to (2.2) and (2.15),

V̄ H(α) =

⎡⎢⎣ αqH,B
k

(
qH,B
k

)T
αqH,B

k

(
qH,N
k

)T

αqH,N
k

(
qH,B
k

)T
D(θN ) + αΩNN

⎤⎥⎦ . (2.16)

Adding and subtracting the matrix αqH,N
k (qH,N

k )T in the lower right block and setting Ω̃NN =

ΩNN − qH,N
k (qH,N

k )T , we obtain one more representation of V̄ H(α):

V̄ H(α) = αQH
k +

[
0rr 0rs
0sr D(θN ) + αΩ̃NN

]
. (2.17)
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The matrix QH
k has unit rank and is positive semidefinite. In addition, since θN > 0s, we

conclude that the lower right submatrix ỸNN (α) = D(θN ) + αΩ̃NN in the second matrix in (2.17)

will be positive definite for sufficiently small α. Consequently, we can specify ᾱ > 0 such that

V̄ H(α) � 0 for all 0 < α ≤ ᾱ.

The assertion is proved.

Remark. If the matrix ΩNN is such that ΩNN � qH,N
k (qH,N

k )T , then the matrix Ω̃NN and,

hence, the matrix ỸNN (α) are positive semidefinite for all α > 0. In this case, the dual problem (1.2)

has no solution.

Further, assume that the matrix Ω̃NN has negative eigenvalues. Therefore, the inequality

ΩNN � qH,N
k (qH,N

k )T does not hold. In this case, an upper bound for the greatest ᾱ that preserves

the positive semidefiniteness of V̄ H(α) is found as the smallest α for which the matrix ỸNN (α) has

zero eigenvalue.

The bound for the greatest possible ᾱ can be refined. Indeed, since θN > 0s, the lower right

matrix YNN (α) = D(θN ) +αΩNN remains positive definite for sufficiently small α. Hence, as seen

from (2.16), the whole matrix V̄ H(α) is positive semidefinite if the Schur complement of the matrix

YNN (α), i.e., the matrix

ȲNN (α) = α

{
qH,B
k

(
qH,B
k

)T
− αqH,B

k

(
qH,N
k

)T
[D(θN ) + αΩNN ]−1 qH,N

k

(
qH,B
k

)T
}
,

is also positive semidefinite.

It is clear that this condition holds if qH,N
k is the zero vector. The matrix V̄ H in this case

becomes block-diagonal. Further, we assume that the vector qH,N
k is nonzero. Defining p(α) =(

qH,N
k

)T
[D(θN ) + αΩNN ]−1 qH,N

k , we find that

ȲNN (α) = α [1− αp(α)] qH,B
k

(
qH,B
k

)T
.

The matrix ȲNN also remains positive semidefinite for sufficiently small α. Thus, ᾱ is found as

follows. First, one should find the smallest α (denote it by ᾱ1) for which the matrix YNN (α) has

zero eigenvalue. Second, one should make sure that the inequality α ≤ p(α)−1 is fulfilled. If this

inequality is violated for the first time for some ᾱ2 < ᾱ1, then the upper bound for ᾱ is ᾱ = ᾱ2.

Otherwise, ᾱ = ᾱ1.

3. ITERATION AT AN IRREGULAR POINT

Assume now that the point u ∈ FD,u is irregular, i.e., that the rank s of the matrix V (u)

satisfies the strict inequality s� < n� −m. In this case, system (2.4) becomes underdetermined.

Then, we take for svecB XH a solution of (2.4) with minimum norm:

svecB XH =
(
AH

svecB

)T [
AH

svecB

(
AH

svecB

)T ]−1
b. (3.1)

It belongs to the row space of the matrix AH
svecB

. The general solution of system (2.4) has the

form svecB XH =
(
AH

svecB

)T [
AH

svecB

(
AH

svecB

)T ]−1
b + g, where g is an arbitrary vector belonging

to the zero space of the matrix AH
svecB

. If m+ p = l, then the dimension of the zero space of AH
svecB
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is p. Below, we assume that p < s. The irregular points u at which the rank s of the matrix V (u)

satisfies the inequality s� + s > n� −m will be called quasi-regular.

Consider the matrix X = HXHHT . It similar to the matrix XH = XH
B , whose vector svecB XH

is defined by (3.1). Let ηk be a negative eigenvalue ofX, and let qk be the corresponding eigenvector.

Just as at a regular point u, the vector qk does not belong to the linear subspace R(HN ).

System (2.9) for the direction Δu becomes overdetermined in this case. That is why we consider

another, more general, method of finding Δu. We pass from Δu to the direction ΔV in the V -space,

and search for the latter in the form

ΔV = [qk HN ]

[
1 wT

w ΔZ

] [
qTk
HT

N

]
= Qk + qkw

THT
N +HNwqTk +HNΔZHT

N . (3.2)

Here, ΔZ ∈ S
s and w ∈ R

s.

