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Abstract—Several asymptotic expansions and formulas for cubic exponential sums are derived.
The expansions are most useful when the cubic coefficient is in a restricted range. This general-
izes previous results in the quadratic case and helps to clarify how to numerically approximate
cubic exponential sums and how to obtain upper bounds for them in some cases.
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1. INTRODUCTION

Let a denote an integer, q a positive integer, b an integer relatively prime to q and e(x) := e2πix.
Bombieri and Iwaniec analyzed in [1] the cubic exponential sum

∑

N<n≤2N

e

(
an+ bn2

q
+ μn3

)
, q ≤ N, (b, q) = 1, 0 < μ ≤ N−2. (1.1)

This was part of their breakthrough method to bound the maximal size of the Riemann zeta
function on the critical line. In view of the importance of these sums it is of interest to study
the generalized sum

N∑

n=0

e

(
an+ bn2

2q

)
e
(
αn+ βn2 + μn3

)
, (1.2)

where α, β and μ are real numbers. We give asymptotic expansions and formulas for this sum that
are perhaps most useful when the cubic coefficient μ is small enough, satisfying μ � N−2. Our
motivation comes in part from an algorithm to compute the zeta function derived in [5] where the
essential ingredient was a method for numerically evaluating sums of the form

N∑

n=0

e
(
αn+ βn2 + μn3

)
, μ � N−2. (1.3)

In particular, those asymptotics could improve the practicality of this method by enabling the use
of an explicit asymptotic expansion instead of precise numerical computations when appropriate.
Furthermore, as a by-product we obtain upper bounds for cubic sums. Our results are influenced by
the work of Bombieri and Iwaniec in [1], and the work of Fiedler, Jurkat and Körner in [3]. The latter
obtained asymptotic expansions for quadratic exponential sums that yield a rough approximation
for such sums (typically accurate to within the square root of the length). See also [4, 6].

We introduce some notation first. Let 〈x〉 := �x + 1/2� denote the nearest integer to x,
sgn(x) := 1 or −1 according to whether x ≥ 0 or x < 0, and 1C be the indicator function of
whether the condition C is satisfied. For integer k, define k∗ := −kk̄2 where kk̄ ≡ 1 (mod q) subject
to the additional condition that 4 | k̄ if q is odd, and let δ := 0 or 1 according to whether bq is even
or odd. These definitions of k∗ and δ come directly from the formula for a complete Gauss sum
in [3, Lemma 1]. Furthermore, let δ1 = 0 or 1 according to whether bq + a is even or odd.
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Define the Gauss sum

g(b, q) :=
1

2
√
q

2q−1∑

h=0

e

(
bh2

2q

)
, (1.4)

which has modulus 1 or 0 according to whether bq is even or not. It is well known that this sum
has a closed-form evaluation in terms of the Kronecker symbol. In addition, define

HN (α, β, μ) :=

N∑

n=0

e
(
αn + βn2 + μn3

)
, (1.5)

where the summation is taken over N ≤ n ≤ 0 if N is negative. Note that in contrast to the
sum (1.2), HN (α, β, μ) does not incorporate rational approximations for the linear and quadratic
arguments explicitly.

We write h1(x) = O(h2(x)), or equivalently h1(x) � h2(x), when there is an absolute con-
stant C1 such that |h1(x)| ≤ C1h2(x) for all values of x under consideration (which will usually
make a set of the form x ≥ x0).

Using conjugation if necessary, we may restrict ourselves to μ ≥ 0. In fact, we will assume
μ > 0, since otherwise the problem reduces to the quadratic sums already treated in [3]. With this
in mind, the basic results are given in Propositions 8.1, 8.2 and 8.7 in Section 8. These propositions
furnish transformation formulas for cubic exponential sums including explicit error bounds. As
special cases, we give in the next few paragraphs several formulas and asymptotic expansions for
cubic sums that are meant to be interesting specializations of these propositions.

Theorem 1.1 below is a specialization of Proposition 8.1. The theorem isolates a main term
for the cubic sum HN (α, β, μ) and says, roughly, that HN (α, β, μ) splits into the product of an
“arithmetic factor” which is (mostly) determined by rational approximations to α and β, times an
“analytic factor” determined by the error in the said approximation and by μ and N .

Theorem 1.1. Suppose 2β = b/q + 2η where |η| ≤ 1/(8qN) and 0 < q ≤ 4N with (b, q) = 1,
2α = a/q + 2ε where −1/(4q) ≤ ε < 1/(4q), and 6μqN2 < 1. Define u := 〈2q(ε − η2/(3μ))〉,
v := 〈2q(ε+ 2ηN + 3μN2)〉, and let

(i) Ω := {0, v} if η ≥ 0 or η ≤ −3μN,

(ii) Ω := {0, u, v} if −3μN < η < 0.

Then

HN (α, β, μ) =
∑

�∈Ω
distinct �

D�(a, b, q)

N∫

0

e

(
εt+ ηt2 + μt3 − �t

2q

)
dt+O

(√
q log(2q)

)
,

where the arithmetic factor D�(a, b, q) is given by

D�(a, b, q) := 1�≡δ1 (mod 2)
g(b+ δq, q)

√
q

e

(
b∗(a+ �)2

8q

)
.

The Diophantine conditions on α and β appearing in the theorem can always be fulfilled via the
Dirichlet approximation theorem and using a continued fractions algorithm (though the denomina-
tor q that arises for a generic β can be of the same order as N). Hence, the theorem can be applied
with any α and β, provided that μ is small enough. If η ≥ 0 or η ≤ −3μN , on the one hand, then
exactly one of the D� terms can possibly be nonzero. Moreover, if η ≥ 0 then Ω ⊂ {0, 1}, while
if η ≤ −3μN then Ω ⊂ {0,−1}. On the other hand, if −3μN < η < 0, then at most two of the
D� terms can possibly be nonzero and Ω ⊂ {0, 1,−1}. For example, if η ≥ 0 and v = 0, which is
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a typical situation, then

HN (α, β, μ) = D0(a, b, q)

N∫

0

e
(
εt+ ηt2 + μt3

)
dt+O

(√
q log(2q)

)
. (1.6)

Note that if δ1 = 1 then D0(a, b, q) = 0, and so there is no main term in this case; in particular,
HN (α, β, μ) � √

q log(2q) �
√
N log(N + 2).

