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Abstract—We consider the problem of one-sided weighted integral approximation on the
interval [−1, 1] to the characteristic functions of intervals (a, 1] ⊂ (−1, 1] and (a, b) ⊂ (−1, 1)
by algebraic polynomials. In the case of half-intervals, the problem is solved completely. We
construct an example to illustrate the difficulties arising in the case of an open interval.
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1. INTRODUCTION

One-sided integral approximations to step functions by algebraic polynomials in a weighted

integral metric on the interval [−1, 1] were studied in the 1880s by Markov [4, Paper 1] and

Stieltjes [13] (see [6, Sect. 3.411; 5, Ch. 1, Sect. 1.2, Lemmas 9, 9′]). In particular, these authors

considered a polynomial of even degree 2m−2 whose graph lies over the graph of the characteristic

function 1[−1,h] of the interval [−1, h], h ∈ (−1, 1). In the case when h coincides with one of

the nodes of an m-point Gauss quadrature formula, this polynomial is extremal in the problem

of the best weighted integral approximation to the function 1[−1,h] from above. Problems of one-

sided weighted integral approximation to the characteristic function of an interval by algebraic

or trigonometric polynomials arise in various areas of mathematics and have a rich history. Let

us outline several exact results closely related to the present paper. The problem of one-sided

approximation to the periodic extension of the characteristic function of an interval (a, b) by

trigonometric polynomials in the integral metric with Jacobi weight on the period was studied

in [11]. An exact solution was found in [11, Theorem 3] for some values of a and b satisfying

specific equations. In the case of the unit weight, the problem for an arbitrary interval located

on the period was solved in [1]. In [8], the problem of one-sided integral approximation to the

characteristic function of an arbitrary half-open interval (h, 1] ⊂ (−1, 1] by algebraic polynomials on

[−1, 1] with the unit weight was solved, and the whole class of extremal polynomials was described.

In the present paper, we study similar problems on the interval [−1, 1] with a quite general

weight. More exactly, in Section 3, we consider the problem of one-sided weighted integral approxi-

mation to the characteristic function of a half-open interval (a, 1] ⊂ (−1, 1] by algebraic polynomials.
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To obtain lower bounds, we follow the known scheme of using quadrature formulas of the highest

degree of precision with positive coefficients and several fixed nodes. There is a large number of

papers devoted to such formulas (see [9, 10,12] and references therein). These formulas are rich in

applications. The most convenient for our purposes formulas were obtained in [9,10]. To find upper

bounds, we use polynomials constructed according to methods going back to Markov and Stieltjes

(see the beginning of this section); later, these methods were developed in [1, Lemma 1; 8, Sect. 5].

We also consider the problem of one-sided weighted integral approximation to the characteristic

function of an interval (a, b) ⊂ (−1, 1) by polynomials. In Section 3, we construct an example

illustrating an essential difference of this case from the case of a half-open interval (a, 1].

2. NOTATION AND AUXILIARY STATEMENTS

Let Pm be the set of algebraic polynomials of degree at most m with real coefficients. We call

the number m the degree of the space Pm. A polynomial with unit leading coefficient is called a

monic polynomial.

Consider a nondecreasing function μ : [−1, 1] → R with infinite number of growth points. We

call the distribution dμ(x) the weight. Let L be the space of real-valued μ-integrable on [−1, 1]

functions f : [−1, 1] → R equipped with the norm ‖f‖ =

∫ 1

−1
|f(x)| dμ(x).

The inequality f ≤ g for functions f and g will mean that f(x) ≤ g(x) for all x ∈ [−1, 1].

The values of the best approximations to a bounded function f ∈ L from below and from above

by the set Pm in the metric of the space L are defined by the formulas

E−
m(f) = inf

p≤f, p∈Pm

‖f − p‖, E+
m(f) = inf

f≤p, p∈Pm

‖f − p‖, (2.1)

respectively. Polynomials at which the infima in (2.1) are attained are called polynomials of the

best (weighted integral) approximation to the function f from below and from above, respectively.

