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Abstract—A linear semidefinite programming problem in the standard statement is consid-
ered, and a variant of the dual simplex method is proposed for its solution. This variant
generalizes the corresponding method used for linear programming problems. The transfer from
an extreme point of the feasible set to another extreme point is described. The convergence of
the method is proved.
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INTRODUCTION

Linear semidefinite programming problems are an important generalization of linear program-
ming problems [1,2]. In turn, they are a particular case of conic programming problems, where the
variables must belong to a closed convex cone (in semidefinite programming, the cone of symmetric
positive semidefinite matrices is taken for this purpose). Many convex nonlinear problems of
mathematical programming, as well as problems of discrete and combinatorial optimization, are
reduced to such statements [3,4], which explains the interest in numerical methods for solving these
problems.

The interior point methods, mainly, of affine scaling type [4], are ones of the most developed
among such methods at present. In addition, generalizations of the primal simplex method were
proposed both for semidefinite programming problems and for conic programming problems [5-7].

One of the difficulties in extending the simplex method to semidefinite programming problems
in the standard statement is that the number of equality type constraints, as a rule, is not a
triangular number, i.e., the number of elements of a symmetric matrix located on its diagonal and
under the diagonal. This requires a special passage from one extreme point of the admissible set
to another extreme point. A possible scheme of this passage in the primal simplex method was
described in [8]. Here we use a similar technique to generalize the dual simplex method.

The paper consists of three sections. In Section 1 we give the problem statement and optimality
conditions. In Sections 2 and 3 we consider the passage from one extreme point of the admissible
set of the dual problem to another extreme point in two cases depending on whether the inequality
that connects the rank of the dual residual matrix with the number of constraints in the problem
turns into an equality. In the end of Section 3, we prove the local convergence of the method.
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1. PROBLEM STATEMENT AND OPTIMALITY CONDITIONS

Let S™ denote the space of symmetric matrices of order n, and let S"! be the subset of S"
consisting of positive semidefinite matrices. The set S} is a cone in S". To specify that a matrix
M € S" is positive semidefinite, we will also use the inequality M = 0. The cone S is not
polyhedral; its dimension is the triangular number na = n(n + 1)/2.

The scalar (inner) product of two matrices M; and My, denoted by M; e My, is defined as
follows: M; @ My = tr (MlTMg); i.e., it is the sum of products of the elements of M; and My
located at the same positions. If M7 and My are two positive semidefinite matrices from S", then
M @ My >0 and M; e My = 0 if and only if M;M; = MaM; = 0p;,. The cone S} is self-dual [4].

Consider the semidefinite programming problem

min CeX, A eX =0 1<i<m, X>0. (1.1)

Here the matrices C', X, and A;, 1 < i < m, belong to the space S". We assume that the
matrices A;, 1 < ¢ < m, are linearly independent.
The dual problem to (1.1) is the problem

max (b,u), V =V(u)=0C-— ZuiAi =0, (1.2)
i=1
where b = (b!,...,b™)T € R™ and the angular brackets stand for the usual Euclidean scalar product

in R™. We assume that both problems (1.1) and (1.2) have solutions and b # 0,,.
Let Fp be the admissible set in the dual problem (1.2); i.e.,

Fp = {[u,V] ER™ xS}:V = V(u)}
The projection of Fp to the space R™ is the set
Fpu= {u € R™: [u,V] € Fp for some V € Si}

The optimality conditions for the pair of problems (1.1) and (1.2) consist in the existence of
X > 0and V > 0 satisfying the system of equalities

XeV=0, AjeX=V, 1<i<m, V=C-> u'A,. (1.3)
=1

Let us write these equalities in a slightly different form using the operation of vectorization of
matrices.