Remark. If we let f(x) = εx+ ηx2 + μx3 for a minute, then in the notation of the next section
u = 〈2qf ′(−ω)〉, v = 〈2qf ′(N)〉 and 0 = 〈2qf ′(0)〉. Also, g(b, q) = G(0, b; 2q) and HN (α, β, μ) =
C(N ; 0, 0, 1; f).

Theorem 1.2 is also a specialization of Proposition 8.1 and provides a van der Corput type
iteration for HN . Using the periodicity relation e(z + 1) = e(z), we may restrict α, β and μ to
the interval [−1/2, 1/2), where we have 0 < μ as before. In view of this, the length |N ′| of the
transformed sum below will be smaller than the length N of the original sum provided that β and μ
are small enough.

Theorem 1.2. Let N ′ = 〈α + 2βN + 3μN2〉. Suppose that α, β ∈ [−1/2, 1/2) and 0 <
6μN2 < 1. If |β| > 1/N, then

HN (α, β, μ) =
c2√
2|β|

HN ′

(
α

2β
+

3α2μ

8β3
,− 1

4β
− 3αμ

8β3
,

μ

8β3

)

+O

(
μN2 + μ2N5

√
|β|

+
1β>0√

β
+

1β<0√
−(β + 3μN)

+ log(|N ′|+ 2)

)
,

where

c2 := e

(
sgn(β)

8
− α2

4β
− α3μ

8β3

)
.

The term 1β>0/
√
β in the remainder arises from estimating boundary terms B in Proposition 8.1

when β > 0, while 1β<0/
√

−(β + 3μN) arises from estimating B when β < −1/N (see the proof of
the theorem in Section 9). Additionally, one can replace 1/

√
β with min{N, 1/

√
β} and similarly

for 1/
√

−(β + 3μN). Of course, both of these terms can be removed if B is included explicitly in
the theorem. The term (μN2 + μ2N5)/

√
|β| in the remainder comes from trivially estimating the

derivatives of HN (α, β, μ) with respect to α. Therefore, if one is interested in understanding the
rough size of HN(α, β, μ) rather than deriving an asymptotic expansion, then it is better to bound
these derivatives using the second mean value theorem for the Riemann integral, which yields

Corollary 1.3.

|HN (α, β, μ)| ≤ cβ,μ,NHmax
N ′

(
α

2β
+

3α2μ

8β3
,− 1

4β
− 3αμ

8β3
,

μ

8β3

)

+O

(
1β>0√

β
+

1β<0√
−(β + 3μN)

+ log(|N ′|+ 2)

)
, (1.7)

where

Hmax
N (α, β, μ) := max

N1∈[0,N ]

∣∣∣∣∣

N∑

n=N1

e
(
αn+ βn2 + μn3

)
∣∣∣∣∣,

cβ,μ,N :=
1 + (c3μN + c4μ

2N4)|β|−1

√
2|β|

(1.8)

and c3 and c4 are absolute nonnegative constants.
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Interestingly, one can apply estimate (1.7) repeatedly until one of the conditions required by
Theorem 8.2 fails. This could yield useful bounds for HN in some applications. Also, if desired,
the last theorem and corollary can both be written in a more symmetric form by using the change
of variable H̃N (α, β, μ) := HN (α, β/2, μ). This enables absorbing the various powers of 2 that
accompany β.

Our last example is a corollary of Proposition 8.7. This proposition furnishes a transformation
formula for cubic sums when α = β = 0 and with rational approximations included explicitly, which
was the type of sum considered in [1].

Corollary 1.4.

N∑

n=0

e

(
an+ bn2

q
+ μn3

)
� μ1/2N3/2q1/2 +min{N,μ−1/3}q−1/2 + μNq1/2 + q1/2 log(μN2q + 2q).

Proofs of Theorems 1.1 and 1.2 are given in Section 9. In Section 10, we suggest few im-
provements to these theorems. The remaining sections are devoted to proving the propositions in
Section 8.

2. AN INITIAL TRANSFORMATION

Given a sequence of complex numbers {an} and a set S ⊂ Z, we follow the notation in [3] and
define

∑

n∈S
an := lim

M→∞

M∑

n=−M

an1n∈S , (2.1)

where 1n∈S = 1 if n ∈ S and 1n∈S = 0 otherwise. Let

f(x) := μx3 + βx2 + αx

where α, β and μ are real numbers. Let C(N ; a, b, q; f) denote the cubic exponential sum

C(N ; a, b, q; f) :=

N∑

n=0

e

(
an+ bn2

2q

)
e(f(n)). (2.2)

To analyze this sum, we will make heavy use of a truncated Airy–Hardy integral

AH(ω,N ;μ, s) :=

ω+N∫

ω

e(μt3 − 3st) dt (2.3)

and of the completed integrals

AH(μ, s) := AH(0,∞;μ, s) =

∞∫

0

e(μt3 − 3st) dt,

AI(μ, s) := AH(μ, s) + AH(μ, s) =

∞∫

−∞

e(μt3 − 3st) dt.

(2.4)

We will also make use of the complete Gauss sum

G(a, b; 2q) :=
1

2
√
q

2q−1∑

h=0

e

(
ah+ bh2

2q

)
. (2.5)
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We begin by applying the Poisson summation to decompose C(N ; a, b, q; f). In doing so, only
half of the boundary terms at n = 0 and n = N are included, giving the term (1 + B)/2 in
equation (2.9) below.

Lemma 2.1. Let E := {m ∈ Z | bq + a+m ∈ 2Z}. Define

ω :=
β

3μ
, sm := μω2 +

m/2− qα

3q
, g(m) :=

b∗(a+m)2

8q
(2.6)

and

c0 := e

(
2ω2β

3
− ωα

)
, c1 = c0 G(0, b + δq; 2q). (2.7)

Also define

B := e

(
aN + bN2

2q
+ f(N)

)
, Bm := e

(
ωm

2q
+ g(m)

)
AH(ω,N ;μ, sm). (2.8)

Then

C(N ; a, b, q; f) =
1 +B

2
+

c1√
q

∑

m∈E
Bm. (2.9)

Remark. To avoid notational clutter, we suppressed some parameter dependencies; e.g., we
have sm = sm(α, β, μ, q), g(m) = g(a, b, q;m) and B = B(N ; a, b, q; f).

