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INTRODUCTION

Consider the system of dimensionless Navier–Stokes equations for a viscous incompressible fluid [1]
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(0.1)

where S is the Strouhal number, E is the Euler number, R is the Reynolds number, F is the Froude

number, {u, v, w} are the components of the velocity vector, and p is pressure.

Various aspects in the study of the Navier–Stokes system of equations and its applications

are addressed in the vast literature. Note only several lines of research: the study of symmetries,

conservation laws, and group properties for these equations and equations connected with them (see,

for example, the review in [2] and the references therein); the search for and application of exact and

approximate solutions [3]; the analytic, approximate, and numerical solution or the study of various

problems whose mathematical model is based on the application of the system of Navier–Stokes
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equations (see for example, [4]); and the asymptotic behavior of solutions [5, 6]. A special place in

this series is taken by the studies devoted to issues of solvability of problems (in particular and first

of all, of the Cauchy problem [7] and of boundary and initial–boundary value problems) formulated

for the system of Navier–Stokes equations [8] and to questions of blow-up solutions connected with

these issues [9]. Much attention in the study of the system of Navier–Stokes equations is paid to the

problems of appearance, development, and description of the turbulence phenomenon in a viscous

incompressible fluid. The interest in the problem of initiation of a turbulent motion and in the

reasons for the violation of a laminar flow has a long history and remains high at present [10, 11].

Two main approaches to the theoretical study of this problem are known [12]. One of them imposes

perturbations on a laminar flow and studies how these perturbation affect the flow [13, 14]. The

other approach attempts to reduce the description of the arising flow to dynamic systems and

considers their peculiar features (bifurcation and strange attractors) [10].

In this paper, we examine the initial and boundary value problems for the system of Navier–

Stokes equations (0.1). We study the effect of the Reynolds number on the flow of a viscous fluid

near the surface of a streamlined body. In our studies, we use the method of characteristics and

the geometric method developed by the authors. We restrict our consideration to the case of

continuously differentiable functions.

We distinguish the properties of the model that can lead in “critical” cases to the breakdown

of a laminar flow and to the appearance of certain phenomena such as scattering or turbulence

(Assertion 2). It is shown how this can be avoided (Assertion 1).

1. SOME PROPERTIES OF THE PROBLEM FORMULATION WITH INITIAL DATA

The study of the initial–boundary value problem for system (0.1) features prominently in the

literature. In some papers (see [8]), the problem is solved in the class of generalized solutions.

Other papers consider strong solutions in addition to weak solutions; in the three-dimensional case,

it is possible to construct either a local solution or a complete (for all t > 0) solution only for

sufficiently small initial velocities [15]. In [16], it was noted that the velocities and pressure in the

system of Navier–Stokes equations satisfy the continuity equation
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 and

Δp = g, g =
(∂u
∂x

)2
+ 2

∂v

∂x

∂u

∂y
+ 2

∂w

∂x

∂u

∂z
+

(∂v
∂y

)2
+ 2

∂w

∂y

∂v

∂z
+

(∂w
∂z

)2
. (1.1)

It is clear that both relations must be fulfilled at any time, including t = 0. It is also clear that, if

the initial velocities are assumed to be zero [8] and the pressure is considered as a complex function,

then both relations written above turn into identities. We will consider the initial value problem

in the class of sufficiently smooth functions in the range of real variables.

We pass in system (0.1) to new independent variables ξ = z−ψ(x, y, t), x = η, y = ζ, and t = τ

and consider the solution of this system near the surface ξ = 0. The trace of this surface on the

initial manifold is ξ = z − ψ(x, y, 0) = 0. For arbitrary sufficiently smooth functions p(x, y, z, 0),

u(x, y, z, 0), v(x, y, z, 0), and w(x, y, z, 0), we write the continuity equation in the new variables:

∂u

∂η
+

∂u

∂ξ
ψη +

∂v

∂ζ
− ∂v

∂ξ
ψζ +

∂w

∂ξ
= 0.
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Its differential consequences and relation (1.1) are written as

∂u

∂ξ
ψηη +

∂v

∂ξ
ψηζ = G1(ψη, ψζ , uηη , uηξ , uξξ, vηζ , vζξ, vηξ , vξξ, wηξ , wξξ),

∂u

∂ξ
ψηζ +

∂v

∂ξ
ψζζ = G2(ψη , ψζ , uηζ , uηξ , uξξ, vζζ , vζξ, vξξ, wζξ, wξξ),

∂p

∂ξ
(ψηη + ψζζ) = F (ψη, ψζ , uη , uζ , uξ, vη , vζ , vξ, wη , wζ , wξ, pηη , pζζ , pξξ, pηξ , pζξ).