For a square matrix M of order n, denote by vec M the column vector of length n? that is
the direct sum of the columns M. If the matrix M is symmetric, then, instead of vec M, it is
reasonable to use the column vector svec M of the smaller dimension na. This vector contains the
lower parts of the columns of M starting from the diagonal element, and each off-diagonal elements
is multiplied by v/2. Then the scalar product M; e M of two matrices M; € S™ and My € S" is
written as the usual scalar product in the space R"2; ie., M; e My = (svec My, svec My). Thus,
equality (1.3) takes the following form in terms of the vector representations of matrices:

(svec X,svec V) =0, Agyee svec X =b, svecV =svecC — AL u. (1.4)
Here Agyec is the matrix of size m X na with the rows svec 4;, 1 < i < m.
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In what follows, we consider a numerical method for solving problem (1.2) and, consequently,
problem (1.1), based on solving system (1.4) in a special way. This method can be interpreted as a
generalization of the dual simplex method for linear programming problems. All the points of the
iterative process in the space R belong to the boundary of the set Fp, and are extreme points
of this set.

Take a point v € Fp,, and consider the corresponding dual residual V' = V' (u). Let rankV = s
and define the sth triangular number sp = s(s+1)/2. If u is an extreme point of the set Fp 4, then
the rank of the matrix V satisfies the inequality sp < na—m (see [4]). Since there are gaps between
neighboring triangular numbers, it may happen that, for specific n and m from the statement of
problem (1.1), this inequality is strict. Let us call an extreme point u regular if sn = np — m.
Otherwise, when sp < na —m, an extreme point v will be called irregular.

2. ITERATION AT A REGULAR POINT

Given an initial extreme point ug € Fp,, we construct a sequence of extreme points {ux} so
that the corresponding values of the objective function in problem (1.2) monotonically increase
from iteration to iteration.

Assume that u € Fp,, is a current extreme point and the dual residual matrix V' = V(u) at this
point has rank s < n. For the matrix V, we have a decomposition V = HD(0)H”, where H is an
orthogonal matrix and 6 is the vector of eigenvalues of V. Since V is rank deficient, we can divide
the matrix H and the vector  into two parts in accordance with the zero and positive eigenvalues
of V. We assume for definiteness that this decomposition has the form

H:[HB,HN], 0= [03,91\[], 0 =0, On>0,, r=n-—s. (2.1)

In accordance with (2.1), we decompose the space S” into linear subspaces S and S%. The
second subspace S’ consists of matrices M € S™ in which only the lower right block of order s may
contain nonzero elements. On the contrary, the first subspace S% consists of matrices M € S" in
which the lower right block contains only zeros. These two subspaces are orthogonal to each other,
and any matrix M € S" can be represented as M = M; + Ms, where M; € S% and M, € S%;.

If we pass from the matrix V to the matrix V# = HTV H  i.e., to the representation of V in the
basis given by the columns of the orthogonal matrix H, we come to the relation V7 = Véq + VNH ,
where

(2.2)

Vi = HI'VgH = 0, Vi =HTVyH = [ Oss Osr ] .

0,s D(fn)

We will treat the matrices X, C, and A;, 1 < i < m, in a similar manner; i.e., we pass to the
representations X? = HTXH, C? = HTCH, and A¥ = HT A;H and decompose each of them
into two matrices. For example,

XP=x8+x%, X§= Hp X Hp HngHN}, XH—[OSS Osr ]

HEXHp 0, N7l o HYXHy

The matrix X# is a bordering matrix if its off-diagonal blocks are nonzero. A point u € Fp,, is
extreme if and only if the matrices Ang 1 <i <'m, are linearly independent [4].

Since X o V = tr VI X" = VH o XH | the first equality in (1.4) can be written in the form
(svec X, svec V') = (svec X svec VH) = 0. In addition, this equality is equivalent to the following:

(svec X svec V) = (svec XH  svec VAT + (svec XTT svec VIT) = 0. (2.3)
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Note that the corresponding matrices Vé{ and VNH at the point u have the form (2.2). Hence,
svec Véf is the zero vector, and the vector svec ng is svec D(0); i.e., its first no — sA components
are also zeros. Therefore, equality (2.3) holds if the matrix X is such that the corresponding
matrix X ]I\}T is zero. The number np — sa plays an important role and is hereinafter denoted by .

Assume that u is not an optimal solution of the dual problem (1.2), and it is desirable to pass
to a new extreme point u with a larger value of the objective function. Let us first assume for
simplicity that u is a regular extreme point. In this case, m = I[.