Proof of Lemma 2.1. Divide the sum along residue classes modulo 2q, which gives

C(N ; a, b, q; f) =

2q−1∑

h=0

e

(
ah+ bh2

2q

) ∑

−h/(2q)≤r≤(N−h)/(2q)

e(f(h+ 2qr)). (2.10)

Apply the Poisson summation formula (see, e.g., [2, p. 14]) to each inner sum, followed by the
change of variable t ← h+ 2qt. The inner sum is thus equal to

1h=0 +B · 1h≡N (mod 2q)

2
+

1

2q

∑

m∈Z
e

(
mh

2q

) N∫

0

e

(
f(t)− mt

2q

)
dt. (2.11)

Substituting (2.11) into (2.10) and then recalling the Gauss sum definition (2.5), we obtain

C(N ; a, b, q; f) =
1 +B

2
+

1
√
q

∑

m∈Z
G(a +m, b; 2q)

N∫

0

e

(
f(t)− mt

2q

)
dt. (2.12)

Furthermore, by [3, Lemma 1],

G(a+m, b; 2q) = e(g(m))G(0, b + δq; 2q) · 1m∈E . (2.13)

The integral on the right-hand side of (2.12) has a saddle point (i.e., a point t ∈ [0, N ] such
that f ′(t) − m/(2q) = 0) whenever −ω ±

√
sm/μ ∈ [0, N ], where ω = β/(3μ). To isolate the

contribution of this saddle point, we follow [1] expanding f(t) − mt/(2q) around t = −ω. This
has the advantage that f ′′(−ω) = 0 and will help unify the subsequent analysis in terms of the
Airy–Hardy integral.
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With this in mind, let y = t+ ω, appeal to the identity

f(t)− mt

2q
=

(
ωm

2q
+

2ω2β

3
− αω

)
+

(
α− m

2q
− 3μω2

)
y + μy3, (2.14)

which is a Taylor expansion of the left-hand side around t = −ω, and use the change of variable
y ← t+ ω. This leads to the formula

N∫

0

e

(
f(t)− mt

2q

)
dt = e

(
ωm

2q
+

2ω2β

3
− ωα

)
AH(ω,N ;μ, sm). (2.15)

Substituting formulas (2.15) and (2.13) into (2.12) and recalling the definitions of Bm and c1 im-
mediately yield the lemma. �

Remark. The formula in [3, p. 132] gives an explicit evaluation of G(0, b + δq; 2q) in terms of
the Kronecker symbol. In particular, |G(0, b + δq; 2q)| = 1 or 0.

3. ANALYSIS OF THE TRANSFORMED SUM

The integral AH(ω,N ;μ, sm) in (2.9) is treated according to the following cases.

(1) If the integrand in AH(ω,N ;μ, sm) contains one interior saddle point, i.e., if the derivative
3μt2 − 3s vanishes exactly once over t ∈ (ω, ω + N), then the main term in our evalua-
tion of AH(ω,N ;μ, sm) will be given by the completed Airy–Hardy integral AH(μ, s) or its
conjugate AH(μ, s).

(2) If there are two interior saddle points, then the main term will be given by the completed
Airy integral AI(μ, s) = AH(μ, s) + AH(μ, s).

(3) If there are saddle points at the edge of the integration interval (i.e., at t = ω or t = ω +N),
then a special treatment is required.

(4) Last, in the absence of a saddle point, AH(ω,N ;μ, sm) will be estimated via Lemmas 4.2
and 4.3 in [7], or using integration by parts.

With this in mind, let

‖f ′‖+N := max
0≤x≤N

f ′(x), ‖f ′‖−N := min
0≤x≤N

f ′(x) = −‖−f ′‖+N . (3.1)

(Note that ‖·‖−N is not a norm since it does not satisfy the usual triangle inequality, but rather a
“reversed” inequality.) The quadratic polynomial f ′(x) achieves its minimum at x = −ω. Using
this and the earlier assumption μ > 0 (so f ′(x) → +∞ as x → ±∞), we deduce that

‖f ′‖+N =

⎧
⎪⎪⎨

⎪⎪⎩

f ′(N) if ω ≥ −N

2
,

f ′(0) if ω < −N

2
.

(3.2)

Also,

‖f ′‖−N =

⎧
⎪⎨

⎪⎩

f ′(0) if ω > 0,

f ′(−ω) if −N ≤ ω ≤ 0,

f ′(N) if ω < −N.

(3.3)

Note that ‖f ′‖−N and ‖f ′‖+N are continuous in ω.
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Let us split the range of summation in (2.9) into three intervals determined by the points

M1 := 〈2q‖f ′‖−N 〉 and M2 := 〈2q‖f ′‖+N 〉, (3.4)

noting that by definition M1 ≤ M2. In addition, we will make use of

M := M2 −M1. (3.5)

It might enlighten matters at this point to refer to the van der Corput iteration in [5]. If
ω > 0, then the derivative f ′(x) is strictly increasing on [0, N ]. So, for a = b = 0 in the cubic sum
C(N ; a, b, q; f), the van der Corput iteration reads

N∑

n=0

e(f(n)) = eπi/4
∑

f ′(0)≤m≤f ′(N)

e(f(xm)−mxm)√
|f ′′(xm)|

+RN,f , (3.6)

where xm is the (unique) solution of f ′(x) = m in 0 ≤ x ≤ N and RN,f is a remainder term (see [5]).
Similarly, if ω < −N , then the derivative f ′(x) is strictly decreasing on [0, N ], in which case the
iteration (3.6) is modified to have e−πi/4 (instead of eπi/4) in front, and the range of summation
becomes f ′(N) ≤ m ≤ f ′(0). In either case, and after allowing for a and b not necessarily zero, we
find that there is a single saddle point if m ∈ (M1,M2) and no saddle point if m /∈ [M1,M2], with
m = M1 or M2 being boundary cases.

In contrast, when −N < ω < 0, the form of the van der Corput iteration is significantly
different because f ′(x) is not strictly monotonic but has a minimum at x = −ω, so both saddle
points −ω ±

√
sm/μ could fall in (0, N). Explicitly, if 0 ≤ sm ≤ μmin{ω2, (ω + N)2}, then

the integral AH(ω,N ;μ, sm) has two saddle points (counted with multiplicity). Now, recalling
that sm = μω2 + (m/2 − qα)/(3q), we find that the condition sm ≥ 0 is met precisely when
m ≥ 2qf ′(−ω) = 2q‖f ′‖−N , and so certainly when m > M1. Moreover, since −N < ω < 0 by
assumption,

min{ω2, (ω +N)2} =

⎧
⎪⎪⎨

⎪⎪⎩

ω2 if ω ≥ −N

2
,

(ω +N)2 if ω < −N

2
.