(1.2)

Determine ψηη , ψηζ , and ψζζ from the algebraic system of equations (1.2):

ψηη =
1

F1

[
G1

∂u

∂ξ

∂p

∂ξ
−G2

∂v

∂ξ

∂p

∂ξ
+ F

(∂v
∂ξ

)2]
, ψηζ =

1

F1

[
G1

∂v

∂ξ

∂p

∂ξ
+G2

∂u

∂ξ

∂p

∂ξ
− F

∂u

∂ξ

∂v

∂ξ

]
,

ψζζ =
1

F1

[
G2

∂v

∂ξ

∂p

∂ξ
−G1

∂u

∂ξ

∂p

∂ξ
+ F

(∂u
∂ξ

)2]
, F1 =

∂p

∂ξ

[(∂u
∂ξ

)2
+

(∂v
∂ξ

)2]
.

System (1.2) as a partial differential system is consistent if the mixed derivatives are identical

(ψηηζ = ψηζη, ψηζζ = ψζζη). Hence, substituting the above expressions for the second derivatives

into the obtained relations ψηηζ = ψηζη and ψηζζ = ψζζη, we come to the first-order equation with

respect to the function ψ(η, ζ):

A(ψη , ψζ , pξ, pη, pζ , pξη, pξζ , pηζ , uη, uζ , uξη, uξζ , uηζ , vη , vζ , vξη, vξζ , vηζ , . . .) = 0.

Thus, the trace ξ = z − ψ(x, y, 0) = 0 on the initial manifold is a smooth surface if the continuity

equation and the first-order equation A = 0 give the derivatives ψη and ψζ of the same function,

which leads to the dependence between the initial data (this dependence is set in the continuity

equation and relation (1.1)). If the dependence (the compatibility of the initial conditions) does

not hold, then the flow near the trace will have some peculiarities. Actually, for arbitrary initial

conditions, one can obtain two first-order partial differential equations and, as a consequence, two

intersecting characteristics. One of these characteristic is given by the continuity equation and

the other is given by the equation A = 0, which leads to the fact that the perturbations, which

would spread over a scalar manifold in the case of matched initial conditions, spread in a two-

dimensional domain between the two characteristics. It is known that a one-dimensional flow and

a two-dimensional flow may differ considerably (see, for example, [17]). This causes difficulties in

constructing a strong solution of the initial–boundary value problem for arbitrary initial data.

2. SOME PROPERTIES OF THE FORMULATION

OF THE BOUNDARY VALUE PROBLEM

Consider for system (0.1) the problem formulation with the boundary conditions given in the

form of the no-slip condition on a fixed streamlined body.

The last equation of the system implies that

∂u

∂x
= −

(∂v
∂y

+
∂w

∂z

)
,

∂v

∂y
= −

(∂u
∂x

+
∂w

∂z

)
,

∂w

∂z
= −

(∂v
∂y

+
∂u

∂x

)
.
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In view of these relations, we rewrite system (0.1) in the form

S
∂u

∂t
− u

(∂v
∂y

+
∂w

∂z

)
+ v

∂u

∂y
+ w

∂u

∂z
+ E

∂p
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− 1

R

(
− ∂2v
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− ∂2w

∂z∂x
+

∂2u
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+

∂2u

∂z2

)
= 0,

S
∂v

∂t
+ u

∂v

∂x
− v

(∂u
∂x

+
∂w

∂z

)
+w

∂v

∂z
+ E

∂p

∂y
− 1

R

(∂2v

∂x2
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∂x∂y
− ∂2w

∂z∂y
+

∂2v

∂z2

)
= 0,

S
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
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(∂v
∂y

+
∂u

∂x

)
+ E

∂p
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− 1

R

(∂2w

∂x2
+

∂2w

∂y2
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− ∂2u

∂x∂z

)
=

1

F
.

(2.1)

In system (2.1), we pass to the new variables ψ(x, y)− z = ξ, x = η, y = ζ, and t = τ . We obtain

S
∂u

∂τ
− u

(∂v
∂ζ

+
∂v

∂ξ
ψy −

∂w

∂ξ

)
+ v

(∂u
∂ζ

+
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∂u

∂ξ
+ E

(∂p
∂η

+
∂p

∂ξ
ψx

)