The set Pm−1 of algebraic polynomials of degree at most m − 1 is an m-dimensional linear

subspace of L. The space P∗
m−1 of all linear functionals on Pm−1 also has dimensionm. For a num-

ber ξ ∈ R, we consider the Dirac linear functional δξ acting on polynomials p ∈ Pm−1 by the rule

δξp = p(ξ). It is known that, if x1 < x2 < · · · < xm, then the family of functionals {δx1 , δx2 , . . . , δxm}
is a basis in P∗

m−1. Therefore, every linear functional on Pm−1 can be represented as a linear

combination of these functionals. In particular, the linear functional Iμ acting on Pm−1 by the

rule Iμp =

∫ 1

−1
p(x) dμ(x) can be written as a linear combination Iμ = λ1δx1 +λ2δx2 + · · ·+λmδxm .

The coefficients λ1, λ2, . . . , λm are defined by the family x1, x2, . . . , xm uniquely. In other words,

the formula
1∫

−1

p(x) dμ(x) =

m∑
k=1

λkp(xk), (2.2)

which is called an m-point quadrature formula, is valid on Pm−1. The numbers λ1, λ2, . . . , λm are

called the coefficients of this quadrature formula, the points x1, x2, . . . , xm are its nodes, and the

polynomial wm(x) = (x− x1)(x− x2) · · · (x− xm) is its generating polynomial.

To a node xk, we assign the Lagrange fundamental polynomial �k(x) =
wm(x)

(x− xk)w′
m(xk)

, which
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is 1 at the node xk and 0 at the remaining nodes. Substituting this polynomial into (2.2), we obtain

λk =

1∫

−1

�k(x) dμ(x) =
1

w′
m(xk)

1∫

−1

wm(x)

x− xk
dμ(x), k ∈ {1, 2, . . . ,m}. (2.3)

The quadrature formula (2.2), whose coefficients are calculated by formula (2.3), is called an

interpolation formula. Thus, the m-point quadrature formula (2.2) is an interpolation formula

if and only if it holds on Pm−1 (see [3, Ch. 6, Sect. 1, Theorem 1]).

Only such quadrature formulas will be considered below. We use the same indices for the coeffi-

cients of these quadrature formulas and for the corresponding nodes. To construct an interpolation

quadrature formula, it is sufficient to know its nodes (or, equivalently, its generating polynomial),

because, by (2.3), the coefficients are recovered from the nodes uniquely. That is why we will

sometimes talk only about the nodes of such quadrature formula or about its generating polynomial.

It is known that, choosing the nodes in a special way, one can gain an increase in the degree

of the space of polynomials where the quadrature formula (2.2) remains valid (and the coefficients

of this formula are calculated by (2.3)). The maximum degree of the space of polynomials where a

quadrature formula of form (2.2) is valid is called the degree of precision of this quadrature formula.

It is also known that there exist m-point interpolation quadrature formulas of form (2.2) with

positive coefficients λk > 0, k = 1, 2 . . . ,m. Such quadrature formulas are called positive. An

important example of a positive m-point quadrature formula is a Gauss quadrature formula, whose

generating polynomial coincides with the polynomial pm(x) = pm(x, dμ) of degree m orthogonal

to Pm−1 with weight dμ, i.e., orthogonal to Pm−1 with respect to the inner product 〈f, g〉 =∫ 1

−1
f(x)g(x) dμ(x). The Gauss quadrature formula

1∫

−1

p(x)dμ(x) =
m∑
j=1

λ∗
jp(x

∗
j), −1 < x∗1 < · · · < x∗m < 1, p ∈ P2m−1, (2.4)

has the highest degree of precision 2m − 1, and all its nodes lie in the open interval (−1, 1). The

nodes and coefficients of a Gauss quadrature formula depend on m; to emphasize this dependence,

we will sometimes use the notation λ∗
m,j and x∗m,j instead of λ∗

j and x∗j .

In what follows, we will need m-point quadrature formulas with several fixed nodes and max-

imum degree of precision. Such formulas for algebraic polynomials have been investigated for a

long time starting with studies of R. Lobatto (1852), E.B. Christoffel (1858), and R.Radau (1880)

related to cases of fixed nodes located either at the end points of an interval of integration or outside

this interval.

Denote by u the subset of nodes of a quadrature formula consisting of fixed nodes. For our

purposes, it is sufficient to consider m-point quadrature formulas with maximum degree of precision

and one, two, or three fixed nodes. More exactly, u coincides with one of the sets {−1}, {1}, {−1, 1},
{θ}, {−1, θ}, {θ, 1}, or {−1, θ, 1}, where θ ∈ (−1, 1).