(3.7)

Hence, the condition sm ≤ μmin{ω2, (ω +N)2} is met precisely when

m ≤

⎧
⎪⎪⎨

⎪⎪⎩

2qf ′(0) if ω ≥ −N

2
,

2qf ′(N) if ω < −N

2
.

(3.8)

This motivates defining

M∗ =

⎧
⎪⎪⎨

⎪⎪⎩

〈2qf ′(0)〉 if ω ≥ −N

2
,

〈2qf ′(N)〉 if ω < −N

2
.

(3.9)

So, for −N < ω < 0 the integral AH(ω,N ;μ, sm) has two saddle points if m ∈ (M1,M
∗), a single

saddle point if m ∈ (M∗,M2), and no saddle point if m /∈ [M1,M2].
Last, we will use the boundary set

Ω = {M1,M
∗,M2}, (3.10)
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corresponding to the terms in (2.9) that might contain a saddle point at the edge. We observe that
if ω /∈ (−N, 0) then M∗ = 〈2q‖f ′‖−N 〉. Thus, M∗ = M1 and Ω = {M1,M2} in this case. Also, if
ω = −N/2 then M∗ = M2, and so Ω = {M1,M2} over a neighborhood of ω = −N/2.

We will use the following lemmas in the sequel.
Lemma [7, Lemma 4.2]. Let F (x) be a real differentiable function such that F ′(x) is monotonic

and either F ′(x) ≥ m > 0 or F ′(x) ≤ −m < 0 throughout the interval [a, b]. Then
∣∣∣∣∣∣

b∫

a

eiF (x) dx

∣∣∣∣∣∣
≤ 4

m
.

Moreover, if G(x) is a monotonic function over [a, b] such that |G(x)| ≤ G over [a, b], then
∣∣∣∣∣∣

b∫

a

G(x)eiF (x) dx

∣∣∣∣∣∣
≤ 4G

m
.

Lemma [7, Lemma 4.4]. Let F (x) be a real twice differentiable function such that either
F ′′(x) ≥ r > 0 or F ′′(x) ≤ −r < 0 throughout the interval [a, b]. Then

∣∣∣∣∣∣

b∫

a

eiF (x) dx

∣∣∣∣∣∣
≤ 8√

r
.

4. TERMS WITH NO SADDLE POINT

We will have two treatments for the terms with no saddle point. Define the first tail of the sum
in (2.9) by

Υ1 :=
∑

m∈E
m/∈[M1−q,M2+q]

e

(
ωm

2q
+ g(m)

)
AH(ω,N ;μ, sm) (4.1)

and the second tail by

Υ2 :=
∑

m∈E, m/∈[M1,M2]
m∈[M1−q,M2+q]

e

(
ωm

2q
+ g(m)

)
AH(ω,N ;μ, sm). (4.2)

In Lemmas 4.1 and 4.3 we bound Υ1, and in Lemma 4.2 we bound Υ2. In both cases, we will use
the following integration by parts formula: Let

φx(μ, s) :=
1

6πi

e(μx3 − 3sx)

μx2 − s
; (4.3)

then

AH(u, v;μ, s) = φu+v(μ, s)− φu(μ, s) +
1

3πi

u+v∫

u

μte(μt3 − 3st)

(μt2 − s)2
dt (4.4)

provided that μt2 − s �= 0 for t ∈ [u, u + v]. Starting with Υ1 and taking u = ω and v = N in the
above formula, we are motivated to write

Υ1 = Φ̃ω+N − Φ̃ω +
(
Υ1 − Φ̃ω+N + Φ̃ω

)
,
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where, after simplification,

Φ̃ω+x =
qe(f(x))

πic0

∑

m∈E
m/∈[M1−q,M2+q]

e(g(m) − xm/2q)

2qf ′(x)−m
(4.5)

and the summation is done by pairing the terms for m and −m whenever possible (as was decreed
in Section 2). This sum is convergent at x = ω and x = ω +N , which is seen on dividing the sum
along residue classes modulo 2q and using the periodicity of e(g(m)) and 1m∈E modulo 2q (see the
proof of Lemma 4.3 below for details).

Lemma 4.1.
∣∣Υ1 − Φ̃ω+N + Φ̃ω

∣∣ ≤ 128(2|β| + 3μN)

π2

q3(2q + 9)

(2q + 1)3
.

Proof. If m /∈ [M1,M2], then μt2 − sm does not vanish over t ∈ [ω, ω + N ], which is seen on
noting that 6q(μ(ω + u)2 − sm) = 2qf ′(u)−m and using the definitions of M1 and M2. Therefore,
we can apply the integration by parts formula (4.4) to AH(ω,N ;μ, sm). The function 1/(μt2 − sm)2

that arises is monotonic over ω ≤ t ≤ 0 and 0 ≤ t ≤ ω +N separately. This is seen on noting that
the derivative d

dt (μt
2 − sm)2 = 4μt(μt2 − sm) has a single root at t = 0 over [ω, ω +N ]. So we can

apply the second mean value theorem for the Riemann integral to each of the intervals [ω, 0] and
[0, ω +N ] in turn. We thus find that the integral on the right-hand side of (4.4) is bounded by

2

3π
max

ω≤t≤ω+N

1

|μt2 − sm|2

×

⎛

⎝ max
ω≤ω1<ω2≤0

∣∣∣∣∣∣

ω2∫

ω1

μt e(μt3 − 3smt) dt

∣∣∣∣∣∣
+ max

0≤ω1<ω2≤ω+N

∣∣∣∣∣∣

ω2∫

ω1

μt e(μt3 − 3smt) dt

∣∣∣∣∣∣

⎞

⎠, (4.6)

where the extra 2 in front is because we consider the real and imaginary parts of e(μt3 − 3smt)
separately when applying the second mean value theorem for the Riemann integral. Using the
second mean value theorem once again (this time to remove the t from each integral in (4.6)), we
find, on applying Lemma 4.2 in [7], that the expression in (4.6) is not greater than

4

9π2
max

ω≤t≤ω+N

μ(2|ω|+N)

|μt2 − sm|3 . (4.7)

Writing t = ω + u with 0 ≤ u ≤ N and recalling the definitions of sm and ω give μt2 − sm =
(2qf ′(u)−m)/(6q). So

max
ω≤t≤ω+N

1

|μt2 − sm| = max
0≤u≤N

6q

|2qf ′(u)−m| . (4.8)