− 1

R

(
− ∂2v

∂ζ∂η
− ∂2v

∂η∂ξ
ψy −

∂2v

∂ζ∂ξ
ψx −

∂2v

∂ξ2
ψxψy −

∂v

∂ξ
ψxy +

∂2w

∂η∂ξ
+

∂2w

∂ξ2
ψx

+
∂2u

∂ζ2
+ 2

∂2u

∂ζ∂ξ
ψy +

∂2u

∂ξ2
ψ2
y +

∂u

∂ξ
ψyy +

∂2u

∂ξ2

)
= 0,

S
∂v

∂τ
+ u

(∂v
∂η

+
∂v

∂ξ
ψx

)
− v

(∂u
∂η

+
∂u

∂ξ
ψx −

∂w

∂ξ

)
− w

∂v

∂ξ
+ E

(∂p
∂ζ

+
∂p

∂ξ
ψy

)

− 1

R

(∂2v

∂η2
+ 2

∂2v

∂η∂ξ
ψx +

∂2v

∂ξ2
ψ2
x +

∂v

∂ξ
ψxx −

∂2u

∂η∂ζ
− ∂2u

∂η∂ξ
ψy

− ∂2u

∂ζ∂ξ
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∂2u

∂ξ2
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∂u
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∂ξ2
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S
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+
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∂ζ2
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∂2w

∂ζ∂ξ
ψy +

∂2w

∂ξ2
ψ2
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∂w
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∂ζ∂ξ
+

∂2v
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ψy

)
=

1

F
.

(2.2)

The system of equations (2.2) can be written in the form AU = B, where

A =
1

R

⎛
⎝

ψ2
y + 1 −ψxψy ψx

−ψxψy ψ2
x + 1 ψy

ψx ψy ψ2
x + ψ2

y

⎞
⎠ , U =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂2u

∂ξ2

∂2v

∂ξ2

∂2w

∂ξ2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎝

S
∂u

∂τ
− u

(∂v
∂ζ

+
∂v

∂ξ
ψy −

∂w

∂ξ

)
+ v

(∂u
∂ζ

+
∂u

∂ξ
ψy

)
− w

∂u

∂ξ
+ E

(∂p
∂η

+
∂p

∂ξ
ψx

)
− M

R

S
∂v

∂τ
+ u

(∂v
∂η

+
∂v

∂ξ
ψx

)
− v

(∂u
∂η

+
∂u

∂ξ
ψx −

∂w

∂ξ

)
− w

∂v

∂ξ
+E

(∂p
∂ζ

+
∂p

∂ξ
ψy

)
− N

R

S
∂w

∂τ
+ u

(∂w
∂η

+
∂w

∂ξ
ψx

)
+ v

(∂w
∂ζ

+
∂w

∂ξ
ψy

)
− wQ− E

∂p

∂ξ
− H

R
− 1

F

⎞
⎟⎟⎟⎟⎟⎠

,
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M = − ∂2v

∂ζ∂η
− ∂2v

∂η∂ξ
ψy −

∂2v

∂ζ∂ξ
ψx −

∂v

∂ξ
ψxy +

∂2w

∂η∂ξ
+

∂2u

∂ζ2
+ 2

∂2u

∂ζ∂ξ
ψy +

∂u

∂ξ
ψyy,

N =
∂2v

∂η2
+ 2

∂2v

∂η∂ξ
ψx +

∂v

∂ξ
ψxx −

∂2u

∂η∂ζ
− ∂2u

∂η∂ξ
ψy −

∂2u

∂ζ∂ξ
ψx −

∂u

∂ξ
ψxy +

∂2w

∂ζ∂ξ
,

Q =
∂u

∂η
+

∂u

∂ξ
ψx +

∂v

∂ζ
+

∂v

∂ξ
ψy,

H =
∂2w

∂η2
+ 2

∂2w

∂η∂ξ
ψx +

∂w

∂ξ
ψxx +

∂2w

∂ζ2
+ 2

∂2w

∂ζ∂ξ
ψy +

∂w

∂ξ
ψyy +

∂2u

∂η∂ξ
+

∂2v

∂ζ∂ξ
.

From the last equation of system (0.1), we obtain

∂u

∂η
+

∂v

∂ζ
+

∂u

∂ξ
ψx +

∂v

∂ξ
ψy −

∂w

∂ξ
= 0. (2.3)

Let us also write the differential consequences of expression (2.3):

∂2u

∂η2
+

∂2v

∂ζ∂η
+

∂2u

∂ξ∂η
ψx +

∂2v

∂ξ∂η
ψy −

∂2w

∂ξ∂η
+

∂u

∂ξ
ψxx +

∂v

∂ξ
ψxy = 0,

∂2u

∂η∂ζ
+

∂2v

∂ζ2
+

∂2u

∂ξ∂ζ
ψx +

∂2v

∂ξ∂ζ
ψy −

∂2w

∂ξ∂ζ
+

∂u

∂ξ
ψxy +

∂v

∂ξ
ψyy = 0,

∂2u

∂η∂τ
+

∂2v

∂ζ∂τ
+

∂2u

∂ξ∂τ
ψx +

∂2v

∂ξ∂τ
ψy −

∂2w

∂ξ∂τ
= 0,

∂2u

∂η∂ξ
+

∂2v

∂ζ∂ξ
+

∂2u

∂ξ2
ψx +

∂2v

∂ξ2
ψy −

∂2w

∂ξ2
= 0.

