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On the Analytic Complexity
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Abstract—Hypergeometric functions of several variables resemble functions of finite analytic
complexity in the sense that the elements of both classes satisfy certain canonical overdeter-
mined systems of partial differential equations. Otherwise these two sets of functions are very
different. We investigate the relation between the two classes of functions and compute the
analytic complexity of certain bivariate hypergeometric functions.
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1. INTRODUCTION

Hypergeometric functions of several complex variables constitute a wide and important class of
special functions. Numerous special functions of mathematical physics turn out to be hypergeomet-
ric. Multivariate hypergeometric functions can be defined as solutions to certain overdetermined
systems of linear partial differential equations with polynomial coefficients. Such systems of equa-
tions are of substantial independent interest and appear in numerous applications. The simplest
ordinary differential equation of this kind is the Gauss hypergeometric equation. Any second-order
linear differential equation with three regular singularities in the Riemann sphere can be reduced
to the Gauss equation by means of a suitable change of the variables.

The notion of analytic complexity stems from Hilbert’s 13th problem on the possibility to
represent multivariate functions through compositions of functions of at most two variables. For
continuous functions, the positive answer is given by the Kolmogorov–Arnold theorem [1]. In the
analytic category, this question leads to the notion of classes of analytic complexity [2, 3] and to the
corresponding differential membership criteria [4, 5, 12] for holomorphic functions. A necessary and
sufficient condition for a bivariate holomorphic function to be representable through a given number
of compositions of arbitrary univariate functions and a given “canonical” bivariate function is that
it solves a certain (nonlinear) system of partial differential equations with constant coefficients [6].

Thus hypergeometric functions as well as holomorphic functions of finite analytic complexity
belong to the class of differentially algebraic functions. This appears to be the only obvious similar-
ity between them. However, numerous examples and computer experiments suggest the existence
of deeper connections between these classes of multivariate analytic functions. The present paper
exposes results on the analytic complexity of hypergeometric functions of two complex variables.

2. HYPERGEOMETRIC SYSTEMS OF EQUATIONS AND THEIR SOLUTIONS

Throughout the paper, we use the following notation and definitions.
Definition 2.1. A formal Laurent series

∑

s∈Zn

ϕ(s)xs (2.1)
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is called hypergeometric if for any j = 1, . . . , n the quotient of its adjacent coefficients ϕ(s+ ej)/ϕ(s)
is a rational function of the indices of summation s = (s1, . . . , sn). Throughout the paper we denote
this rational function by Pj(s)/Qj(s + ej). Here {ej}nj=1 is the standard basis of the lattice Z

n.
By the support of this series we mean the subset of Z

n on which ϕ(s) �= 0. We say that such
a series is fully supported if the convex hull of its support contains (a translation of) an open
n-dimensional cone.

A hypergeometric function is a (multivalued) analytic function obtained by means of analytic
continuation of a hypergeometric series with a nonempty domain of convergence along all possible
paths.

Theorem 2.2 (O. Ore and M. Sato [10, 19]). The coefficients of a hypergeometric series are
given by the formula

ϕ(s) = ts U(s)

m∏

i=1

Γ(〈Ai, s〉+ ci), (2.2)

where ts = ts11 . . . tsnn , ti, ci ∈ C, Ai = (Ai,1, . . . , Ai,n) ∈ Z
n, i = 1, . . . ,m, and U(s) is a product of a

certain rational function and a periodic function φ(s) such that φ(s+ ej) = φ(s) for all j = 1, . . . , n.
Given the above data (ti, ci,Ai, U(s)) that determine the coefficient of a hypergeometric series,

it is straightforward to compute the rational functions Pj(s)/Qj(s+ ej) by means of the Γ-function
identity. The converse requires solving a system of difference equations which is only solvable under
some compatibility conditions on Pj and Qj . A careful analysis of this system of difference equations
was performed in [14].

In the present paper the Ore–Sato coefficient (2.2) plays the role of a primary object which
generates everything else: the series, the system of differential equations, the algebraic hypersur-
face containing the singularities of its solutions, as well as the analytic complexity of solutions.
Throughout the paper we will assume that m ≥ n, since otherwise the corresponding hypergeo-
metric series (2.1) is just a linear combination of hypergeometric series in fewer variables (times an
arbitrary function of the remaining variables, which makes the system nonholonomic) and n can be
reduced to meet the inequality.