Combining (4.8) and the observation μ(2|ω|+N) = 2|β|/3 + μN , we see that the expression in (4.7)
is bounded by

32

π2
max

0≤u≤N

q3(2|β| + 3μN)

|2qf ′(u)−m|3 . (4.9)

Now, by definition, M1 − 1/2 ≤ 2qf ′(u) ≤ M2 + 1/2 over 0 ≤ u ≤ N . Moreover, m ∈ E is either
always odd or always even. Hence,

∑

m∈E
m/∈[M1−q,M2+q]

max
0≤u≤N

q3(2|β| + 3μN)

|2qf ′(u)−m|3 ≤ 2(2|β| + 3μN)
∑

j≥0

q3

(q + 2j + 1/2)3
. (4.10)
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We isolate the term with j = 0 in the last sum and note that the function 1/(q + 2x + 1/2)3 is
decreasing. This gives, on comparing the sum to an integral, that the sum on the right-hand side
of (4.10) is bounded by

q3

(q + 1/2)3
+

∞∫

0

q3

(q + 2x+ 1/2)3
dx =

2q3(9 + 2q)

(2q + 1)3
. (4.11)

Substituting this into (4.10) and then back into (4.9) yields the lemma. �
Lemma 4.2.

|Υ2| ≤
32

π
q +

8

π
q log(2q − 1).

Proof. Note that μt2 − sm is monotonic over each of [ω, 0] and [0, ω + N ]. So we can apply
Lemma 4.2 in [7] in each interval separately to deduce that

|AH(ω,N ;μ, sm)| ≤ 4

π
max

ω≤t≤ω+N

1

3|μt2 − sm| . (4.12)

Write t = ω + u, where 0 ≤ u ≤ N , and then proceed as in the proof of Lemma 4.1 to arrive at the
same formula (4.8), and ultimately at the estimate

|Υ2| ≤
8

π

∑

0≤j≤(q−1)/2

2q

(2j + 1/2)
. (4.13)

Next, we isolate the term corresponding to j = 0 and bound the remaining sum by an integral; i.e.,
we obtain the bound

4q + 2q

(q−1)/2∫

0

1

2x+ 1/2
dx = 4q + q log(2q − 1). (4.14)

Substituting this into (4.13) proves the claim. �
We now consider the sizes of Φ̃ω and Φ̃ω+N . To this end, let us introduce the quantity

Mmax = 2q|f ′(0)| + 2q|f ′(N)|+ |M1|+ |M2|+ q, (4.15)

which will serve to “symmetrize” the summation interval below. This choice of Mmax is a little
arbitrary since we need only ensure that Mmax ≥ |M1 − q| and Mmax ≥ |M2 + q|.

Lemma 4.3.

|Φ̃ω+N |+ |Φ̃ω| ≤
28q

π
+

4q

π
log

(
Mmax

q + 1/2
+ 1

)
.

Proof. Recalling the formula (4.5) for Φ̃ω+x, we wish to replace the summation condition
m /∈ [M1 − q,M2 + q] in this formula by the symmetric condition |m| > Mmax. Note that f ′(0) = α,
e(g(m)) is periodic modulo 2q, and 1m∈E is periodic modulo 2. So dividing the sum along residue
classes modulo 2q, we obtain

Φ̃ω =
q

πic0

2q−1∑

h=0

e(g(h))
∑

m∈E, m>Mmax
m≡h (mod 2q)

(
1

2qα−m
+

1

2qα+m

)

+
q

πic0

2q−1∑

h=0

e(g(h))
∑

m∈E∩T
m≡h (mod 2q)

1

2qα−m
(4.16)

where T = [−Mmax,M1 − q) ∪ (M2 + q,Mmax].
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We start by bounding the double sum on the second line of (4.16). If m > M2 + q, then,
depending on the correct parity of m, either m = M2 + q + 2m′ + 1 or m = M2 + q + 2m′ + 2
for some nonnegative integer m′. Additionally, since m belongs to a fixed residue class modulo 2q,
m′ must increment by a multiple of q as m progresses, say m′ = jq. So, considering that M2 ≥
2qf ′(0) − 1/2 = 2qα − 1/2, we deduce |2qα − m| ≥ q + 2jq + 1/2. By similar reasoning, if
m < M1 − q, then |2qα − m| ≥ q + 2jq + 1/2. (Here, we used the bound M1 ≤ 2qα + 1/2.)
Therefore, the double sum under consideration is of size not exceeding

4q2

π

∑

0≤j≤Mmax/(2q)

1

q + 2jq + 1/2
. (4.17)

We isolate the term with j = 0 and compare the tail with an integral like
∫ X
0 (q + 2xq + 1/2)−1 dx,

which yields that (4.17) is not greater than

8

π

q2

q + 1/2
+

2q

π
log

(
Mmax

q + 1/2
+ 1

)
. (4.18)

Next, we bound the double sum on the first line of (4.16). But first let us derive lower bounds
for Mmax − 2qα and Mmax + 2qα. To this end, consider that as m progresses in a fixed residue
class modulo 2q, we have m ≥ Mmax + 2jq + 1 where j steps through the nonnegative integers.
In addition, since Mmax ≥ 2q|α| + M2 + q and since by definition M2 ≥ 2qα − 1/2, we have
Mmax − 2qα ≥ 2q|α|+ q − 1/2. Similarly, since Mmax ≥ 2q|α|+ |M1|+ |M2|+ q and |M1|+ |M2| ≥
2q|α| − 1/2, we deduce that Mmax + 2qα ≥ 2q|α|+ q − 1/2. Therefore, on simplifying and applying
the triangle inequality, the double sum under consideration is bounded by

2q2

π

∑

m∈E, m>Mmax
m≡h (mod 2q)

4q|α|
|(2qα−m)(2qα +m)| ≤

2q2

π

∑

j≥0

4q|α|
(2q|α| + q + 2jq + 1/2)2

. (4.19)

The last expression is estimated by isolating the term corresponding to j = 0 and comparing the
rest to the integral

∫∞
0 4q|α|(2q|α| + q + 2xq + 1/2)−2 dx. Doing so yields the bound

2q2

π

(
4q|α|

(2q|α| + q + 1/2)2
+

4|α|q
q + 2q2 + 4|α|q2

)
≤ 6q

π
. (4.20)

