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Abstract—A finite element with new properties of approximation of higher derivatives is
constructed, and a method for the construction of a finite element space in the planar case is
proposed. The method is based on Yu.N. Subbotin’s earlier results as well as on the results
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INTRODUCTION

Let Ω ⊂ R
2 be a polygonal domain, and let a function f be defined on Ω and belong to the

class W n+1M ; i.e., f is continuous on Ω together with all its partial derivatives up to order n+ 1,

and all its derivatives of order n + 1 are bounded in absolute value by the constant M . Let Ω be

triangulated, and let Δ be an arbitrary triangle from the triangulation. We consider the problem

of interpolation of f on Δ by a polynomial of degree at most n for n ≥ 3. Denote by ai (i = 1, 2, 3)

the vertices of Δ; let τij (i, j = 1, 2, 3, i �= j) be the unit vector directed from ai to aj ; let nij

(i, j = 1, 2, 3, i �= j) be the unit normal vector to the side [ai, aj ]; let α, β, and θ be the angles at

the vertices a1, a2, and a3, respectively; and let H be the diameter of Δ. Let α ≤ β ≤ θ. Then,

H = ‖a2 − a1‖. Denote by Ds
ξ1...ξs

the derivative of order s along arbitrary unit vectors ξ1, . . . , ξs.

For values ϕ1 and ϕ2, each of which, in general, may depend on the function f , the geometric

characteristics H,α, β, and θ of the triangle Δ introduced above, and the point u ∈ Δ, we will write

ϕ1

(�)

� ϕ2 if ϕ1

(≥)

≤ C(n)ϕ2 for some number C(n) > 0, which can depend only on the degree n of

the interpolation polynomial.

Let Pn be the set of polynomials of total degree at most n (i.e., the sum of degrees of the

monomials does not exceed n) such that all coefficients of any polynomial P ∈ Pn are uniquely

defined by the fact that it interpolates the values of the function f and, possibly, values of some of

its derivatives at specified points of the triangle Δ. It is known that, for a sufficiently wide set Pn

and any unit vectors ξ1, . . . , ξs, the following estimates hold (Ciarlet and Raviart [1]):

‖Ds
ξ1...ξs(f − P )‖C(Δ) � MHn+1−ssin−s α, 0 ≤ s ≤ n, (0.1)
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where P ∈ Pn and ‖ · ‖C(Δ) is the uniform norm on Δ.

Let us introduce the set of multi-indices I = {(i, j, k)| i, j, k ∈ Z+; i+ j + k = n} and consider

the following set of points of the triangle Δ:

Q = {uijk}(i,j,k)∈I = {uijk| uijk = (i/n)a1 + (j/n)a2 + (k/n)a3, (i, j, k) ∈ I} .

Consider a polynomial P̃ ∈ Pn such that

∀u ∈ Q P̃ (u) = f(u). (0.2)

Subbotin proved in [2, 3] that, for any unit vectors ξ1, . . . , ξs, the following estimates hold:

‖Ds
ξ1...ξs(f − P̃ )‖C(Δ) � MHn+1−ssin−s θ, 0 ≤ s ≤ n. (0.3)

Note that, in [1, 3], estimates of type (0.1) and (0.3) were obtained not only in the planar case

but also in multidimensional cases (in particular, when Δ is an m-simplex); however, we turn our

attention to the case of a triangle. An advantage of (0.3) over (0.1) is that the use of estimates (0.1)

requires imposing the “minimum angle condition” on the triangulation, which is a lower bound on

the values of the minimum angles of the triangles, whereas estimates (0.3) enable us to consider a

weaker condition of the separability of the maximum angles of the triangles from π. In the present

paper, we propose to keep the conditions from (0.2) imposed at the points belonging to the sides

of Δ and replace the remaining conditions by the interpolation of higher derivatives at the point a2.

Consider the set I0 = {(i, j, k) ∈ I| ijk = 0} and the corresponding subset Q0 ⊂ Q (of points

from Q belonging to the sides of the triangle):

Q0 = {uijk}(i,j,k)∈I0 = {uijk| uijk = (i/n)a1 + (j/n)a2 + (k/n)a3, (i, j, k) ∈ I0} .