Let the boundary conditions u(t, ψ(x, y), x, y) = 0, v(t, ψ(x, y), x, y) = 0, w(t, ψ(x, y), x, y) = 0,

∂u/∂ξ = u1(η, ζ), and ∂v/∂ξ = v1(η, ζ) be given on the surface ξ = 0. Then, equation (2.3)

implies w1(η, ζ) = ∂w/∂ξ = u1ψx + v1ψy. In addition, define p(t, ψ(x, y), x, y) = p0(η, ζ) and

∂p/∂ξ = p1(η, ζ) on this surface.

Note that the determinant of the matrix A is zero. Multiply the right- and the left-hand sides

of the system AU = B by the left null vector of the matrix A (see [18]):

L = {ψ2
x(ψ

2
x + ψ2

y + 1), ψxψy(ψ
2
x + ψ2

y + 1)− ψx(ψ
2
x + ψ2

y + 1)}.

We obtain the existence condition for a solution of system (2.2) on the surface ξ = 0, assuming that

ψx �= 0, ψ2
x + ψ2

y + 1 �= 0 and taking into account relation (2.3) and its differential consequences as

well as the given boundary conditions

1

R

[(∂u1
∂η

+
∂v1
∂ζ

)
(ψ2

x + ψ2
y + 1) + 2(ψxψxx + ψyψxy)u1 + 2(ψxψxy + ψyψyy)v1

]

+ E
[∂p0
∂η

ψx +
∂p0
∂ζ

ψy + p1(ψ
2
x + ψ2

y + 1)
]
+

1

F
= 0. (2.4)

Thus, for the given first derivatives (boundary conditions), we have two relations (2.3) and (2.4),

which must be satisfied on the streamlined surface in order that system (2.2) have a solution.
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Let us transform relation (2.4) to a more convenient form. For this, we rewrite the differential

consequences of equation (2.3) and relation (2.4) as follows:

u1ψηη + v1ψηζ = −
(∂u1
∂η

ψη +
∂v1
∂η

ψζ −
∂w1

∂η

)
,

u1ψηζ + v1ψζζ = −
(∂u1
∂ζ

ψη +
∂v1
∂ζ

ψζ −
∂w1

∂ζ

)
,

(ψηψηη + ψζψηζ)u1 + (ψηψηζ + ψζψζζ)v1 = −0.5ER
[∂p0
∂η

ψη +
∂p0
∂ζ

ψζ + p1n
]

− 0.5
(∂u1
∂η

+
∂v1
∂ζ

)
n− 0.5

R

F
, where n = ψ2

η + ψ2
ζ + 1.

(2.5)

Multiply the first equation of (2.5) by ψη and the second equation by ψζ and add them together.

Subtracting the third equation of (2.5) from the obtained sum, we reduce (2.4) to the relation

0.5n
∂u1
∂η

+ 0.5n
∂v1
∂ζ

+ ψη
∂w1

∂η
+ ψζ

∂w1

∂ζ
− ψηψζ

(∂u1
∂ζ

+
∂v1
∂η

)

+ 0.5ER
[∂p0
∂η

ψη +
∂p0
∂ζ

ψζ + p1n
]
+ 0.5

R

F
= 0. (2.6)

Relation (2.3) under the given boundary conditions takes the form

w1 = u1ψη + v1ψζ . (2.7)

Then, for the given outer derivatives u1 = ∂u/∂ξ, v1 = ∂v/∂ξ, and w1 = ∂w/∂ξ, the surface

ξ = 0 must satisfy system (2.6), (2.7) of two first-order partial differential equations if the pressure p0
and its outer derivative p1 = ∂p/∂ξ are known on the body.

The condition of existence of a sufficiently smooth solution of system (2.2) near the streamlined

surface reduces to obtaining a consistency condition for system (2.6), (2.7).