Along with the decomposition of the matrix M € S™ into components Mp € S’ and My € Sy,
we will need a decomposition of the vector svec M into two subvectors; specifically, svec M =
]T, where the dimensions of the components svecg M and svecy M are [ and sa,
]T

[svecg M, svecy M
respectively. In particular, svec VI = [svecBVH ,svecyVH|" and the following relations hold in

view of the regularity of the point wu:

svecgVH = svecBVéq =0,, svecyV = svecNVNH = svec D(fn) € R*~.

Let AZ

svec
Ag,ecB be its submatrix consisting of the first m columns, i.e., of the rows svecg A”. The second

equality in the optimality conditions (1.4) can be written with the use of the introduced notation

be the (m x na)-matrix whose rows are the vectors svec AZ, 1 < i < m, and let

in an equivalent vector form as AX__ svec X# = b. If we now require that svecy X/ = 05, , then
this equality is reduced to a system of linear equations with respect to the vector svecp X
Ag,ecB svecg XH = b. (2.4)

Since u is an extreme point, the matrix of this system is nonsingular. Hence, solving system (2.4),
we obtain

svecp XH = (.Ag,ecB)il b. (2.5)

For the whole matrix X € S”, we have the vector representation

H -1
svec X = svec XH = ('ASVQCB ) b .
Os 0

Hence, in particular, the lower right block of order s in the matrix X consists of zeros. Therefore,
if X# is a bordering matrix, there are negative numbers among its eigenvalues.

If the matrix X is positive semidefinite, then the matrix X, which is similar to it, is also
positive semidefinite. In this case, the point u and the corresponding weak dual variable V(u)
form a solution of the dual problem (1.2), because the optimality conditions (1.3) are fulfilled. The
point X will be a solution of the original problem (1.1).

Further, assume that X is not a positive semidefinite matrix. Consider its decomposition
X = QD(n)QT, where Q is an orthogonal matrix and 7 is the vector of eigenvalues of X, which
coincide with the eigenvalues of the matrix X = X g . Vectorizing the matrix X using the known
formula

vec My MyMs = (M ® M) vec Mo, (2.6)

where ® denotes the Kronecker product of matrices, we obtain vec X = (Q ® Q) vec D(n).
We pass in this formula from vec X and vec D(n) to svec X and svec D(n). For this, we will

need special elimination and duplication matrices (see [9]), denoted by £, and D,. They are full
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rank matrices of size na x n? and n? x na, respectively. If M is a symmetric matrix of order n,

then svec M = vaec M and vec M = 15nsvec M. Using the introduced matrices, we get

svec X = L£,(Q ® Q)vec D(n) = L,(Q ® Q)Dy, svec D(n).

Note that En and 15n are somewhat different from the elimination and duplication matrices L,
and D, from [9]; specifically, L, = Diag (svec E,) L, and D, = D, Diag~!(svec E,,). Here E, is
the square matrix of order n all of whose elements are equal to one, and Diag (a) is the diagonal
matrix with vector a on its diagonal.

Let ¢;, 1 < i < n, be the columns of the orthogonal matrix @ (i.e., the eigenvectors of the
matrix X). Then X can also be written in the following matrix and vector forms:

n n
X = Z naqql, vecX = Z n' (¢ ® qi) - (2.7)
i=1 1=1

Assume that 7* is a negative eigenvalue of X and ¢, is the corresponding eigenvector. We pass to
a new point 4, setting

= u— aAu, (2.8)

where o > 0. We require that the vector Au € R™ satisfy the system of linear equations
T
(A )" Au=svecp Q. (2.9)

Here and below, QkH = HTQuH and Q) = qkqg. The symmetric matrix @ is positive
semidefinite and has unit rank.

Since the matrix AZ

svecy; 18 nonsingular, we can solve this system and obtain

Au = (Ag,ecB)fT svecp QI (2.10)

where we use the conventional notation M =7 = (MT)~1,

Assertion 1. The vector qi does not belong to the subspace R(Hy) generated by the columns
of the matriz Hy.