Let the polynomial P be defined by the following conditions:

P (u) = f(u), u ∈ Q0; (0.4)

∂i+jP (a2)

∂τ i12∂n
j
12

=
∂i+jf(a2)

∂τ i12∂n
j
12

, j = 3, n, i = 0, n − j. (0.5)

Denote by Pn[Q0] the set of all polynomials of degree at most n satisfying condition (0.4). It is

clear that P, P̃ ∈ Pn[Q0] ⊂ Pn.

Let us introduce a rectangular coordinate system Oxy such that the coordinates of the vertices

of Δ have the form a1 = (a + b, 0), a2 = (0, 0), and a3 = (a, h) for some positive a, b, and h (see

Fig. 1). Since α ≤ β ≤ θ, we have a ≤ b and H = a + b (it is also obvious that a, b, and h are

some functions of H, α, β, and θ, which must be taken into account when one uses the relations

“�” and “�”). In this case, conditions (0.5) take the form

∂i+jP (a2)

∂xi∂yj
=

∂i+jf(a2)

∂xi∂yj
, j = 3, n, i = 0, n − j.

Our aim is to prove the four theorems formulated below. In addition, in the last section, we

describe a method for constructing a finite element space with new approximation properties. This

space is constructed on the basis of Yu.N. Subbotin’s results as well as on the results obtained in

the present paper.
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a1 = (b+ a, 0)a2 = (0, 0)

a3 = (a, h)

αβ

θ

x

y

Fig. 1. The position of the triangle Δ in the coordinate system Oxy.

Theorem 1. Let, for f ∈ W n+1M , the polynomial P ∈ Pn be defined by interpolation

conditions (0.4) and (0.5). Then, for any β0 < π/2, any triangle Δ satisfying the condition β ≤ β0,

and any nonnegative integer s such that 0 ≤ s ≤ n, the following estimate is valid :∥∥∥∂s−j(f − P )

∂xs−j∂yj

∥∥∥
C(Δ)

≤
{

C(n, β0)MHn+1−s sin−j θ, j = 0,min{2, s},
C(n, β0)MHn+1−s, j = 3, . . . , s,

(0.6)

where C(n, β0) is a nonnegative value depending only on n and β0.

Theorem 2. Let, for f ∈ W n+1M , the polynomial P ∈ Pn be defined by interpolation

conditions (0.4) and (0.5). Then, for any β0 < π/2, any triangle Δ satisfying the condition β ≤ β0,

any s = 0, . . . , n, and arbitrary unit vectors ξ1, . . . , ξs, the following estimate is valid :

∥∥Ds
ξ1...ξs(f − P )

∥∥
C(Δ)

≤
{

C(n, β0)MHn+1−s sin−s θ, s = 0, 1, 2,

C(n, β0)MHn+1−s sin−2 θ, s = 3, . . . , n,
(0.7)

where C(n, β0) is a nonnegative value depending only on n and β0.

Instead of conditions (0.5), we can use similar conditions for the maximum angle:

∂i+jP (a3)

∂τ i31∂n
j
31

=
∂i+jf(a2)

∂τ i31∂n
j
31

, j = 3, n, i = 0, n − j. (0.8)

In this case, we have the following theorems.

Theorem 3. Let, for f ∈ W n+1M , the polynomial P ∈ Pn be defined by interpolation

conditions (0.4) and (0.8). Then, for any θ0 such that |cos θ0| > 0, any triangle Δ satisfying

the condition |cos θ| > |cos θ0|, and any nonnegative integer s such that 0 ≤ s ≤ n, we have∥∥∥∂s−j(f − P )

∂xs−j∂yj

∥∥∥
C(Δ)

≤
{

C(n, θ0)MHn+1−s sin−j θ, j = 0,min{2, s},
C(n, θ0)MHn+1−s, j = 3, . . . , s,

(0.9)

where C(n, θ0) is a nonnegative value depending only on n and θ0.