Definition 2.3 (Horn system associated with an Ore–Sato coefficient). A (formal) Laurent
series

∑
s∈Zn ϕ(s)xs whose coefficient satisfies the relations ϕ(s + ei)/ϕ(s) = Pj(s)/Qj(s + ej) is a

(formal) solution to the following system of partial differential equations of hypergeometric type:

(xjPj(θ)−Qj(θ))f(x) = 0, j = 1, . . . , n. (2.3)

Here θ = (θ1, . . . , θn) and θj = xj
∂

∂xj
. This system will be referred to as the Horn hypergeometric

system defined by the Ore–Sato coefficient ϕ(s) (cf. [10]) and denoted by Horn(ϕ). In this paper we
treat only holonomic Horn hypergeometric systems if not otherwise specified, i.e., rank(Horn(ϕ))
is always assumed to be finite. A necessary and sufficient condition for the system Horn(ϕ) to be
holonomic was established in [7, Theorem 6.3].

We will often be dealing with the important special case of an Ore–Sato coefficient (2.2) with
ti = 1 for all i = 1, . . . , n and U(s) ≡ 1. The Horn system associated with such an Ore–Sato
coefficient will be denoted by Horn(A, c), where A is the matrix with the rows A1, . . . ,Am ∈ Z

n

and c = (c1, . . . , cm) ∈ C
m. In this case the following operators Pj(θ) and Qj(θ) explicitly determine

system (2.3):

Pj(s) =
∏

i : Ai,j>0

Ai,j−1∏

�
(i)
j =0

(
〈Ai, s〉+ ci + �

(i)
j

)
, Qj(s) =

∏

i : Ai,j<0

|Ai,j |−1∏

�
(i)
j =0

(
〈Ai, s〉+ ci + �

(i)
j

)
.
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Definition 2.4. The Ore–Sato coefficient (2.2), the corresponding hypergeometric series (2.1),
and the associated hypergeometric system (2.3) are called nonconfluent if

m∑

i=1

Ai = 0. (2.4)

Definition 2.5. A Puiseux polynomial solution to the hypergeometric system Horn(A, c) is
called persistent if its support remains finite under arbitrary small perturbations of the vector of
parameters c.

In the present paper we only consider holomorphic solutions to differential equations or sys-
tems of such equations defined in a domain in a complex space. By a nontrivial solution to a
hypergeometric system we will mean a solution that is not identically zero.

3. ANALYTIC COMPLEXITY OF BIVARIATE HOLOMORPHIC FUNCTIONS

Definition 3.1. By a differential polynomial over a field K of characteristic zero with an
unknown function f = f(x) : Cn → C depending on the variables x = (x1, . . . , xn) ∈ C

n, we will
mean a polynomial

P (f) := P
(
f, f ′

x1
, . . . , f ′

xn
, f ′′

x1x2
, . . . , f ′′

xn−1xn
, . . .

)
∈ K

[
f, f ′

x1
, . . . , f ′

xn
, f ′′

x1x2
, . . . , f ′′

xn−1xn
, . . .

]

in the elements of the jets of f(x).
Throughout the paper we will adopt the following definition.
Definition 3.2. By a root of a differential polynomial P at a point x(0) ∈ C

n we will mean
a germ of an (in general multivalued) analytic function f ∈ O(Ux(0)) such that P (f) = 0 in a
neighborhood Ux(0) of x(0).

A function is called differentially algebraic over the field K if it is a root of a differential poly-
nomial with the coefficients in K on some nonempty set. A function that is not a root of any
differential polynomial over the field K is called differentially transcendental over K. While “most”
analytic functions are differentially transcendental, the present paper aims at investigation of a
relatively small class of differentially algebraic functions that are roots of differential polynomials
of a rather special form. Throughout the paper we will be using the following definitions.