Proof. Indeed, if assume that ¢ = Hyz for some nonzero vector z € R®, then we would
have X¢q, = XHyz = n*Hyz. Multiplying this equality on the left by the matrix H]E, we get
H}\;X Hyz = nkz, which is impossible because H}\F,X Hp is the zero matrix.

The assertion is proved.

Remark. Since the nonzero vector g does not belong to the subspace R(Hy), it can be
represented in the form
H,B H,N
qx = Hpq, '~ + Hyg, (2.11)

where q,f’B = ngk #0,. If q,f’N = H]T,qk = 04, then ¢ = HBq,f’B. Hence, the matrix Qi belongs
to the face G, (V;S"), which is dual to the minimum face Gpin(V;S") of the cone S’} containing
the point V = V(u).

Let us consider the change of the value of the objective function in the dual problem (1.2) when
we pass to the new point .

Assertion 2. The increment of the value of the objective function in the dual problem satisfies
the formula
(b, @)y = (b,u) — an® > (b, u). (2.12)
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Proof. According to (2.8), we have (b, u) = (b, u) — a(b, Au). However,

(b, Au) = (b, (.Ag,eCB)fT svecp QkH> = <(A§,BCB)71 b, svecp QkH>
= (svecg XH, svecp Q) = (svec XH , svec Q) = (vec X, vec QH).

Here we used the fact that the last s components of the vector svec X g are zeros.
m

Since XH = X it follows from (2.7) that X# = > n'QH, where Q = HT¢;q] H. Then,

=1

mo mo.
using (2.6), we obtain vec X = (HT ® HT) Y nivec (qiql) = (H @ H)T' Y ni(q; ® ¢;). Since
1=1 =1

vec Q= (H @ H)™ (g1, ® qx), we come to the relation (vec XH,vec QF) = nF. Thus, (2.12) is true.
The assertion is proved.

Consider the matrix AV = > (Au)*A¥ and decompose it into two matrices: AV =
AVéq + AV]\I,{ . For the first matrix AVéq , we obtain

svecg AVA = (Ag,ecB)T Au = svecy QF. (2.13)

Since the lower right block of the matrices A; g, 1 < i < m, is zero, it follows from (2.13)
that AV = (Q)p. Note that the lower right block of the matrix (Q)p is also zero. Let
us calculate AV]\I,{ . Vectorizing, we get

sveey AVH = (.Ag,ecN)T Au = (.Ag,ecN)T (.Ag,ecB)iT svecy QF . (2.14)

Formula (2.8) corresponds to the formula for calculating the weak dual variable

VH () = V(@) = VT (u) + aAVE, (2.15)
Assertion 3. There exists & > 0 such that V¥ (a) =0 for any 0 < a < a.
Proof. Let us apply the representation (2.11) of the vector gx. Then the vector q,{f = H"q, is
T
decomposed into two subvectors: q,{f = [qf ’B, qf ’N] , where qf’B eR", q,f’N € R?, and qf’B £ 0,.
Let us represent the increment matrix AVH in the block form:
Q Q
AVH — [ BB BN ] 7
QOnp QOnn

where the diagonal blocks Qpp and Qyy have orders r and s, respectively. Since AVé{ = (QkH )B,
we have Qpp = qf’B(qf’B)T and Qpn = (Qvp)! = qf’B(qf’N)T. The matrix Qypy has vector
representation (2.14). Therefore, according to (2.2) and (2.15),

uB ( HB\T a8 ( HN\T
aqp q5 aqy q;

VH(a) = N BT (2.16)
aq’ (qk ’ ) D(On) + aQnn
. . . H,N, HN\T - . . a o
Adding and subtracting the matrix ag, " (¢, )" in the lower right block and setting Qny =
QNN — q,f’N(q,f’N)T, we obtain one more representation of V' (a):

V() = aQff + (2.17)

Orr Ors
Osr D(HN)—FOéQNN '
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The matrix QkH has unit rank and is positive semidefinite. In addition, since Oy > 05, we

conclude that the lower right submatrix Yy (a) = D(0x) + afyy in the second matrix in (2.17)
will be positive definite for sufficiently small . Consequently, we can specify @ > 0 such that
VH(a) =0 foral 0 <a<a.