Assertion 1. The system of first-order differential equations (2.6), (2.7) is consistent if and

only if the following equality holds identically :

{[−b±
√

b2 − 4ac]/(2a)}η = {w1/u1 − v1[−b±
√

b2 − 4ac]/(2au1)}ζ , (2.8)

where the lower indices η and ζ denote the variables with respect to which the derivatives of the

corresponding expressions are taken,

a = 0.5
u21 − v21

u21

∂u1
∂η

+
v1
u1

∂u1
∂ζ

+
v1
u1

∂v1
∂η

+ 0.5
v21 − u21

u21

∂v1
∂ζ

+ 0.5ERp1
u21 + v21

u21
,

b =
v1w1

u21

∂u1
∂η

− w1

u1

∂u1
∂ζ

− w1

v1

∂v1
∂η

− w1v1
u21

∂v1
∂ζ

− v1
u1

∂w1

∂η
+

∂w1

∂ζ

− 0.5ER
v1
u1

∂p0
∂η

+ 0.5ER
∂p0
∂ζ

− ERp1
v1w1

u21
,

c = 0.5
u21 − w2

1

u21

∂u1
∂η

+ 0.5
u21 + w2

1

u21

∂v1
∂ζ

+
w1

u1

∂w1

∂η
+ 0.5ER

w1

u1

∂p0
∂η

+ 0.5ERp1
u21 + w2

1

u21
+ 0.5

R

F
.

Proof. The Jacobian system obtained from the system (2.6), (2.7) of first-order differential

equations is completely integrable if and only if the mixed derivatives are identically equal.
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Substituting ψη from relation (2.7) into equation (2.6), we get

0.5
∂u1
∂η

(u21 − v21
u21

ψ2
ζ + 2ψζ

v1w1

u21
+

u21 − w2
1

u21

)
− ∂u1

∂ζ

(w1

u1
ψζ −

v1
u1

ψ2
ζ

)

− ∂v1
∂η

(w1

u1
ψζ −

v1
u1

ψ2
ζ

)
+ 0.5

∂v1
∂ζ

(v21 − u21
u21

ψ2
ζ − 2ψζ

v1w1

u21
+

u21 + w2
1

u21

)

+
∂w1

∂η

(w1

u1
− v1

u1
ψζ

)
+

∂w1

∂ζ
ψζ + 0.5ER

∂p0
∂η

(w1

u1
− ψζ

v1
u1

)
+ 0.5ERψζ

∂p0
∂ζ

+ 0.5ERp1

(u21 + v21
u21

ψ2
ζ − 2ψζ

v1w1

u21
+

u21 + w2
1

u21

)
+ 0.5

R

F
= 0. (2.9)

Expressing ψζ from (2.9) and then ψη from (2.7), we obtain the Jacobian system

ψζ = c1/(2a), ψη = w1/u1 − v1c1/(2au1), where c1 = −b±
√

b2 − 4ac.

The requirement of the equality of the mixed derivatives leads to relation (2.8), connecting the

velocity and the pressure, which must be identically satisfied on the streamlined body.

The assertion is proved. �
If relation (2.8) does not become an identity, then the mixed derivatives are identical only on a

certain line ϕ(η, ζ) = 0.

Consider relation (2.7). In this relation,

u1 = lim
ξ→0

u(η, ζ, ξ)− u(η, ζ, 0)

ξ
= lim

ξ→0

u(η, ζ, ξ)

ξ
, v1 = lim

ξ→0

v(η, ζ, ξ) − v(η, ζ, 0)

ξ
= lim

ξ→0

v(η, ζ, ξ)

ξ
,

w1 = lim
ξ→0

w(η, ζ, ξ) − w(η, ζ, 0)

ξ
= lim

ξ→0

w(η, ζ, ξ)

ξ
;

consequently, u(η, ζ, ξ)ψη + v(η, ζ, ξ)ψζ − w(η, ζ, ξ) = o(ξ).

Thus, by relation (2.7), the flow near the surface of the streamlined body “repeats” the form

of its surface.

As shown earlier, one condition (2.7) is insufficient for the existence of a sufficiently smooth

solution of system (2.2). To construct the solution in the class of smooth functions, it is necessary

that conditions (2.6)–(2.8) hold. If condition (2.8) fails, then relations (2.7) and (2.6) specify two

cones of normals and two different surfaces intersecting along the line ϕ(η, ζ) = 0, i.e., the surface

of the streamlined body and the surface described by equation (2.6). Since we have the no-slip

condition on the surface of the streamlined body, we can consider this surface as a characteristic

surface of weak discontinuity. The situation with two different surfaces that have a common part

is similar to the situation in geometrical optics when the direction of an incident ray of light

coincides with an optic axis of a crystal. Such a situation is mathematically described by two

characteristic surfaces having one common normal. In the case of geometrical optics, this leads to

light scattering called the conical refraction [19]. As follows from observations [14], zones of mixing

and scattering often emerge in flows past smooth surfaces (the problem under consideration). The

reason for such phenomena is that the perturbation from the body on the line of intersection of

two surfaces ϕ(η, ζ) = 0 is scattered similarly to the scattering of a ray under conical refraction. A

rather complicated picture of the flow between surfaces (2.6) and (2.7) may arise (strong and weak

discontinuities, a blow-up, and turbulent mixing).
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Corollary. If u1 = v1 = w1 = 0 on the surface of the streamlined body, then the consistency

condition (2.4) takes the form

E
[∂p0
∂η

ψx +
∂p0
∂ζ

ψy + p1(ψ
2
x + ψ2

y + 1)
]
+

1

F
= 0.