Definition 3.3. The algebraic degree of the differential monomial

∏

I

(
∂|I|f(x1, . . . , xn)

∂xi11 . . . ∂xinn

)pI

(3.1)

is defined to be the sum
∑

I pI of the exponents of all the derivatives that appear in it. Here
I = (i1, . . . , in) is a multi-index with the values in some finite subset of N

n
0 , |I| = i1 + . . . + in,

and pI ∈ N. A differential polynomial is said to be algebraically homogeneous of degree k if all its
differential monomials have the same algebraic degree k.

Definition 3.4. By the differential order of the differential monomial (3.1) we will mean
maxI |I|. The differential order of a differential polynomial is defined to be the maximal differential
order of its monomials, that is, the order of the corresponding differential equation.

The analytic complexity of a holomorphic function f(x, y) of two complex variables is its numeric
invariant with the values in N ∪ {∞}. It reflects the structure of the most concise representation
of f(x, y) in terms of compositions of univariate functions of a complex variable and a fixed bivari-
ate function s(x, y). Everywhere below we will choose the latter to be the sum of the variables:
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s(x, y) = x + y. In [2] a hierarchy Cl0 ⊂ Cl1 ⊂ . . . ⊂ Cln ⊂ . . . ⊂ Cl∞ of classes of analytic
complexity for functions of two complex variables was introduced. In this hierarchy, the trivial
class of functions of zero analytic complexity comprises the functions that depend on at most one
of the variables. The building blocks of functions of higher (i.e., nonzero) analytic complexity are
the univariate functions and the function s(x, y), whose finite compositions form, by definition, the
set of functions of finite analytic complexity. This set is stratified by counting the number of uses
of the function s(x, y) that is necessary to obtain a given function. More precisely, we will be using
the following inductive definition.

Definition 3.5 (see [2]). The class Cl0 of functions of analytic complexity zero is defined to
comprise the functions that depend on at most one of the variables. A function f(x, y) is said
to belong to the class Cln of functions with analytic complexity n > 0 if there exists a point
(x0, y0) ∈ C

2 and a germ f(x, y) ∈ O(U(x0, y0)) of this function holomorphic at (x0, y0) such that
f(x, y) = c(a(x, y) + b(x, y)) for some germs of holomorphic functions a, b ∈ Cln−1 and c ∈ Cl0. If
there is no such representation for any finite n, then the function f is said to be of infinite analytic
complexity.

The above definition is correct in the sense that the analytic complexity of a bivariate holo-
morphic function does not depend on the choice of a germ of this function. The most concise
representation in Definition 3.5 is necessarily valid for each of its germs. This follows from the
fact that for any class of analytic complexity there exists a differential membership criterion which
identifies the functions of given analytic complexity with the set of roots of a system of differential
polynomials with integer coefficients. By the conservation principle the analytic continuation of a
root of such a system along any path is also a root and therefore has the same analytic complexity.
We will say that a holomorphic function f(x, y), x, y ∈ C, has analytic complexity n if f(x, y) ∈ Cln
but f(x, y) /∈ Cln−1. By the complexity of a function we will always mean its analytic complexity.

According to the results of [2, 3], every class of analytic complexity can be defined as the set
of roots of a set of differential polynomials with integer coefficients. The algebraic degree and
the differential order of these polynomials increase rapidly as the analytic complexity grows. The
explicit calculation of such polynomials is a task of formidable difficulty.

4. THE HOLONOMIC RANK OF A HYPERGEOMETRIC SYSTEM
AND THE ANALYTIC COMPLEXITY OF ITS SOLUTIONS

Recall that an ideal J in the Weyl algebra (as well as the corresponding system of differential
equations) is called holonomic if the complex dimension of its characteristic variety

char(J) =
{
(x, z) ∈ C

2n : σ(P )(x, z) = 0 for all P ∈ J
}

is equal to the dimension of the space of variables, i.e., n. Here σ(P ) denotes the principal symbol
of the differential operator P . The space of analytic solutions to a holonomic system of differential
equations in a neighborhood of a generic point is necessarily finite-dimensional.