Let Qu
m denote an m-point quadrature formula with a fixed set of nodes u and maximum degree

of precision degQu
m = 2m− 1− |u|:

1∫

−1

p(x)dμ(x) =

m∑
j=1

λu
jp
(
xuj

)
, xu1 < xu2 < · · · < xum, p ∈ P2m−1−|u|; (2.5)
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here, |u| means the number of points contained in u. The nodes and coefficients of this formula

depend on m; to emphasize this dependence, we will sometimes use the notation λu
m,j and xum,j

instead of λu
j and xuj . Since m ≥ |u|, we have degQu

m = 2m − 1 − |u| ≥ m− 1. Hence, (2.5) is an

interpolation formula. In the cases u = {−1} and u = {1}, formula (2.5) is a left and right Radau

quadrature formula, respectively; if u = {−1, 1}, (2.5) is a Lobatto quadrature formula. Such

formulas are also called Markov quadrature formulas; it is known that they are positive. Define

ω{−1}(x) = 1 + x, ω{1}(x) = 1− x, ω{−1,1}(x) = (1 + x)(1− x). (2.6)

Consider the polynomials

w{−1}
m (x) = ω{−1}(x)pm−1

(
x, ω{−1}dμ

)
, w{1}

m (x) = −ω{1}(x)pm−1

(
x, ω{1}dμ

)
, (2.7)

w{−1,1}
m (x) = −ω{−1,1}(x)pm−2

(
x, ω{−1,1}dμ

)
, (2.8)

where pk(x, dσ) is the monic orthogonal polynomial of degree k with weight dσ.

Polynomials (2.7) are generating polynomials of left and right Radau quadrature formulas, re-

spectively, and polynomial (2.8) is the generating polynomial of a Lobatto quadrature formula. The

roots of these polynomials and of the generating polynomial of the Gauss quadrature formula (2.4)

satisfy the inequalities (see [10, (3)–(6)])

x
{−1}
m,j < x∗m,j < x

{1}
m,j, j = 1, 2, . . . ,m; x∗m−1,j < x

{−1}
m,j+1 < x

{−1,1}
m,j+1 , j = 1, 2, . . . ,m− 1;

x
{−1,1}
m,j < x

{1}
m,j < x∗m−1,j, j = 1, 2, . . . ,m−1; x

{1}
m−1,j < x

{−1,1}
m,j+1 < x

{−1}
m−1,j+1, j = 1, 2, . . . ,m−2.

In what follows, we will need the main result of [10]. To formulate this result, introduce the sets

G∗
m =

m⋃
j=1

(
x
{−1}
m,j , x

{1}
m,j

)
\
{
x∗m,j

}
, m ≥ 1;

G{−1}
m =

m−1⋃
j=1

(
x∗m−1,j , x

{−1,1}
m,j+1

)
\
{
x
{−1}
m,j+1

}
, G{1}

m =
m−1⋃
j=1

(
x
{−1,1}
m,j , x∗m−1,j

)
\
{
x
{1}
m,j

}
, m ≥ 2;

G{−1,1}
m =

m−2⋃
j=1

(
x
{1}
m−1,j , x

{−1}
m−1,j+1

)
\
{
x
{−1,1}
m,j+1

}
, m ≥ 3.

Note (see [10, Sect. 1]) that

G
{1}
m

⋃
G

{−1}
m−1 = G∗

m−1

⋃
G

{−1,1}
m = [−1, 1]. (2.9)

To a set Gm ∈ {G{−1}
m ,G

{1}
m ,G

{−1,1}
m }, we assign the polynomial ω(x) = ω(x,Gm) coinciding

with the corresponding polynomial from (2.6), and to the set G∗
m, we assign the polynomial ω(x) =

ω(x,G∗
m) ≡ 1. For a pair (Gm, θ), where Gm ∈ {G∗

m,G
{−1}
m ,G

{1}
m ,G

{−1,1}
m }, θ ∈ Gm, we define

W {θ}
m (x,Gm) = ω(x)

(
pν(x, ω dμ)− pν(θ, ω dμ)

pν−1(θ, ω dμ)
pν−1(x, ω dμ)

)
, (2.10)

where ω(x) = ω(x,Gm) and ν = m− degω.