Finally, inserting estimates (4.20) and (4.18) into (4.16) shows that Φ̃ω is bounded by 1/2 times
the right-hand side expression in the statement of the lemma. The other 1/2 comes from Φ̃ω+N ,
which satisfies this same bound as Φ̃ω, as can be seen via the same method employed so far. �

5. TERMS WITH ONE SADDLE POINT

Lemma 5.1. If ω > 0, then

∑

m∈E
M1<m<M2

|AH(ω,N ;μ, sm)−AH(μ, sm)| ≤ 16

π
q +

4

π
q log(2M − 1) · 1M>0. (5.1)

If ω < −N, then the same bound holds but with AH(μ, sm) instead of AH(μ, sm).
Proof. Assume that ω > 0. In view of the identity

AH(ω,N ;μ, sm) = AH(μ, sm)−AH(0, ω;μ, sm)−AH(ω +N,∞;μ, sm), (5.2)
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the left-hand side in (5.1) is not greater than
∑

m∈E
M1<m<M2

|AH(0, ω;μ, sm)|+
∑

m∈E
M1<m<M2

|AH(ω +N,∞;μ, sm)|. (5.3)

We treat the sum involving AH(0, ω;μ, sm) first. Appealing to Lemma 4.2 in [7], we find

|AH(0, ω;μ, sm)| ≤ 2

π
max
0≤t≤ω

1

3|μt2 − sm| . (5.4)

For all m ∈ (M1,M2) ∩ E either m = M1 + 2j + 1 or m = M1 + 2j + 2 throughout, where j a
nonnegative integer. The correct parity is determined by E . Also, since ω > 0, M1 = 〈2qα〉 ≥
2qα − 1/2. Therefore, in any case, we have m ≥ M1 + 2j + 1 throughout and sm = μω2 +
(m/2− qα)/3q ≥ μω2 + (j + 1/4)/3q. Combining this with the trivial bound max0≤t≤ω|μt2| = μω2

and inserting into (5.4) now yield

∑

m∈E
M1<m<M2

|AH(0, ω;μ, sm)| ≤ 2

π

∑

0≤j≤(M2−M1−1)/2

q

j + 1/4
. (5.5)

As for the sum involving AH(ω +N,∞;μ, sm), we write t = ω + u with u ≥ N . Then, as before,
we apply Lemma 4.2 in [7] to obtain

|AH(ω +N,∞;μ, sm)| ≤ 2

π
max

t≥ω+N

1

3|μt2 − sm| =
2

π
max
u≥N

2q

|2qf ′(u)−m| . (5.6)

We proceed analogously to the previous sum. Specifically, for all m ∈ (M1,M2) ∩ E either m =
M2 − 2j − 1 or m = M2 − 2j − 2 where j is a nonnegative integer. Also, M2 = 〈2qf ′(N)〉 ≤
2qf ′(N) + 1/2. Hence, m ≤ 2qf ′(N)− 2j − 1/2. Last, using that ω > 0 (so the minimum of f ′(u)
occurs when u = −ω < 0), we obtain minu≥N 2qf ′(u) ≥ 2qf ′(N). Therefore, summarizing, we
conclude that

∑

m∈E
M1<m<M2

|AH(ω +N,∞;μ, sm)| ≤ 2

π

∑

0≤j≤(M2−M1−1)/2

q

j + 1/4
. (5.7)

The sums in (5.5) and (5.7) are bounded routinely. If M1 = M2, then these sums are empty. And
if M1 < M2, then one isolates the term for j = 0 and compares the remaining sum to an integral.
Putting these bounds together yields the lemma when ω > 0.

The treatment of the case ω < −N is analogous except one starts with the identity

AH(ω,N ;μ, sm) = AH(μ, sm) + AH(ω,−∞;μ, sm) + AH(0, ω +N ;μ, sm), (5.8)

then continues as in the previous case, this time appealing to the bounds

|AH(ω,−∞;μ, sm)| ≤ 2

π
max
t≥|ω|

1

3|μt2 − sm| ,

|AH(0, ω +N ;μ, sm)| ≤ 2

π
max

0≤t≤|ω+N |

1

3|μt2 − sm| =
2

π

2q

|2qf ′(N)−m|

(5.9)

and the formulas M1 = 〈2qf ′(N)〉 and M2 = 〈2qα〉, valid for ω < −N . To handle the integral
|AH(0, ω + N ;μ, sm)|, one additionally uses that |ω + N | = |ω| − N combined with the change of
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variable t ← |ω| − u, N ≤ u ≤ |ω|, and the observation that 3μ(|ω| − u)2 − sm = f ′(u)−m/(2q) is
decreasing in u over N ≤ u ≤ |ω|. �

Lemma 5.2. If −N/2 < ω ≤ 0, then

∑

m∈E
M∗<m<M2

|AH(ω,N ;μ, sm)−AH(μ, sm)| ≤ 16

π
q +

4

π
q log(2M − 1) · 1M>0. (5.10)

If −N ≤ ω ≤ −N/2, then the same bound holds but with AH(μ, sm) replaced by its conju-
gate AH(μ, sm).

Proof. The proof of the first bound, i.e., when −N/2 < ω ≤ 0, follows analogously as in the
proof of Lemma 5.1 for the case ω > 0. The proof of the second bound, i.e., when −N ≤ ω ≤ −N/2,
also follows as in Lemma 5.1 but for the case ω < −N . �

6. TERMS WITH TWO SADDLE POINTS

Lemma 6.1. If −N ≤ ω ≤ 0, then

∑

m∈E
M1<m<M∗

|AH(ω,N ;μ, sm)−AI(μ, sm)| ≤ 16

π
q +

4

π
q log(2M − 1) · 1M>0. (6.1)

Proof. We start with the identity

AH(ω,N ;μ, sm) = AI(μ, sm) + AH(ω,−∞;μ, sm)−AH(ω +N,∞;μ, sm). (6.2)

Let us first recall that sm = μω2 + (m/2 − qα)/(3q). Also, M∗ ≤ 2qα + 1/2 if ω ≥ −N/2,
M∗ ≤ 2qf ′(N) + 1/2 if ω < −N/2, and f ′(N) ≤ f ′(0) = α if −N ≤ ω < −N/2. So we deduce, in
all cases, that m/2− qα < 0 for m < M∗ and in particular sm < μω2 = mint≥|ω| μt

2.
Now, applying Lemma 4.2 in [7] to each term AH(ω,−∞;μ, sm) gives

∑

m∈E
M1<m<M∗

|AH(ω,−∞;μ, sm)| ≤ 2

π

∑

m∈E
M1<m<M∗

2q

|m− 2qα| . (6.3)