3. DEPENDENCE OF OUTER DERIVATIVES ON THE REYNOLDS NUMBER

If we pass to the new variables in system (0.1) without regard to the continuity equation, then

we obtain the system GU = T0, where

G =
1

R

⎛
⎝

ψ2
x + ψ2

y + 1 0 0

0 ψ2
x + ψ2

y + 1 0

0 0 ψ2
x + ψ2

y + 1

⎞
⎠ .

For the vector T0, we have

T0 =

⎛
⎜⎜⎜⎜⎜⎝

S
∂u

∂τ
+ u

(∂u
∂η

+
∂u

∂ξ
ψx

)
+ v

(∂u
∂ζ

+
∂u

∂ξ
ψy

)
− w

∂u

∂ξ
+ E

(∂p
∂η

+
∂p

∂ξ
ψx

)
− M1

R

S
∂v

∂τ
+ u

(∂v
∂η

+
∂v

∂ξ
ψx

)
+ v

(∂v
∂ζ

+
∂v

∂ξ
ψy

)
− w

∂v

∂ξ
+ E

(∂p
∂ζ

+
∂p

∂ξ
ψy

)
− N1

R

S
∂w

∂τ
+ u

(∂w
∂η

+
∂w

∂ξ
ψx

)
+ v

(∂w
∂ζ

+
∂w

∂ξ
ψy

)
− w

∂w

∂ξ
− E

∂p

∂ξ
− H1

R
− 1

F

⎞
⎟⎟⎟⎟⎟⎠

,

where M1 =
∂2u

∂η2
+ 2

∂2u

∂η∂ξ
ψx +

∂2u

∂ζ2
+ 2

∂2u

∂ζ∂ξ
ψy, N1 =

∂2v

∂η2
+ 2

∂2v

∂η∂ξ
ψx +

∂2v

∂ζ2
+ 2

∂2v

∂ζ∂ξ
ψy,

H1 =
∂2w

∂η2
+ 2

∂2w

∂η∂ξ
ψx +

∂2w

∂ζ2
+ 2

∂2w

∂ζ∂ξ
ψy.

Hence, we find that, on the surface ξ = 0,

∂2u

∂ξ2
=

R

ψ2
x + ψ2

y + 1

[
E
(∂p0
∂η

+ p1ψx

)
− M2

R

]
,

∂2v

∂ξ2
=

R

ψ2
x + ψ2

y + 1

[
E
(∂p0
∂ζ

+ p1ψy

)
− N2

R

]
,

∂2w

∂ξ2
= − R

ψ2
x + ψ2

y + 1

(
Ep1 +

H2

R
+

1

F

)
,

(3.1)

where M2 = 2
(∂u1
∂η

ψx +
∂u1
∂ζ

ψy

)
, N2 = 2

(∂v1
∂η

ψx +
∂v1
∂ζ

ψy

)
, H2 = 2

(∂w1

∂η
ψx +

∂w1

∂ζ
ψy

)
,

and w1 = u1ψx+ v1ψy. Substituting quantities (3.1) into differential consequences (2.3), we obtain

relation (2.4) once again. Consequently, expressions (3.1) specify the second derivatives of the flow

past the streamlined body if the boundary conditions given on the body comply with relation (2.4).

As follows from (3.1), the second derivatives of the velocity components also tend to infinity

as R → ∞.

Note that, as follows from relation (3.1), if the Reynolds number is such that

R < min
{
M2/

[
E
(∂p0
∂η

+ p1ψx

)]
, N2/

[
E
(∂p0
∂ζ

+ p1ψy

)]
, −H2/

(
Ep1 +

1

F

)}
,
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then the values of the second derivatives are determined by the terms independent of the Reynolds

number. Similarly, if the relations

∂p0
∂η

+ p1ψx = 0,
∂p0
∂ζ

+ p1ψy = 0, Ep1 +
1

F
= 0

hold on the body, then the Reynolds number does not influence the second derivatives.

Assertion 2. Near the streamlined plane l = at+ x+ by + cz, we have

lim
R→∞

K = ∞, lim
R→∞

T = ∞,

where K is the streamline curvature, T is the streamline torsion, and R is the Reynolds number.