Following [10, Sect. 1], we call an m-point quadrature formula a quasi Gauss quadrature formula

if it has one fixed node θ ∈ (−1, 1)\{x∗m,j}mj=1 and the highest degree of precision (equal to 2m−2).
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Similarly, we definem-point quasi left and right Radau quadrature formulas of the highest degree of

precision (equal to 2m− 3) and an m-point quasi Lobatto quadrature formula of the highest degree

of precision (equal to 2m− 4); i.e., in addition to the fixed nodes of the corresponding formulas,

we consider one more fixed node θ ∈ (−1, 1) different from the nodes of the corresponding classical

m-point formula. Let us formulate the main result of [10] using the introduced terms.

Theorem A [10, Theorem 1.1]. There exist a positive quasi Gauss quadrature formula, quasi

left and right Radau formulas, and a quasi Lobatto formula with fixed node θ ∈ (−1, 1) if and only

if θ belongs to the set G∗
m; m ≥ 1, G

{−1}
m ; m ≥ 2, G

{1}
m ; m ≥ 2, and G

{−1,1}
m ; m ≥ 3, respectively.

The generating polynomials for these quasi quadrature formulas are given by equality (2.10), in

which Gm coincides with G∗
m, G

{−1}
m , G

{1}
m , and G

{−1,1}
m , respectively. Consequently, these quasi

quadrature formulas are unique.

Positive quadrature formulas are used (see Theorem B) for the lower estimation of values (2.1) of

the best one-sided (weighted integral) approximation to a bounded function f ∈ L by polynomials.

In the present paper, as an approximated function, we consider the characteristic function

1J(x) =

{
1, x ∈ J,

0, x ∈ [−1, 1] \ J,

of a subset J ⊂ [−1, 1]. In the case J = (a, 1], for the upper estimation of the values of the

best one-sided approximation to the function 1(a,1], we use Hermite interpolation polynomials that

interpolate the function 1(a,1] at nodes of positive quadrature formulas.

Consider conditions under which polynomials interpolate the function 1(a,1] on [−1, 1]. Let

s, r ∈ {0, 1}, �, k ∈ Z+ = {0, 1, 2, . . .}, s+ � ≥ 1.

To an ordered quadruple (s, �, k, r), we assign a type T (s, �, k, r) of conditions under which a

polynomial p of minimum degree interpolates the function 1(a,1]. This type characterizes the

arrangement and multiplicity of interpolation nodes.

Let us describe the values of the parameters s, �, k, and r. If s = 0, then −1 is not an

interpolation node; if s = 1, then −1 is an interpolation node, i.e., p(−1) = 0. The number �

is the number of interpolation nodes x1 < x2 < · · · < x� located in the interval (−1, a), and

each of them has double multiplicity: p(xj) = 0, p′(xj) = 0, j = 1, 2, . . . , �; the point x�+1 = a

always is a (simple) interpolation node, i.e., p(a) = 0; if � = 0, then there is no interpolation node

in (−1, a). The number k is the number of interpolation nodes x�+2 < x�+3 < · · · < x�+k+1

located in the interval (a, 1), and each of them has double multiplicity: p(xj) = 1, p′(xj) = 0, j =

�+ 2, �+ 3, . . . , �+ k + 1; if k = 0, then there are no interpolation nodes in (a, 1). If r = 0, then 1

is not an interpolation node; if r = 1, then 1 is an interpolation node: p(1) = 1.

A polynomial p (of minimum degree) implementing a type T (s, �, k, r) of the Hermite in-

terpolation conditions for the function 1(a,1] will be called a polynomial of type T (s, �, k, r) for

brevity. The degree of this polynomial is the number of interpolation conditions minus one; i.e.,

deg p = s+ r + 2(�+ k). It is known (see [2, Ch. 2, Sect. 11]) that, under more general conditions,

there exists a unique Hermite interpolation polynomial (of minimum degree).

To find the value of the best one-sided approximation to the function 1(a,1] by polynomials of

given degree and to construct the corresponding extremal polynomial, we will need the following

lemma, which, for a polynomial p of type T (0, �, k, 0), is the result of Markov and Stieltjes mentioned

at the beginning of the Introduction.
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Lemma. Assume that s, r ∈ {0, 1}, �, k ∈ Z+, s+ � ≥ 1, a ∈ (−1, 1), and p is an interpolation

polynomial (of minimum degree) implementing the type T (s, �, k, r) of interpolation conditions for

the function 1(a,1]. Then, p(x) ≤ 1(a,1](x) for all x ∈ [−1, 1].