The assertion is proved.
N(q,f’N)T, then the matrix (yy and,

hence, the matrix Yy () are positive semidefinite for all a > 0. In this case, the dual problem (1.2)

Remark. If the matrix Qunpn is such that Qyny = q,lj’

has no solution.

Further, assume that the matrix SNINN has negative eigenvalues. Therefore, the inequality

H,N, HN
QNN = qy (qk )

the positive semidefiniteness of V(@) is found as the smallest a for which the matrix Yy () has

T does not hold. In this case, an upper bound for the greatest & that preserves

zero eigenvalue.

The bound for the greatest possible & can be refined. Indeed, since 6y > 0y, the lower right
matrix Yyn(a) = D(0n) + af2yy remains positive definite for sufficiently small . Hence, as seen
from (2.16), the whole matrix V() is positive semidefinite if the Schur complement of the matrix
Ynn (), ie., the matrix

_ T T T
Yyn(o) =« {qf’B (qf’B) - aqf’B (qf’N) [D(On) + o]t q,f’N (qf’B) } ;

is also positive semidefinite.
It is clear that this condition holds if q,? N is the zero vector. The matrix V¥ in this case

becomes block-diagonal. Further, we assume that the vector q,f N is nonzero. Defining p(a) =

T
(q,f’N) [D(On) + aQyn] q,f’N, we find that

Frw(a) = all - ap(@)] ¢® (4) "

The matrix Yy also remains positive semidefinite for sufficiently small a.. Thus, @ is found as
follows. First, one should find the smallest o (denote it by a;) for which the matrix Yy () has
zero eigenvalue. Second, one should make sure that the inequality a < p(a)~! is fulfilled. If this
inequality is violated for the first time for some @y < &, then the upper bound for & is @ = as.
Otherwise, & = ag.

3. ITERATION AT AN IRREGULAR POINT

Assume now that the point w € Fp,, is irregular, i.e., that the rank s of the matrix V' (u)
satisfies the strict inequality sp < na — m. In this case, system (2.4) becomes underdetermined.
Then, we take for svecg X a solution of (2.4) with minimum norm:

1
svecg XH = (.Ag,ecB)T [.Ag,ecB (.Ag,ecB)T} b. (3.1)

H

It belongs to the row space of the matrix A, -

The general solution of system (2.4) has the

-1
form svecp XH = (Ag,ecB)T [Ag,ecB (AShV'eCB)T] b+ g, where g is an arbitrary vector belonging

H H
svecp " svecp

to the zero space of the matrix A If m+p =, then the dimension of the zero space of A
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is p. Below, we assume that p < s. The irregular points u at which the rank s of the matrix V (u)
satisfies the inequality sa + s > na — m will be called quasi-regular.

Consider the matrix X = HXH HT. It similar to the matrix X7 = X g , whose vector svecg X
is defined by (3.1). Let n* be a negative eigenvalue of X, and let gz, be the corresponding eigenvector.
Just as at a regular point u, the vector g, does not belong to the linear subspace R(Hy).

System (2.9) for the direction Au becomes overdetermined in this case. That is why we consider
another, more general, method of finding Au. We pass from Awu to the direction AV in the V-space,
and search for the latter in the form

1w’ a T 17T T T
AV = [qx HN] [ w AZ } [ H]j:\rf ] = Qk + qw’ Hy + Hywg, + HNAZ H. (3.2)
Here, AZ € S and w € R®.
We require the vector w to be chosen as follows: w = Wy, where all columns w; € R?,

1 < j < p, of the matrix W are linearly independent and y € RP. In addition, we require the
vectors hy,, = Hywj, 1 < j < p, to be orthogonal to the vector g:

(@ hw,) = (Hyar,wj) =0, 1<j<p. (3.3)