Theorem 4. Let, for f ∈ W n+1M , the polynomial P ∈ Pn be defined by interpolation

conditions (0.4) and (0.8). Then, for any θ0 such that |cos θ0| > 0, any triangle Δ satisfying

the condition |cos θ| > |cos θ0|, any s = 0, . . . , n, and arbitrary unit vectors ξ1, . . . , ξs, we have

∥∥Ds
ξ1...ξs(f − P )

∥∥
C(Δ)

≤
{

C(n, θ0)MHn+1−s sin−s θ, s = 0, 1, 2,

C(n, θ0)MHn+1−s sin−2 θ, s = 3, . . . , n,
(0.10)

where C(n, θ0) is a nonnegative value depending only on n and θ0.
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Remark 1. Theorems 2 and 4 are trivial corollaries of Theorems 1 and 3, respectively, and are

given here for the only reason that form (0.7) and (0.10) of writing estimates is more traditional in

comparison with (0.6) and (0.9).

Remark 2. Since sin θ � sin β � sin θ, we can write sinβ instead of sin θ in estimates (0.3),

(0.6), (0.7), (0.9), and (0.10), which has no affect on the accuracy of the estimates.

Remark 3. The question about the optimality of the found interpolation conditions and

estimates on the class W n+1M remains open. In [4], lower estimates for a function from W n+1M

were obtained for a wider class of finite elements providing a specified smoothness or continuity

of a resulting spline on the triangulation. In the case of continuity, the denominators of the lower

estimates contain the sine of the maximum (or middle) angle to the first power. The denominators of

the upper estimates obtained in the present paper for the approximation of higher order derivatives

can contain the squared sine of the maximum (or middle) angle, whereas the interpolation condition

under consideration provide the continuity of the spline on Ω.

Reviews related to the “maximum angle condition” in the finite elements method can be found,

for example, in [4, 5].

1. ON SUBBOTIN’S ESTIMATES IN MORE DETAIL

Along with estimates (0.3), the following fact for the polynomial P̃ was proved in [3, Lemma 4].

Under one of the conditions

ξk ∈ {τ21, τ23} for all k = 1, s; (1.1)

ξk ∈ {τ31, τ32} for all k = 1, s, (1.2)

the following relation holds for any s = 0, . . . , n:∥∥Ds
ξ1...ξs(f − P̃ )

∥∥
C(Δ)

� MHn+1−s. (1.3)

The method for choosing either condition (1.1) or (1.2) is given in [3]; however, it does not matter

for us. Let us show that this, in particular, means that, for i = 0, . . . , s and s = 0, . . . , n,

∥∥∥∂s(f − P̃ )

∂xs−i∂yi

∥∥∥
C(Δ)

� MHn+1−s sin−i β. (1.4)

Consider first the situation when (1.3) holds under condition (1.1). Let s ∈ {0, . . . , n}. For

i = 0, estimate (1.4) coincides with (1.3) for ξ1 = . . . = ξs = τ21. Now, let 1 ≤ j ≤ s, and let (1.4)

hold for i = 0, . . . , j−1. Then, we take ξ1 = . . . = ξs−j+1 = τ21 and ξs−j+1 = . . . = ξs = τ23 in (1.3)

and represent the sth derivative along τ21 and τ23 as the sum of partial derivatives

Ds
ξ1...ξs(f − P̃ ) =

j∑
k=0

Ck
j

∂s(f − P̃ )

∂xs−k∂yk
cosj−k β sink β,

which implies the estimate

∥∥∥∂s(f − P̃ )

∂xs−j∂yj
sinj β

∥∥∥
C(Δ)

=
∥∥∥Ds

ξ1...ξs(f − P̃ )−
j−1∑
k=0

Ck
j

∂s(f − P̃ )

∂xs−k∂yk
cosj−k β sink β

∥∥∥
C(Δ)
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Fig. 2. The position of the triangle Δ in the coordinate system Ox1y1.

�
∥∥Ds

ξ1...ξs(f − P̃ )
∥∥
C(Δ)

+

j−1∑
k=0

Ck
j

∥∥∥∂s(f − P̃ )

∂xs−k∂yk
cosj−k β sink β

∥∥∥
C(Δ)

� MHn+1−s +

j−1∑
k=0

Ck
j MHn+1−s sin−k β cosj−k β sink β � MHn+1−s;

i.e., (1.4) is proved.