In the one-dimensional case the Horn system, as well as any other ordinary differential equation,
has a finite number of linearly independent solutions. In the case of two variables the Horn system
can be nonholonomic if each operator generating the system contains the same right factor. Nev-
ertheless, this can only happen on a set of zero measure (namely, on some algebraic hypersurface)
in the space of parameters of the system, whereas a bivariate Horn system with generic parameters
is necessarily holonomic. For three or more variables, a Horn system might be nonholonomic for a
generic choice of its parameters. This fact distinguishes the bivariate case from other dimensions and
motivates the study of the ways to compute the analytic complexity of a bivariate hypergeometric
function.
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Theorem 4.1. For any N ∈ N there exists a bivariate hypergeometric function whose analytic
complexity equals N .

Proof. It suffices to show that any bivariate polynomial belongs to the intersection of the
kernels of suitable differential operators of the form (2.3).

Let p(x, y) =
∑

(α,β)∈S cα,βx
αyβ be a bivariate polynomial with support S ⊂ N

2. We denote
by #S the cardinality of S. For (s, t) ∈ C

2 define the Ore–Sato coefficient ϕ(s, t) by

ϕ(s, t) =

∏
(α,β)∈S(s+ t− α− β)

∏
(α,β)∈S(s− α)(t− β)

. (4.1)

By Definition 2.3, the action of the first differential operator in the Horn system defined by this
Ore–Sato coefficient on the polynomial p(x, y) is given by

(
x

∏

(α,β)∈S
(θx + θy − α− β)−

∏

(α,β)∈S
(θx − α)

)
∑

(γ,δ)∈S
cγ,δx

γyδ

=
∑

(γ,δ)∈S
cγ,δ

((
x

∏

(α,β)∈S
(θx + θy − α− β)

)
xγyδ −

(
∏

(α,β)∈S
(θx − α)

)
xγyδ

)
≡ 0,

since C[θx, θy] is a commutative subring in the Weyl algebra and since (θx + θy − α − β)xαyβ =

(θx − α)xαyβ ≡ 0. A similar calculation shows that the polynomial p(x, y) belongs to the kernel
of the second operator in the Horn system. We remark that the hypergeometric system defined by
the Ore–Sato coefficient (4.1) is nonconfluent and has holonomic rank (#S)2. �

Lemma 4.2. A nontrivial solution to a hypergeometric system with holonomic rank 1 and
generic parameters belongs to the third class of analytic complexity.

Proof. A hypergeometric system of holonomic rank 1 cannot admit persistent polynomial
solutions, since by [18, Theorem 3.7] for generic parameters its only solution can be expanded in
fully supported series. A confluent hypergeometric system of holonomic rank 1 is necessarily atomic,
and by [18, Theorem 4.1] its solution has the form xαyβ e−xpyq−xrys , where α, β ∈ C, p, q, r, s ∈ Z,
and

∣∣ p q
r s

∣∣ �= 0. This function has analytic complexity 3 for generic values of α, β ∈ C, since it is
given by the product of three functions of analytic complexity 1.

The polygon of the Ore–Sato coefficient [16] which generates a nonconfluent hypergeometric
system with holonomic rank 1 is either a triangle or a parallelogram. The analytic complexity of
the generating solutions to either of these systems equals 3 by [18, Propositions 4.4, 4.7] as long as
their parameters are generic. By assumption no other solutions are present. �

We remark that the canonical reduction of a hypergeometric system identifies polygons of the
Ore–Sato coefficients that differ by integer shifts and allows nondegenerate monomial changes of
variables. After such a reduction, the analytic complexity of a solution to a system with holonomic
rank 1 is also equal to 1. The next statement is a consequence of the results in [17].

Lemma 4.3. A bivariate hypergeometric system with a maximally reducible monodromy repre-
sentation can be deformed into a system whose fundamental system of solutions consists of functions
of finite analytic complexity.

In the case when one of the operators in a hypergeometric system contains a right factor of the
form P (θx) for a univariate polynomial P , the analytic complexity of its solutions can be estimated
from above by means of the Palamodov–Malgrange–Ehrenpreis fundamental principle [13]. The next
statement can be proved by means of the standard method of deriving differential consequences with
constant coefficients of a given system of equations with polynomial coefficients.
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Lemma 4.4. Any hypergeometric function is differentially algebraic over C.
We remark that the holonomic property of a hypergeometric system of equations is in general

not necessary for the analytic complexity of its solutions to be finite. For instance, the general
solution to the nonholonomic system defined by the differential operators

{
x(θx + θy + α)− (θx + θy + α),

y(θx + θy + α)− (θx + θy + α)

is given by the function x−αc(y/x), which belongs to the second class of analytic complexity for
any α �= 0. Here c(·) is an arbitrary univariate differentiable function.