All vectors hy;, 1 < j < p, belong to the subspace R(Hy).
Along with (3.2), there is a relation between AV and Aw; specifically, AV = 3" Au’A;.
Equating this representation for AV to (3.2), we come to the equality

m
> AUA; = Qp+ quy" WIHY + HyWygl + HyAZHY.
i=1

Let us vectorize it. Preliminarily, we define for brevity
Wy =HNW, Uwyag =WNO®aq+q Wy, Hy=Hy® Hy.
Then, in view of the equality vecy” = vecy = y, we obtain
Avee T Au — Uwy .y — Hnvec AZ = vec Q. (3.4)

Rewrite this equality in the basis given by the orthogonal matrix H. For this, we multiply the
equality on the left by the matrix (H ® H)' = H” ® H”. Since

0 0 O(Tn)52
H' o HYHy @ Hy)=| ° T = :
(H" @ H)(Hy ® Hy) [ I ]®[ I, } Diag (| O | ..., | (35)
I I
and UVI;I,N% = (H' @ H')Uwy q. = WH @ ¢ + ¢ff @ W, where ¢ff = H q;,, Wl = HTWy,
we have

(Avee T Au— {Uf .y +THvec AZ} = vec QY (3.6)

where ' is the matrix from the right-hand side of (3.5).
The columns of the matrices U%N,qk and I'" correspond to symmetric matrices (in the case

of the matrix ', the only unit elements in a column are at the positions of diagonal elements).
Therefore, system (3.6), can be written as follows:

(AE T Au— ﬁvﬁl,mqky —THsvec AZ = svec QF, (3.7)
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where ﬁ{‘{/N w = ZnUVI{/N . and ['H = EnFHISS. Note that the matrix T'H of size na X SA is such
that its upper submatrix of size [ X sa is zero. System (3.7) is a system of na linear equations
with respect to na variables: Aw, y, and svec AZ. If its matrix

M= [(AB T ol T

is nonsingular, then the system has a unique solution.

Assume in what follows that the matrix M is nonsingular. Since the matrices 4;, 1 < i < m,

H
svec

of size m x [ also has rank m, i.e., full row rank.

are linearly independent, the matrix A has full rank equal to m. Moreover, since u is an extreme

point of the set Fp,, the matrix Al

svecp
Let I be an arbitrary matrix of size p X [ whose rows are linearly independent vectors from the

zero space of the matrix .Ag,ecB. Using AZ. , and K, we compose the square matrix
1H H
Q — |: ’AsvecB OlSA :| /_lH — |: AsvecB :| )
OSAl ISA ? svecp ’C

Note that the matrix A

svecp
by the nonsingular matrix @, its solution does not change.

is nonsingular by its definition. If we multiply system (3.7) on the left

Denote by ﬁvﬁl/}qu the upper submatrix of ﬁVI{,Nqu of size [ x p. Multiplying (3.7) by the first

row of Q, we get
WAu = AgeCB ﬁvlé;quy + svecp QkH] , K [ﬁgf%y + svecp QkH] = 0p, (3.8)

_ AH H T
where W = Asvec B (AsvecB) .
Since the square matrix W of order m is nonsingular, we have

Au = W*lAgecB [ﬁgf%y + svecp QkH] . (3.9)

If the square matrix IC(}VHV;\]? . of order p is nonsingular, then, solving the second system in (3.8), we

~ -1
obtain y = — (ICUVII%B%) Ksvecp QkH. Substituting the found y into the expression (3.9) for Aw,
we get

Au=WAl

~ ~ -1
1 - Plsvees QfF, P =02, (U2, K. (3.10)

Let us now calculate the change of the value of the objective function in the dual problem (1.2)
along the direction Au.

Assertion 4. Suppose that the columns w; of the matriz W, 1 < j < p, satisfy equality (3.3).
Then the dual objective function takes at the point 4 value (2.12).

Proof. Substituting Au from (3.10), we get

(b, Au) = (b, WﬁlAgecB [I; — P] svecy Q) = <(.A§,QCB)TW7TIJ, svecy QI — Psvecy QF)
= (svecg X", svecg Q) — (svecg X, Psvecp QF)
= (vec X, vec Qy) — (svecg X Psvecp Q) = n* — (svecy X, Psvecp QH). (3.11)

Consider the matrix ﬁ%f% in more detail, finding preliminarily the form of the matrix U%quk.