In the situation when (1.3) holds under condition (1.2), we introduce an auxiliary coordinate

system Ox1y1 such that the point a3 coincides with the origin, the vector τ31 is codirectional with

the axis Ox1, and the triangle Δ is for definiteness in the upper half-plane (see Fig. 2). Then,

similarly to the considered case, we obtain the estimates

∥∥∥∂s(f − P̃ )

∂xs−i∂yi

∥∥∥
C(Δ)

� MHn+1−s sin−i θ � MHn+1−s sin−i β

for i = 0, . . . , s and s = 0, . . . , n. Since
∂

∂τ21
=

∂

∂x1
cosα− ∂

∂y1
sinα,

∂

∂τ23
= − ∂

∂x1
cos θ− ∂

∂y1
sin θ,

and sin β � sin θ � sin β, we can assert that (1.3) also holds under (1.1). Thus, we are in the

situation of the first case.

Remark 4. It is also easy to see that, if relation (1.3) holds under one of conditions (1.1)

or (1.2), then it holds under the other condition (we have shown that the validity of (1.3) under (1.2)

implies the validity of (1.3) under (1.1); the converse statement is proved similarly).

2. PROOFS OF THEOREMS 1 AND 2

Consider a polynomial R ∈ Pn. Define

e[R](x, y) = f(x, y)−R(x, y).

Using Taylor’s formula with the Cauchy integral remainder term, we obtain the expansion

∂se[R](x, y)

∂xs−j∂yj
=

n−s+j∑
i=j

1

(i− j)!
yi−j

n−s+j−i∑
k=0

∂s−j+i+ke[R](0, 0)

∂xs−j+k∂yi
xk

k!

+

n−s+j∑
i=j

1

(i− j)!
yi−j

x∫
0

(x− v)n−s+j−i

(n− s+ j − i)!

∂n+1e[R](v, 0)

∂vn+1−i∂yi
dv
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+

y∫
0

(y − t)n−s

(n− s)!

∂n+1f(x, t)

∂xs−j∂tn+1−s+j
dt, (x, y) ∈ Δ. (2.1)

To prove (0.6), it is sufficient to estimate for the polynomial R = P defined by conditions (0.4)

and (0.5) the value ∂se[P ](0, 0)/
(
∂xs−j∂yj

)
for 0 ≤ s ≤ n and 0 ≤ j ≤ s.

Lemma. Under the conditions of Theorem 1, there exists a nonnegative value K(n, β0)

depending only on n and β0 such that, for any s = 1, . . . , n, the following relations hold :∣∣∣∂se[P ](0, 0)

∂xs−j∂yj

∣∣∣ ≤ K(n, β0)MHn+1−s sin−j β if j = 0,min{2, s}, (2.2)

∂se[P ](0, 0)

∂xs−j∂yj
= 0 if s ≥ 3 and j = 3, . . . , s. (2.3)

Proof. Equalities (2.3) follow from (0.5). It remains to prove (2.2). Let an integer s be such

that 1 ≤ s ≤ n. Recall that a2 = (0, 0). Considering e[P ](x, 0) on the interval [a2, a1] and using

formulas for the estimate of the interpolation error in the scalar case (see, e.g., [6]), we obtain

∂se[P ](a2)

∂xs
= C1(s)

∂n+1f(ζs21)

∂xn+1
Hn+1−s, (2.4)

where C1(s) depends only on s and can be upper bounded by a value depending on n; ζs21 is a point

between a2 and a1. Thus, ∣∣∣∂se[P ](a2)

∂xs

∣∣∣ � MHn+1−s;

i.e., (2.2) is proved for j = 0 for any s = 1, . . . , n. If s ≥ 2, then, to estimate the remaining two

derivatives (for j = 1, 2), we write a system of equations by applying mathematical induction.

Assume that (2.2) is proved for s = r + 1, . . . , n, where r ∈ {2, . . . , n − 1}. Then, taking

into account (2.1), we can assert that formula (0.6) from Theorem 1 holds for all s = r + 1, . . . , n.