The above statements together with numerous computer experiments suggest the following con-
jecture.

Conjecture 4.5. Any solution to a bivariate hypergeometric system has finite analytic com-
plexity.

It appears to be important to be able to find the algebraic degree and the differential order of
the optimal differential polynomial for which a given hypergeometric function is a root.

Example 4.6 (analytic complexity of the Mellin–Barnes integral associated with a Feynman
diagram). The Mellin–Barnes representation for the sunrise Feynman diagram studied in [11] has
the following form:

J (L)
(
M2

1 , . . . ,M
2
L+1, α1, . . . , αL+1, p

2
)
= (p2)nL/2−α

[
i1−nπn/2

]L

×
∫ {

L+1∏

j=1

dtj
Γ(−tj) Γ(n/2− αj − tj)

Γ(αj)

(
−
M2

j

p2

)tj
}

Γ(α− nL/2 + �t )

Γ(n(L+ 1)/2− α− �t )
, (4.2)

where

α =
L+1∑

j=1

αj , �t =
L+1∑

j=1

tj,

αj and L are positive integers, and M2
j and p2 are some (in general, complex) parameters.

Let us introduce variables zj = M2
j /p

2, j = 1, 2, . . . , L+ 1, and define functions ΦJ as

ΦJ =

∏L+1
j=1 Γ(αj)

[i1−nπn/2]L (p2)nL/2−α
J (L)

(
M2

1 , . . . ,M
2
L+1, α1, . . . , αL+1, p

2
)
.

That is, ΦJ is defined through the Mellin–Barnes integral representation

ΦJ =

∫

C

{
L+1∏

j=1

dtj Γ(−tj)Γ
(n
2
− αj − tj

)
(−zj)

tj

}
Γ(α− nL/2 + �t )

Γ(n(L+ 1)/2 − α− �t )
. (4.3)

The contour of integration C is to be chosen to be compatible with the singular divisors of the inte-
grand in (4.3) (see [14]). In general there exist several ways to choose such a contour of integration
and different choices typically lead to linearly independent integrals [18].

For any choice of the contour of integration C that is compatible with the singularities of the
integrand in the sense of [14], the Mellin–Barnes integral (4.3) is a solution to the following system
of partial differential equations:
((

�θ + α− Ln

2

)(
�θ + α− n

2
(L+ 1) + 1

)
− θj

(
θj + αj −

n

2

))
ΦJ = 0, j = 1, . . . , L+ 1. (4.4)

Here θj = zj
∂
∂zj

and �θ =
∑L+1

j=1 θj.
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By [15], the differential operators in (4.4) commute and the holonomic rank of (4.4) equals 2L+1.
The initial exponents of a basis in the space of analytic solutions to (4.4) at the origin are given for
generic parameters by (β1, . . . , βL+1), where βj equals either αj or 0.

The special case of (4.4) with n = 2 is interesting due to the resonance of the singular divisors
in (4.3). The corresponding hypergeometric system has the form

(
(�θ + α− L)2 − θj(θj + αj − 1)

)
ΦJ = 0, j = 1, . . . , L+ 1. (4.5)

For generic values of αj , a basis in the solution space of (4.5) is given in [15, Theorem 3.1]. We
remark that a very similar nonconfluent system of hypergeometric partial differential equations
defined by a commutative family of operators was treated in [8, 9].

The physically less interesting case when αj < 0 leads to a system of equations with an appealing
structure of the monodromy group. For example, taking L = 1 and α1 = α2 = −4, we obtain the
system of equations defined by the differential operators

{
x(θx + θy − 9)2 − θx(θx − 5),

y(θx + θy − 9)2 − θy(θy − 5).

One of the irreducible polynomial solutions to this system has the form

y5
(
126 − 504x + 756x2 − 504x3 + 126x4 + 336y − 756xy + 504x2y − 84x3y

+ 216y2 − 216xy2 + 36x2y2 + 36y3 − 9xy3 + y4
)
.