Let m = M∗ − 2j − 1 with j ∈ Z≥0. (The case m = M∗ − 2j − 2 is easier since one obtains a tighter
bound in this situation.) By the previous observations about M∗, we obtain |2qα−m| ≥ 2j + 1/2;
hence the last sum is not greater than

2

π

∑

0≤j≤(M∗−M1−1)/2

q

j + 1/4
. (6.4)

We estimate this sum by an integral, as was done for the sum in (5.7).
The terms AH(ω + N,∞;μ, sm) are treated analogously, so we skip the details. Put together,

this verifies the bound in the lemma. �
Remark. We have

AI(μ, s) =
2π

(6πμ)1/3
Ai

(
− (2π)2/3s

(3μ)1/3

)

where Ai(x) := (2π)−1
∫∞
−∞ eit

3/3+ixtdt is the usual Airy function satisfying |Ai(x)| ≤ 1/|x|1/4, and
so one obtains |AI(μ, s)| ≤

√
2π/(3μ|s|)1/4.
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7. AN ALTERNATIVE BOUND FOR THE TAIL

We may consider the tails Υ1 and Υ2 in Section 4 together and apply the method of Lemma 4.1
to both of them. This has the effect of adding more terms to the function Φ̃ in Section 4 and gives
an error term that still goes to zero as β and μ go to zero but with an extra factor of q3.

Explicitly, rather than apply Lemma 4.2 in [7] to each term in Υ2 immediately, we first apply
integration by parts followed by an application of Lemma 4.2 in [7] and then proceed similarly to
the proof of Lemma 4.1. This yields the following bound. Define

Φo
ω+x =

qe(f(x))

πic0

∑

m∈E
m/∈[M1,M2]

e(g(m) − xm/2q)

2qf ′(x)−m
, (7.1)

which is similar to (4.5) except that it involves the additional terms m ∈ [M1 − q,M1) and m ∈
(M2,M2 + q].

Lemma 7.1.
∣∣Υ1 +Υ2 − Φo

ω+N +Φo
ω

∣∣ ≤ 576(2|β| + 3μN)q3

π2
.

One may also use integration by parts to execute the proofs of the lemmas in Sections 5 and 6.
This would add yet more terms to the function Φo

ω+x, enlarging the range of summation to all
m /∈ Ω = {M1,M2,M

∗}.
Lemma 7.2. If ω > −N/2, then

∑

m∈E
M∗<m<M2

∣∣AH(ω,N ;μ, sm)−AH(μ, sm)− φω+N (μ, sm) + φω(μ, sm)− φ0(μ, sm)
∣∣

≤ 576(2|β| + 3μN)q3

π2
. (7.2)

If ω ≤ −N/2, then the same bound holds but with AH(μ, sm) replaced by its conjugate and
−φ0(μ, sm) replaced by φ0(μ, sm).

Lemma 7.3. If −N ≤ ω ≤ 0, then

∑

m∈E
M1<m<M∗

∣∣AH(ω,N ;μ, sm)−AI(μ, sm)− φω+N (μ, sm) + φω(μ, sm)
∣∣ ≤ 576(2|β| + 3μN)q3

π2
. (7.3)

In view of the previous two lemmas, we are motivated to define

Φ(x) :=
qe(f(x))

πic0

∑

m∈E
m/∈Ω

e(g(m) − xm/2q)

2qf ′(x)−m
, (7.4)

which accounts for the terms φω and φω+N , and

Y (x) :=
sgn(x+N/2)

6πi

∑

m∈E
M∗<m<M2

e(g(m) + xm/2q)

sm
, (7.5)

which accounts for the term φ0. The numerator in these definitions is inserted because φx will be
multiplied by e(g(m) + ωm/2q) according to the formula in Lemma 2.1 (see (2.8)).
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8. FORMULAS FOR THE TRANSFORMED SUM

In summary, we have proved the following. Define

Tm := e

(
ωm

2q
+ g(m)

)
AH(μ, sm), (8.1)

and define Tm the same way as Tm except that AH(μ, sm) is replaced by its conjugate while
e(ωm/2q + g(m)) is kept the same. Moreover, define the boundary term

B :=
∑

�∈E
distinct �∈Ω

B�. (8.2)

To clarify the behavior of the main sum M below, we refer to Lemmas 8.3 and 8.4. Also, estimates
for B are provided in Lemma 8.6.

Proposition 8.1.

C(N ; a, b, q; f) =
c1√
q
[M+ B +R1] +

1 +B

2
, (8.3)

where the main sum M is equal to

M =
∑

m∈E
M1<m<M∗

(Tm + Tm) +

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

m∈E
M∗<m<M2

Tm if ω ≥ −N

2
,

∑

m∈E
M∗<m<M2

Tm if ω ≤ −N

2

(8.4)

and the remainder term R1 satisfies the bound

|R1| ≤
128(2|β| + 3μN)

π2

q3(2q + 9)

(2q + 1)3
+

4q

π
log

(
Mmax

q + 1/2
+ 1

)

+
8

π
q log(2q − 1) +

8

π
q log(2M − 1) · 1M>0 +

92

π
q. (8.5)

Note that the remainder R1 satisfies R1 � q(|β|+ μN + logMmax + log(2q)); in particular, R1

does not tend to zero as β and μ tend to zero. However, by incorporating more lower order terms
using the lemmas in Section 7, we can obtain a remainder term that tends to zero with β and μ but
that depends more heavily on q; namely, we obtain a remainder of size � (|β| + μN)q3.

Proposition 8.2.

C(N ; a, b, q; f) =
c1√
q

[
M+ B +Φ(N)− Φ(0) + Y (ω) +R2

]
+

1 +B

2
, (8.6)

and

|R2| ≤
1728(2|β| + 3μN)q3

π2
. (8.7)

Lemma 8.3. If s > 0, then
∣∣∣∣AH(μ, s)− 1

(36μs)1/4
e

(
1

8
− 2s

√
s

√
μ

)∣∣∣∣ ≤
1

πs
. (8.8)

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 299 2017



ASYMPTOTICS AND FORMULAS FOR CUBIC EXPONENTIAL SUMS 93

Proof. By a change of variable t ← μ1/3t, we obtain

AH(μ, s) =
1

μ1/3

∞∫

0

e

(
t3 − 3st

μ1/3

)
dt. (8.9)

A close examination of the proof of [1, Lemmas 2.5, 2.6] (applied with y = s/μ1/3) gives the
result. �

Lemma 8.4. If m > M1, then sm > 0. Specifically,

sm ≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

μω2 +
m−M1 − 1/2

6q
if ω > 0,

m−M1 − 1/2

6q
if −N ≤ ω ≤ 0,

μ(ω +N)2 +
m−M1 − 1/2

6q
if ω < −N.