Proof. The proof follows from [1, Lemma 1] after the cosine change. �
Theorem B (Bojanic, DeVore [7]). Assume that the positive quadrature formula

1∫

−1

p(x) dμ(x) =

m∑
k=1

λkp(xk), −1 ≤ x1 < x2 < · · · < xm ≤ 1, (2.11)

holds on Pn. Then, for every bounded function f ∈ L, we have the inequalities

E−
n (f) ≥

1∫

−1

f(x) dμ(x)−
m∑

k=1

λkf(xk); E+
n (f) ≥

m∑
k=1

λkf(xk)−
1∫

−1

f(x) dμ(x). (2.12)

Substituting the characteristic function of a subset J ⊂ [−1, 1] into (2.12), we arrive at the

following statement.

Proposition 1. For f = 1J , where J ⊂ [−1, 1], we have E−
n (1J) ≥

∫
J
dμ(x) −

∑
λk and

E+
n (1J ) ≥

∑
λk −

∫
J
dμ(x), where the sums are taken over indices k such that xk ∈ J . If, in

addition, J does not contain any nodes of quadrature formula (2.11), then E−
n (1J ) =

∫
J
dμ(x) and

p ≡ 0 is a polynomial of the best approximation from below. In particular, this statement holds in

the case when J is an open interval (a, b) ⊂ [−1, 1] under the condition xk ≤ a < b ≤ xk+1, where

xk and xk+1 are arbitrary neighboring nodes of quadrature formula (2.11). If the right end point of

the interval [−1, 1] is not a node of quadrature formula (2.11), then we can take a half-open interval

(a, 1], where a is not less than the maximum node of quadrature formula (2.11), as the set J .

It is not hard to understand that, if a polynomial p− ∈ Pn implements the infimum in the

problem on calculating the value E−
n (1J), then the polynomial p+ = 1 − p− implements the

infimum in the problem on calculating E+
n (1[−1,1]\J ). Moreover, E+

n (1[−1,1]\J) = E−
m(1J). In view

of this fact, in what follows, we will consider only the problem of the one-sided approximation to

the characteristic function of a subset J of the interval [−1, 1] from below.

3. APPROXIMATION TO THE CHARACTERISTIC FUNCTION OF A HALF-OPEN

INTERVAL FROM BELOW. AN EXAMPLE IN THE CASE OF AN OPEN INTERVAL

Let us pass to a more detailed study of the problem of approximation of the characteristic

function 1(a,1] of a half-open interval (a, 1] ⊂ [−1, 1] from below.

Proposition 2. For any m ∈ N, the following relations hold :

E−
n (1(a,1]) =

∫

(a,1]

dμ(x) for

⎧⎨
⎩

n = 2m− 1, x∗m,m ≤ a < 1;

n = 2m− 2, x
{−1}
m,m ≤ a < 1,

and p ≡ 0 is a polynomial of the best approximation to the function 1(a,1] from below.
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Proof. To prove this statement, it is sufficient to use Proposition 1, taking into account the

positivity of the m-point Gauss quadrature formulas (2.4) and of a left Radau formula (see (2.5)).

Theorem 1. Assume that m ∈ N, m ≥ 2, and the number a coincides with some of the nodes

of the m-point Gauss quadrature formula (2.4) different from the maximum node, i.e., a = x∗v,m,

where v ∈ {1, 2, . . . ,m− 1}. Then, E−
2m−1(1(a,1]) =

∫
(a,1]

dμ(x)−
∑m

j=v+1
λ∗
m,j , and a polynomial

of the best approximation from below is a polynomial p of type T (0, �, k, 0) and degree 2m − 2

that interpolates the function 1(a,1] at the nodes of Gauss quadrature formula (2.4). In addition,

E−
2m−2(1(a,1]) = E−

2m−1(1(a,1]).