We require the vector w to be chosen as follows: w = Wy, where all columns wj ∈ R
s,

1 ≤ j ≤ p, of the matrix W are linearly independent and y ∈ R
p. In addition, we require the

vectors hwj = HNwj , 1 ≤ j ≤ p, to be orthogonal to the vector qk:

〈qk, hwj 〉 = 〈HT
Nqk, wj〉 = 0, 1 ≤ j ≤ p. (3.3)

All vectors hwj , 1 ≤ j ≤ p, belong to the subspace R(HN ).

Along with (3.2), there is a relation between ΔV and Δu; specifically, ΔV =
∑m

i=1 ΔuiAi.

Equating this representation for ΔV to (3.2), we come to the equality

m∑
i=1

ΔuiAi = Qk + qky
TW THT

N +HNWyqTk +HNΔZHT
N .

Let us vectorize it. Preliminarily, we define for brevity

WN = HNW, UWN ,qk = WN ⊗ qk + qk ⊗WN , HN = HN ⊗HN .

Then, in view of the equality vec yT = vec y = y, we obtain

Avec
T Δu− UWN ,qky −HNvecΔZ = vecQk. (3.4)

Rewrite this equality in the basis given by the orthogonal matrix H. For this, we multiply the

equality on the left by the matrix (H ⊗H)T = HT ⊗HT . Since

(HT ⊗HT )(HN ⊗HN ) =

[
0rs
Is

]
⊗
[
0rs
Is

]
=

⎡⎣ 0(rn)s2

Diag

([
0rs
Is

]
, . . . ,

[
0rs
Is

]) ⎤⎦ (3.5)

and UH
WN ,qk

= (HT ⊗ HT )UWN ,qk = WH
N ⊗ qHk + qHk ⊗ WH

N , where qHk = HT qk, W
H
N = HTWN ,

we have

(Avec
H)TΔu−

{
UH
WN ,qk

y + ΓHvecΔZ
}
= vecQH

k , (3.6)

where ΓH is the matrix from the right-hand side of (3.5).

The columns of the matrices UH
WN ,qk

and ΓH correspond to symmetric matrices (in the case

of the matrix ΓH , the only unit elements in a column are at the positions of diagonal elements).

Therefore, system (3.6), can be written as follows:

(AH
svec )

TΔu− ŨH
WN ,qk

y − Γ̃HsvecΔZ = svecQH
k , (3.7)
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where ŨH
WN ,qk

= L̃nU
H
WN ,qk

and Γ̃H = L̃nΓ
HD̃s. Note that the matrix Γ̃H of size n� × s� is such

that its upper submatrix of size l × s� is zero. System (3.7) is a system of n� linear equations

with respect to n� variables: Δu, y, and svecΔZ. If its matrix

M =
[
(AH

svec )
T ...ŨH

WN ,qk

...Γ̃H
]

is nonsingular, then the system has a unique solution.

Assume in what follows that the matrix M is nonsingular. Since the matrices Ai, 1 ≤ i ≤ m,

are linearly independent, the matrix AH
svec has full rank equal to m. Moreover, since u is an extreme

point of the set FD,u, the matrix AH
svecB of size m× l also has rank m, i.e., full row rank.

Let K be an arbitrary matrix of size p× l whose rows are linearly independent vectors from the

zero space of the matrix AH
svecB . Using AH

svecB and K, we compose the square matrix

Q =

[
ĀH

svecB
0ls�

0s�l Is�

]
, ĀH

svecB
=

[
AH

svecB

K

]
.

Note that the matrix ĀH
svecB is nonsingular by its definition. If we multiply system (3.7) on the left

by the nonsingular matrix Q, its solution does not change.

Denote by ŨH,B
WN ,qk

the upper submatrix of ŨH
WN ,qk

of size l × p. Multiplying (3.7) by the first

row of Q, we get

WΔu = AH
svecB

[
ŨH,B
WN ,qk

y + svecB QH
k

]
, K

[
ŨH,B
WN ,qk

y + svecB QH
k

]
= 0p, (3.8)

where W = AH
svecB (A

H
svecB )

T .

Since the square matrix W of order m is nonsingular, we have

Δu = W−1AH
svecB

[
ŨH,B
WN ,qk

y + svecB QH
k

]
. (3.9)

If the square matrix KŨH,B
WN ,qk

of order p is nonsingular, then, solving the second system in (3.8), we

obtain y = −
(
KŨH,B

WN ,qk

)−1
K svecB QH

k . Substituting the found y into the expression (3.9) for Δu,

we get

Δu = W−1AH
svecB

[Il − P] svecB QH
k , P = ŨH,B

WN ,qk

(
KŨH,B

WN ,qk

)−1
K. (3.10)

Let us now calculate the change of the value of the objective function in the dual problem (1.2)

along the direction Δu.

Assertion 4. Suppose that the columns wj of the matrix W , 1 ≤ j ≤ p, satisfy equality (3.3).

Then the dual objective function takes at the point ū value (2.12).