Consider an arbitrary s = r ∈ {2, . . . , n−1} (which corresponds to the induction step) or s = r = n

(the induction base). Since the induction step and the induction base are proved almost similarly,

we will consider these cases simultaneously, only sometimes focusing on the case s = r = n if

necessary. Consider the restriction of the function e[P ] to the interval [a2, a3]. On the one hand,

applying known results for estimates of interpolation errors in the scalar case, we obtain the equality

∂se[P ](a2)

∂τ s23
= C2(s)

∂n+1f(ζs23)

∂τn+1
23

(
a2 + h2

)(n+1−s)/2
, (2.5)

where C2(s) depends only on s and can be upper bounded by a value depending on n; ζs23 is a

point between a2 and a3. On the other hand, using equalities (2.3), we can represent the derivative

along τ23 as the sum of partial derivatives:

∂se[P ](a2)

∂τ s23
=

s∑
k=0

Ck
s

∂se[P ](a2)

∂xs−k∂yk
coss−k β sink β

=
∂se[P ](a2)

∂xs
coss β + s

∂se[P ](a2)

∂xs−1∂y
coss−1 β sin β +

s(s− 1)

2

∂se[P ](a2)

∂xs−2∂y2
coss−2 β sin2 β. (2.6)
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Combining (2.4)–(2.6), we come to the equality

s
∂se[P ](a2)

∂xs−1∂y
coss−1 β sin β +

s(s− 1)

2

∂se[P ](a2)

∂xs−2∂y2
coss−2 β sin2 β = m1(s), (2.7)

where

|m1(s)| =
∣∣∣C2(s)

∂n+1f(ζs23)

∂τn+1
23

(
a2 + h2

)(n+1−s)/2 − C1(s)
∂n+1f(ζs21)

∂xn+1
Hn+1−s coss β

∣∣∣
� M

(
a2 + h2

)(n+1−s)/2
+MHn+1−s coss β.

To obtain the second equation of the system, consider an arbitrary polynomial R ∈ Pn[Q0], i.e.,

a polynomial satisfying conditions (0.4). In particular, this can be P̃ or P . Consider the restriction

of the function ∂se[R]/ (∂τ s31) to the interval [a2, a3] and expand the value of this function at the

point a2 by Taylor’s formula at the point a3. As a result, we obtain the equality

∂se[R](a2)

∂τ s31
=

∂se[R](a3)

∂τ s31
+

n−s∑
k=1

(−1)k

k!

∂s+ke[R](a3)

∂τ s31∂τ
k
23

(
a2 + h2

)k/2
+

(−1)n+1−s

(n+ 1− s)!

∂n+1f (ηs23)

∂τ s31∂τ
n+1−s
23

(
a2 + h2

)(n+1−s)/2
(2.8)

(if s = n, the right-hand side of this equality contains only the first and the last terms; i.e., the

sum
∑0

k=1 is zero). On the other hand, we can represent the derivative along τ31 as the sum of

partial derivatives:

∂se[R](a2)

∂τ s31
=

s∑
k=0

Ck
s

∂se[R](a2)

∂xs−k∂yk
coss−k α(− sinα)k. (2.9)

From (2.8) and (2.9), we come to the equality

−s
∂se[R](a2)

∂xs−1∂y
coss−1 α sinα+

s(s− 1)

2

∂se[R](a2)

∂xs−2∂y2
coss−2 α sin2 α = μs

1[R] + μs
2[R], (2.10)

where

μs
1[R] =

n−s∑
k=1

(−1)k

k!

∂s+ke[R](a3)

∂τ s31∂τ
k
23

(
a2 + h2

)k/2
+

(−1)n+1−s

(n + 1− s)!

∂n+1f (ηs23)

∂τ s31∂τ
n+1−s
23

(
a2 + h2

)(n+1−s)/2

−
s∑

k=3

Ck
s

∂se[R](a2)

∂xs−k∂yk
coss−k α(− sinα)k, μs

2[R] =
∂se[R](a3)

∂τ s31
− ∂se[R](a2)

∂xs
coss α.