Proof. It follows from the Markov–Stieltjes result (see [5, Ch. 1, Sect. 1.2, Lemma 9′]) that

p ≤ 1(a,1]. This polynomial provides an upper bound for the required value E−
2m−1(1(a,1]). The

same lower bound follows from Proposition 1. The last assertion of the theorem is valid since the

degree of extremal polynomial is 2m− 2. �
Theorem 2. Assume that m ∈ N, m ≥ 3, and the number a coincides with some node of an

m-point left Radau quadrature formula (see (2.5)) different from the minimum and maximum nodes,

i.e., a = x
{−1}
v,m , where v ∈ {2, 3, . . . ,m− 1}. Then, E−

2m−2(1(a,1]) =

∫
(a,1]

dμ(x) −
∑m

j=v+1
λ
{−1}
m,j

and a polynomial of the best approximation from below is a polynomial p of type T (1, �, k, 0) and

degree 2(�+k)+1 = 2m−3 that interpolates the function 1(a,1] at the nodes of this Radau quadrature

formula. In addition, E−
2m−3(1(a,1]) = E−

2m−2(1(a,1]).

Proof. By the lemma, the polynomial p from the statement of the theorem is admissible; more

exactly, p ≤ 1(a,1] and p ∈ P2m−3 ⊂ P2m−2. Therefore, it provides the required upper bound for

E−
2m−2(1(a,1]). The same lower bound follows from Proposition 1, since an m-point left Radau

quadrature formula is positive and holds on P2m−2. The last assertion of the theorem is valid

since the degree of the extremal polynomial is 2m− 3. �
Applying similar arguments based on Proposition 1, the lemma, and the positivity of a right

Radau quadrature formula and a Lobatto quadrature formula, we find the values of the best

approximation to the function 1(a,1] from below in the case when the number a coincides with one

of the nodes of these formulas different from the end points of the interval [−1, 1]. Polynomials

of types T (0, �, k, 1) and T (1, �, k, 1) interpolating the function 1(a,1] at the nodes of the corre-

sponding formulas are extremal and their degrees are one less than the degrees of precision of the

corresponding quadrature formulas.

To solve the problem of the best approximation to the function 1(a,1] from below by polynomials

in the remaining cases of position of the point a, we must argue similarly based on the positivity

of the quasi-quadrature formulas from Theorem A and taking into account (2.9). The degree of

the extremal polynomials coincides with the degree of precision of the corresponding quasi-formula.

For example, in the case when the point θ belongs to the set G∗
m, the following theorem is valid,

which is similar to Theorem 1. Here, we denote by x∗,θj,m, j = 1, 2, . . . ,m, the roots of the generating

polynomialW
{θ}
m (x,G∗

m) (see (2.10)) of anm-point Gauss quadrature formula; λ∗,θ
j,m, j = 1, 2, . . . ,m,

are the coefficients of this quadrature formula.

Theorem 3. Assume that m ∈ N, m ≥ 2, θ ∈ G∗
m, the number a coincides with some

root of the generating polynomial W
{θ}
m (x,G∗

m) of an m-point quasi Gauss quadrature formula,

and the number a is not its maximum root, i.e., a = x∗,θv,m, where v ∈ {1, 2, . . . ,m− 1}. Then,
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E−
2m−2(1(a,1]) =

∫
(a,1]

dμ(x) −
∑m

j=v+1
λ∗,θ
m,j. A polynomial of the best approximation from below

is a polynomial p of type T (0, �, k, 0) and degree 2m− 2 that interpolates the function 1(a,1] at the

nodes of this quasi-formula.

In conclusion, we give an example showing an essential difference between the problems of appro-

ximation from below to the characteristic functions of an open interval and a half-open interval.

Example. Consider a three-point Gauss quadrature formula on [−1, 1] with the weight

dμ(x) = dx. The degree of precision of this formula is five and the points x1 = −
√

3/5, x2 = 0, and

x3 =
√

3/5 are its nodes. Define b = 2/5, A = −5(5b +
√
15)/(9b2), and c = −

√
15 b/(5b +

√
15).

A simple verification shows that the fifth-degree polynomial p(x) = A(x−x1)(x−b)(x+x1)
2(x−c)

interpolates the function 1(x1,b) as follows: p(x1) = p(b) = p(x3) = 0, p(x2) = 1, and p′(x2) =

p′(x3) = 0. It is easy to see that, in fact, this polynomial is positive on [−1, x1); consequently, its

graph does not lie below the graph of the characteristic function 1(x1,b) on this half-open interval.
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