Proof. Substituting Δu from (3.10), we get

〈b,Δu〉 = 〈b, W−1AH
svecB [Il −P] svecB QH

k 〉 = 〈(AH
svecB )

TW−T b, svecB QH
k −PsvecB QH

k 〉

= 〈svecB XH , svecB QH
k 〉 − 〈svecB XH ,PsvecB QH

k 〉

= 〈vecX, vec Qk〉 − 〈svecB XH ,PsvecB QH
k 〉 = ηk − 〈svecB XH ,PsvecB QH

k 〉. (3.11)

Consider the matrix ŨH,B
WN ,qk

in more detail, finding preliminarily the form of the matrix UH
WN ,qk

.

Since WH
N = [0rs

... W ]T , the ith column of WH
N ⊗ qHk is vec

[
0nr

... wi ⊗ qHk

]
, 1 ≤ i ≤ p. Therefore,
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the upper (rn)× p-submatrix in the matrix WH
N ⊗ qHk is zero. Hence, the upper l× p-submatrix in

the matrix L̃n(W
H
N ⊗ qHk ) is also zero. Thus, ŨH,B

WN ,qk
coincides with the upper (l× p)-submatrix of

L̃n(q
H
k ⊗WH

N ).

Let us calculate the p-dimensional vector z =
(
ŨH,B
WN ,qk

)T
svecBX

H . Since the last s� elements

of the vector svec XH are zeros, the jth element of z is defined as follows:

zj = 〈L̃n

(
qHk ⊗ (HTHNwj)

)
, svec XH〉 = 〈qHk ⊗ (HTHNwj), vecX

H〉

= 〈(H ⊗H)
(
(HT qk)⊗ (HTHNwj)

)
, vecX〉 = 〈qk ⊗ (HNwj), vecX〉

= (qk ⊗ (HNwj))
T vecX =

(
qTk ⊗ (HNwj)

T
)
vecX.

Hence, in view of condition (3.3) and the equality vecX =
n∑

i=1
ηi(qi ⊗ qi), we obtain

zj =

n∑
i=1

ηi
(
qTk ⊗ (wT

j H
T
N )

)
(qi ⊗ qi) = ηkwT

j H
T
Nqk = 0.

Therefore, z = 0p, which leads to the equality

〈svecB XH
B , P svecB QH

k 〉 =
〈(

ŨH,B
WN ,qk

)T
svecB XH

B ,
(
KŨH,B

WN ,qk

)−1
K svecB QH

k

〉
= 0.

It remains to use equality (3.11).

The assertion is proved.

In conclusion, we consider the issue of the convergence of the method. We say that problem (1.2)

is quasi-regular if all extreme points from FD,u are regular or quasi-regular. We assume additionally

that the negative eigenvalue ηk taken at each step is the value with the greatest absolute value.

Theorem. Suppose that problem (1.2) is quasi-regular and the initial point u0 ∈ FD,u is such

that the set FD,u(u0) = {u ∈ FD,u : 〈b, u〉 ≥ 〈b, u0〉} is bounded. Then the dual simplex method

generates a sequence of points {uk} ⊂ FD,u(u0). If this sequence is finite, then its last point is a

solution of (1.2). Otherwise, any of its limit points is a solution of (1.2).

Proof. We restrict ourselves to considering the case when the sequence {uk} is infinite. Since

it is bounded, there are limit points. Let uks → ū. The point ū is extreme.

The sequence {uk} corresponds to the sequence of matrices {Vk}, where Vk = V (uk). The rank

of such matrices is bounded at extreme points. Therefore, the corresponding matrices HN are also

bounded in the Frobenius norm, i.e., belong to a compact set. Hence, {Vks} contains a subsequence

for which the matrices HN converge to some matrix H̄N . Without loss of generality, we assume

that the sequence {Vks} itself has this property and the rank of all matrices HN is the same. Denote

by H̄ the orthogonal matrix whose second component is H̄N .

Consider the matrix AH̄
svecB , which enters system (2.4) for finding the vector svecB XH̄ at the

point ū. Since ū is an extreme point, this matrix has full rank coinciding with the row rank. Hence,

the solutions of system (2.4), specifically, the vectors svecB XHks defined either by (2.5) or by (3.1),

converge to svecB X̄H̄ .

The matrix X̄ must be positive semidefinite; otherwise, X̄ would have a negative eigenvalue.

However, eigenvalues of matrices are Lipschitz continuous. Therefore, matrices Xks sufficiently

close to X̄ also have negative eigenvalues. Hence, these iterations correspond to the passage from
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the points uks to the next points uks+1 with step αks and with the value of the objective function

increasing by −αks η̄ks , where η̄ks is the negative component of ηks with maximum absolute value.

However, since the vectors Δuk are bounded, the steps αks cannot tend to zero. Therefore, we will

have 〈b, uks+1〉 > 〈b, ū〉 at a certain ksth iteration. In view of the monotone increase of the values

of the objective function along the trajectory, this contradicts the convergence of {uks} to ū.

The theorem is proved.
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