Proof. This follows from the definitions of M1, M2 and M∗. �
Lemma 8.5. Suppose that q = 1, a = 0 and 3|m − α|μ/β2 ≤ 1 − ε1 < 1. If β > 0 or

β < −1/N, then

2β3

27μ2
− βα

3μ
+

βm

3μ
− sgn(β)

2s2m
√
s2m√

μ
= −α2

4β
− α3μ

8β3
+

(
α

2β
+

3α2μ

8β3

)
m

+

(
− 1

4β
− 3αμ

8β3

)
m2 +

μ

8β3
m3 +Oε1

(
μ2|m− α|4

β5

)
.

Moreover,

1

(36μs2m)1/4
=

1√
2|β|

+Oε1

(
1√
|β|

μ|m− α|
β2

)
. (8.10)

Lemma 8.6. We have

|B| ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

{
2N,

16√
12πμω

}
if ω > 0,

min

{
3N,

48

(12πμ)1/3

}
if −N ≤ ω ≤ 0,

min

{
2N,

16√
−12πμ(ω +N)

}
if ω < −N.

Proof. The bounds when ω > 0 or ω < −N follow from Lemma 4.4 in [7] and the fact that two
terms contribute to B in these cases. When −N ≤ ω ≤ 0, there are at most three terms contributing
to B. Write AH(ω,N ;μ, s) =

∫ 0
ω e(μt3 − 3s) dt +

∫ ω+N
0 e(μt3 − 3s) dt and then treat each integral

separately; e.g.,
∫ 0
ω e(μt3 − 3s) dt =

∫ δ
ω e(μt3 − 3s) dt +

∫ 0
δ e(μt3 − 3s) dt, where we bound the first

integral using Lemma 4.4 in [7], bound the second integral trivially, and then optimize the choice
of δ = 4/(12πμ)1/3. �
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Proposition 8.7. Let w := 〈6μqN2〉. If w �= 0, then

N∑′

n=0

e

(
an+ bn2

2q
+ μn3

)
=

e(1/8) g(b + δq, q)

(6μq)1/4

∑

0<m<w
m≡δ1 (mod 2)

1

m1/4
e

(
b∗(a+m)2

8q
− 2m3/2

6q
√
6μq

)

+ 1δ1=0
g(b+ δq, q)

√
q

e

(
b∗a2

8q

) N∫

0

e(μt3) dt

+ 1δ1≡w (mod 2)
g(b+ δq, q)

√
q

e

(
b∗(a+ w)2

8q

) N∫

0

e

(
μt3 − wt

2

)
dt

+O
(
μNq1/2 + q1/2 log(w + 2q)

)

where the prime on the sum means that the boundary terms at n = 0 and N are weighted by 1/2.
If w = 0, i.e., if μ < 1/(12qN2), then the two integrals on the right-hand side are equal and one of
them is dropped.

Proof. Apply Proposition 8.1 with α = β = 0, followed by Lemmas 8.3 and 8.4. �

9. PROOFS

Proof of Theorem 1.1. This is a special case of Proposition 8.1 when the intervals (M1,M
∗)

and (M∗,M2) are empty, so M = 0 and the only terms that survive are the boundary terms B. �
Proof of Theorem 1.2. Consider the case q = 1 and a = 0. Then necessarily b = 0 and

C(N ; a, b, q; f) = HN (α, β, μ). Moreover, b∗ = 0, b + δq = 0 and m ∈ E is equivalent to m ∈ 2Z.
Therefore, in the situation q = 1 and a = 0, we have g(m) ≡ 0, G(0, b + δq; 2q) = 1 and we
need only consider even m in Proposition 8.1. In addition, since g(m) ≡ 0, we have c1 = c0 =
e(2β3/27μ2 − βα/3μ). Suppose further that |β| > 1/N and that 0 < 6N2μ < 1. Then |ω| > N
and so M∗ = M1. In particular, Proposition 8.1 involves only T2m if β > 1/N , and only T2m if
β < −1/N . Therefore, after simplifying using Lemmas 8.3 and 8.4, we see that the terms that need
to be considered in Proposition 8.7 are of the form

e(2β3/27μ2 − βα/3μ)

(36μs2m)1/4
e

(
βm

3μ
+

sgn(β)

8
− sgn(β)

2s2m
√
s2m√

μ

)
+O

(
1

s2m

)
.

This motivates considering the formula appearing in Lemma 8.5. Note that the conditions required
by this lemma are satisfied due to our assumptions on μ and β. Indeed, if we substitute these
expansions into Lemma 8.4, then back into Proposition 8.1, and use Lemma 8.6 to estimate the
boundary terms B, then we obtain the result. �

10. SUGGESTED IMPROVEMENTS

One might be able to remove the log(|N ′|+ 2) term appearing in the O-notation in Theorem 1.2
by using Proposition 8.2 instead of Proposition 8.1 to derive the theorem. The former proposition
incorporates the secondary terms Φ(x) and Y (x), which may be estimated more precisely, and it has
a remainder R2 that tends to zero with β and μ. Similarly, one might be able to remove the log(2q)
factor from the remainder in Theorem 1.1 by using Proposition 8.2 instead of Proposition 8.1. Both
improvements will require careful and substantial analysis of the functions Φ(x) and Y (x). For
example, one should probably divide the sum in Φ(x) along arithmetic progressions modulo 2q so
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as to express Φ(x) as a linear combination of Hurwitz–Lerch zeta functions and then apply known
asymptotics for the latter.

Additionally, it might be desirable to derive a version of the bound (1.7) where instead of
Hmax

N (α, β, μ) we use the function

max
N2∈[0,N ]

∣∣∣∣∣

N2∑

n=0

e
(
αn+ βn2 + μn3

)
∣∣∣∣∣, (10.1)

which offers some advantages; e.g., if we start with α = 0, then the new α (in the transformed sum)
will still be zero. Finally, although we have not done so for the results stated in the Introduction,
all the implicit constants appearing there can be made explicit if desired by using the explicit error
bounds in Section 8.
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