The analytic complexity of the essential irreducible factor of this polynomial does not exceed 4,
that is, the holonomic rank of the defining system of equations. The analytic complexity of the
irreducible polynomial solutions to (4.4) can be estimated for any values of L, n, and αj by means
of similar arguments.

ACKNOWLEDGMENTS

The author is sincerely grateful to V. K. Beloshapka for numerous fruitful discussions on various
problems related to the computation of analytic complexity of holomorphic functions.

This research was performed in the framework of the basic part of the scientific research state
task in the field of scientific activity of the Ministry of Education and Science of the Russian
Federation, project no. 2.9577.2017/BCh.

REFERENCES
1. V. I. Arnold, “Representation of continuous functions of three variables by the superposition of continuous

functions of two variables,” Mat. Sb. 48 (1), 3–74 (1959) [Am. Math. Soc. Transl., Ser. 2, 28, 61–147 (1963)].
2. V. K. Beloshapka, “Analytic complexity of functions of two variables,” Russ. J. Math. Phys. 14 (3), 243–249

(2007).
3. V. K. Beloshapka, “Analytical complexity: Development of the topic,” Russ. J. Math. Phys. 19 (4), 428–439

(2012).
4. V. K. Beloshapka, “Analytic complexity of functions of several variables,” Mat. Zametki 100 (6), 781–789 (2016)

[Math. Notes 100, 774–780 (2016)].
5. V. K. Beloshapka, “Algebraic functions of complexity one, a Weierstrass theorem, and three arithmetic opera-

tions,” Russ. J. Math. Phys. 23 (3), 343–347 (2016).
6. V. K. Beloshapka, “Three families of functions of complexity one,” J. Sib. Fed. Univ., Math. Phys. 9 (4), 416–426

(2016).
7. A. Dickenstein, L. F. Matusevich, and E. Miller, “Binomial D-modules,” Duke Math. J. 151 (3), 385–429 (2010).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 298 2017



ON THE ANALYTIC COMPLEXITY OF HYPERGEOMETRIC FUNCTIONS 255

8. A. Dickenstein and T. M. Sadykov, “Algebraicity of solutions to the Mellin system and its monodromy,” Dokl.
Akad. Nauk 412 (4), 448–450 (2007) [Dokl. Math. 75 (1), 80–82 (2007)].

9. A. Dickenstein and T. M. Sadykov, “Bases in the solution space of the Mellin system,” Mat. Sb. 198 (9), 59–80
(2007) [Sb. Math. 198, 1277–1298 (2007)].

10. I. M. Gel’fand, M. I. Graev, and V. S. Retakh, “General hypergeometric systems of equations and series of
hypergeometric type,” Usp. Mat. Nauk 47 (4), 3–82 (1992) [Russ. Math. Surv. 47 (4), 1–88 (1992)].

11. M. Yu. Kalmykov and B. A. Kniehl, “Mellin–Barnes representations of Feynman diagrams, linear systems of
differential equations, and polynomial solutions,” Phys. Lett. B 714 (1), 103–109 (2012).

12. V. A. Krasikov and T. M. Sadykov, “On the analytic complexity of discriminants,” Tr. Mat. Inst.
im. V.A. Steklova, Ross. Akad. Nauk 279, 86–101 (2012) [Proc. Steklov Inst. Math. 279, 78–92 (2012)].

13. V. P. Palamodov, Linear Differential Operators with Constant Coefficients (Springer, Berlin, 1970).
14. T. M. Sadykov, “On a multidimensional system of hypergeometric differential equations,” Sib. Mat. Zh. 39 (5),

1141–1153 (1998) [Sib. Math. J. 39, 986–997 (1998)].
15. T. M. Sadykov, “On the Horn system of partial differential equations and series of hypergeometric type,” Math.

Scand. 91 (1), 127–149 (2002).
16. T. Sadykov, “The Hadamard product of hypergeometric series,” Bull. Sci. Math. 126 (1), 31–43 (2002).
17. T. M. Sadykov, “Hypergeometric systems of equations with maximally reducible monodromy,” Dokl. Akad. Nauk

423 (4), 455–457 (2008) [Dokl. Math. 78 (3), 880–882 (2008)].
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