Proof. Consider the influence of the Reynolds number on the flow near the streamlined body

for the exact solution of the system of Navier–Stokes equations [1]. Assume that its solution

is u = u(ψ(x, y, z, t)), v = v(ψ(x, y, z, t)), w = w(ψ(x, y, z, t)), and p = p(ψ(x, y, z, t)). Then,

ψ(x, y, z, t) = const is a level surface for u, v, w, and p, and system (0.1) can be written as

Su′ψt + uu′ψx + vu′ψy + wu′ψz −
1

R
(u′′m+ u′Δ) = 0,

Sv′ψt + uv′ψx + vv′ψy + wv′ψz −
1

R
(v′′m+ v′Δ) = 0,

Sw′ψt + uw′ψx + vw′ψy + ww′ψz −
1

R
(w′′m+ w′Δ) =

1

F
,

u′ψx + v′ψy + w′ψz = 0, m = ψ2
x + ψ2

y + ψ2
z , Δ = ψxx + ψyy + ψzz.

(3.2)

In system (3.2), the prime (′) denotes differentiation with respect to ψ and lower indices denote

differentiation of the function ψ with respect to the corresponding variables.

Let ψx �= 0. Define ψt/ψx = f1(ψ), ψy/ψx = f2(ψ), ψz/ψx = f3(ψ), and (ψ2
x + ψ2

y + ψ2
z)/ψx =

f4(ψ), where fi(ψ) are arbitrary functions (i = 1, 2, 3, 4). Then, ψx = f4/(1 + f2
2 + f2

3 ) = g(ψ).

The equality of the mixed derivatives implies that ψt = ag(ψ), ψy = bg(ψ), ψz = cg(ψ), a = const,

b = const, and c = const and, consequently, ψ = ψ(l) and l = x + at + by + cz. Then, we find

that u = u(l), v = v(l), w = w(l), and p = p(l) and the system of equations (0.1) reduces to the

following system of ordinary differential equations:

(Sa+ u+ bv + cw)ul + Epl −
1

R
qull = 0, (Sa+ u+ bv + cw)vl + Ebpl −

1

R
qvll = 0,

(Sa+ u+ bv + cw)wl + Ecpl −
1

R
qwll =

1

F
, ul + bvl + cwl = 0, where q = 1 + b2 + c2.

(3.3)

The differential consequences of the last equation in system (3.3) yield the relations ull + bvll +

cwll = 0, u + bv + cw = A, and A = const. If we multiply the second equation of system (3.3)

by b and the third equation by c and add them to the first equation of the system, we obtain

pl = c/(FEq). Then the first three equations of system (3.3) take the form

q

R
ull − (Sa+A)ul −

c

Fq
= 0,

q

R
vll − (Sa+A)vl −

cb

Fq
= 0,

q

R
wll − (Sa+A)wl +

1 + b2

Fq
= 0.

(3.4)
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Let us write a general solution of linear system (3.4) with constant coefficients.

If A �= (−Sa), then

u =
U0

α
exp (αl)− β

α
l + U1, α =

R(Sa+A)

q
, β = − cR

Fq2
, U0 = const, U1 = const;

v =
V0

α
exp (αl)− bβ

α
l + V1, V0 = const, V1 = const;

w = −U0 + bV0

cα
exp (αl) +

β(1 + b2)

cα
l +

A− U1 − bV1

c
;

p =
c

FEq
l + p0, p0 = const, l = at+ x+ by + cz.

(3.5)

We use (3.5) to study the properties of the flow near the surface ξ = 0 assuming that ξ = l is a

movable streamlined plane. On the plane l = 0, we set the no-slip conditions u(0) = 0, v(0) = 0,

and w(0) = 0. Then, on l = 0, we have A = 0, U1 = −U0/α, and V1 = −V0/α; consequently,

u1 = U0 −
c

qF (Sa+A)
, v1 = V0 −

bc

qF (Sa+A)
, w1 = −U0 + bV0

c
+

1 + b2

qF (Sa+A)
, p1 =

c

qEF
.

Note that the first derivatives with respect to ξ are independent of the Reynolds number and, as in

the general case (see the corollary), the flow near the streamlined surface repeats the form of the

surface at any time: u1 + bv1 + cw1 = 0; consequently, u(l) + bv(l) + cw(l) = o(l).

Let us also write the second derivatives on the surface ξ = l = 0. We obtain

d2u

dξ2
= αU0,

d2v

dξ2
= αV0,

d2w

dξ2
= −(U0 + bV0)α

c
,

d2p

dξ2
= 0.