Since W]I\}’ = [0, : W]T, the ith column of W]I\f ® q,f is vec [Om Cwp ® q,f], 1 <i < p. Therefore,
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the upper (rn) x p-submatrix in the matrix W @ ¢f? is zero. Hence, the upper [ x p-submatrix in
the matrix Zn(W]f,I ® gf!) is also zero. Thus, ﬁgf 4, coincides with the upper (I x p)-submatrix of
Lo(qff @ WH).

r+H,B
U:

T
H N
WN7qk) svecg X" . Since the last s elements

Let us calculate the p-dimensional vector z = (

of the vector svec X are zeros, the jth element of z is defined as follows:
2 = (L, (¢ff @ (HT Hywy)), svec XH) = (¢ @ (HT Hywj), vec XH)
= ((H® H) ((H"q) © (H" Hyw;)) , vec X) = (g ® (Hyw;), vec X)

= (qx ® (Hyw;))" vec X = (¢f @ (Hyw;)T) vec X.

n .
Hence, in view of condition (3.3) and the equality vec X = > n'(¢; ® ¢;), we obtain
i=1

n
2 = ZUZ (gf ® (w] HY)) (4 ® ;) = n"w] Hiqi, = 0.
i=1
Therefore, z = 0,, which leads to the equality

- T - -1
(svecg XH, Psvecp Q) = < (Uvﬁl/}qu svecp XH (ICUVHV;\?C]J Ksvecp QkH> = 0.

It remains to use equality (3.11).
The assertion is proved.

In conclusion, we consider the issue of the convergence of the method. We say that problem (1.2)
is quasi-regular if all extreme points from Fp , are regular or quasi-regular. We assume additionally
that the negative eigenvalue n* taken at each step is the value with the greatest absolute value.

Theorem. Suppose that problem (1.2) is quasi-reqular and the initial point ug € Fp,, is such
that the set Fpu(ug) = {u € Fpy: (b,u) > (b,ug)} is bounded. Then the dual simplex method
generates a sequence of points {uy} C Fp(uo). If this sequence is finite, then its last point is a
solution of (1.2). Otherwise, any of its limit points is a solution of (1.2).

Proof. We restrict ourselves to considering the case when the sequence {uy} is infinite. Since
it is bounded, there are limit points. Let uy, — @. The point « is extreme.

The sequence {uy} corresponds to the sequence of matrices {V4}, where V;, = V(uy). The rank
of such matrices is bounded at extreme points. Therefore, the corresponding matrices Hy are also
bounded in the Frobenius norm, i.e., belong to a compact set. Hence, {Vj, } contains a subsequence
for which the matrices Hy converge to some matrix Hy. Without loss of generality, we assume
that the sequence {Vj, } itself has this property and the rank of all matrices H is the same. Denote
by H the orthogonal matrix whose second component is Hy.

Consider the matrix AgecB, which enters system (2.4) for finding the vector svecg X H at the
point @. Since @ is an extreme point, this matrix has full rank coinciding with the row rank. Hence,
the solutions of system (2.4), specifically, the vectors svecg X ks defined either by (2.5) or by (3.1),
converge to svecp XH,

The matrix X must be positive semidefinite; otherwise, X would have a negative eigenvalue.
However, eigenvalues of matrices are Lipschitz continuous. Therefore, matrices X} sufficiently
close to X also have negative eigenvalues. Hence, these iterations correspond to the passage from
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the points uy, to the next points ug, 41 with step oy, and with the value of the objective function

increasing by —ay, 7k, , where 7, is the negative component of 7, with maximum absolute value.

However, since the vectors Auy are bounded, the steps oy, cannot tend to zero. Therefore, we will
have (b,uy,+1) > (b,u) at a certain kgth iteration. In view of the monotone increase of the values

of the objective function along the trajectory, this contradicts the convergence of {uy,} to .

The theorem is proved.
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