Here, we observe the dependence on the Reynolds number (see α in (3.5)). Similarly, we have for

the third derivatives

d3u

dξ3
= α2U0,

d3v

dξ3
= α2V0,

d3w

dξ3
= −(U0 + bV0)α

2

c
,

d3p

dξ3
= 0.

Substituting the obtained values of the derivatives into the formulas for the curvature K and

the torsion T of the line u = u(ξ), v = v(ξ), and w = w(ξ), we get

K =
R(Sa+A)

qT1

√
T1T2 −

qT3

R(Sa+A)
, T =

(R(Sa+A)

q

)3 T4

T 3
1K

2
, (3.6)

where T1 =
(
U0 −

c

qF (Sa+A)

)2
+

(
V0 −

bc

qF (Sa+A)

)2
+

(
− U0 + bV0

c
+

1 + b2

qF (Sa+A)

)2
,

T2 = U2
0 + V 2

0 +
[U0 + bV0

c

]2
,

T3 = U0

(
U0 −

c

qF (Sa+A)

)
+ V0

(
V0 −

bc

qF (Sa+A)

)
+

U0 + bV0

c

(
− U0 + bV0

c
+

1 + b2

qF (Sa+A)

)
,

T4 = V0

(
U0 −

c

qF (Sa+A)

)(U0 + bV0

c

)
+ U0V0

(
− U0 + bV0

c
+

1 + b2

qF (Sa+A)

)
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+ U0

(U0 + bV0

c

)(
V0 −

bc

qF (Sa+A)

)
− U0V0

(
− U0 + bV0

c
+

1 + b2

qF (Sa+A)

)

− V0

(U0 + bV0

c

)(
U0 −

c

qF (Sa+A)

)
− U0

(U0 + bV0

c

)(
V0 −

bc

qF (Sa+A)

)
.

Relations (3.6) imply that lim
R→∞

K = ∞ and lim
R→∞

T = ∞.

The assertion is proved. �

4. CONCLUSIONS

As shown above, when posing both the initial and boundary value problems, we have to deal

with an overdetermined system of partial differential equations (see the continuity equation and

equation (1.1) in the new independent variables or system (2.6), (2.7)). For a given pressure, the

consistency requirement for such systems leads to certain requirements on the velocity of motion of

the medium (see (2.8)). If these requirements are not fulfilled, then each equation of the system in

the domain of its solution has its own cone of normals and (as the extended system of characteristic

equations shows [20,21]) its own highest-order derivatives in terms of which the streamline curvature

and torsion can be expressed (see (3.6)).

It is well-known in optics that, if the direction of an incident ray coincides with the direction of

an optic axis of a crystal, then a bright spot is observed on a screen instead of a point. This effect

of ray scattering (conical refraction) is explained by the presence of two different first-order partial

differential equations. Their cones of normals have one common normal, but they do not coincide.

A similar reason leads to the phenomenon of scattering for a nonstationary flow of an ideal plasma,

when the vector of magnetic intensity is parallel to the normal of a characteristic surface and the

velocity of sound is equal to the van Alphen velocity [19].

In this connection, recall the solution of system (2.6), (2.7) in the case when conditions (2.8) do

not hold. We observe the resemblance to the mathematical description of conical refraction. Here,

the line ϕ(η, ζ) = 0 plays the role of an optic axis of a crystal. An analogy of the behavior of a flow

past a body (scattering and turbulent mixing) to the effect of scattering in optics comes to mind.

In the case of an initial value problem describing the motion of a viscous fluid at the initial

time, the flow or the motion may mismatch the ambient atmospheric pressure, and relation (1.1)

is not satisfied. There appear zones of additional perturbations, which, during their propagation,

give rise to mixing, scattering, etc.

Thus, we can assume that the primary cause generating the breakdown of a laminar flow lies

in the absence of matching between the ambient pressure and the velocity of motion of the fluid.

Hence, additional perturbations [13], scattering [14], and bifurcation [10] may occur. As the above

example of a boundary value problem shows, certain conditions for the elimination of “conflict”

may exist (see, for example, (2.8)).

The transition to a turbulent motion in continuous media occurs with the growth of the Reynolds

number. It is also known that the streamline curvature has a significant effect on turbulence,

including its intensification, and is an important issue that requires a close examination in the

study of turbulence and in the development of models of turbulence [22, 23]. Hence, it is interes-

ting that, for the considered mathematical model (0.1), relations (3.1) and (3.6) imply that, if

A �= (−Sa) and as the Reynolds number grows, the streamline curvature and torsion increase.

Otherwise (for A = −Sa), the growth of the Reynolds number has no detectable effect.
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