Note that μs
2[R] depends only on the interpolation conditions on the sides [a3, a1] and [a2, a1],

i.e., on a part of conditions (0.4). Thus, μs
2[R] = μs

2[P̃ ] = μs
2[P ]. Consequently, to estimate this

value, we can use Subbotin’s result (1.3), (1.4) and equality (2.10):

∣∣μs
2[R]

∣∣ = ∣∣μs
2[P̃ ]

∣∣ = ∣∣∣− s
∂se[P̃ ](a2)

∂xs−1∂y
coss−1 α sinα+

s(s− 1)

2

∂se[P̃ ](a2)

∂xs−2∂y2
coss−2 α sin2 α− μs

1[P̃ ]
∣∣∣

=
∣∣∣ s∑
k=1

Ck
s

∂se[P̃ ](a2)

∂xs−k∂yk
coss−k α(− sinα)k −

n−s∑
k=1

(−1)k

k!

∂s+ke[P̃ ](a3)

∂τ s31∂τ
k
23

(
a2 + h2

)k/2
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− (−1)n+1−s

(n+ 1− s)!

∂n+1f (ηs23)

∂τ s31∂τ
n+1−s
23

(
a2 + h2

)(n+1−s)/2
∣∣∣ �

s∑
k=1

Ck
sMHn+1−s cos

s−k α sink α

sink β

+

n−s∑
k=1

MHn+1−s−k
(
a2 + h2

)k/2
+M

(
a2 + h2

)(n+1−s)/2 � MHn−s
(
a2 + h2

)1/2
.

Substituting R = P into (2.10) and taking into account conditions (0.5), we obtain

−s
∂se[P ](a2)

∂xs−1∂y
coss−1 α sinα+

s(s− 1)

2

∂se[P ](a2)

∂xs−2∂y2
coss−2 α sin2 α = μs

1[P ] + μs
2[P ], (2.11)

where |μs
2[P ]| = |μs

2[R]| � MHn−s
(
a2 + h2

)1/2
,

μs
1[P ] =

n−s∑
k=1

(−1)k

k!

∂s+ke[P ](a3)

∂τ s31∂τ
k
23

(
a2 + h2

)k/2
+

(−1)n+1−s

(n+ 1− s)!

∂n+1f (ηs23)

∂τ s31∂τ
n+1−s
23

(
a2 + h2

)(n+1−s)/2

−
s∑

k=3

Ck
s

∂se[P ](a2)

∂xs−k∂yk
coss−k α(− sinα)k

=
n−s∑
k=1

(−1)k

k!

∂s+ke[P ](a3)

∂τ s31∂τ
k
23

(
a2 + h2

)k/2
+

(−1)n+1−s

(n+ 1− s)!

∂n+1f (ηs23)

∂τ s31∂τ
n+1−s
23

(
a2 + h2

)(n+1−s)/2
. (2.12)

If s = n, then the right-hand side of equality (2.12) consists of one term; in this case,

|μs
1[P ]|s=n| = |μn

1 [P ]| =
∣∣∣− ∂n+1f (ηn23)

∂τn31∂τ23

(
a2 + h2

)1/2 ∣∣∣ � M
(
a2 + h2

)1/2
.

If s = r ∈ {2, . . . , n − 1}, then the right-hand side of (2.12) also contains a sum over k. By the

induction assumption, Theorem 1 holds for all s = r + 1, . . . , n. Since

∣∣∣∂s+ke[P ](a3)

∂τ s31∂τ
k
23

∣∣∣ �
∣∣∣ ∂s+ke[P ](a3)

∂xs1+k1∂ys2+k2
coss1 α cosk1 β(− sinα)s2 sink2 β

∣∣∣,
where s1 + s2 = s and k1 + k2 = k, we obtain the estimate∣∣∣∣∂s+ke[P ](a3)

∂τ s31∂τ
k
23

∣∣∣∣ � MHn+1−s−k.

Thus, |μs
1[P ]| � MHn−s

(
a2 + h2

)1/2
.

Combining (2.7) and (2.11), we obtain the system of equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s
∂se[P ](a2)

∂xs−1∂y
coss−1 β sinβ +

s(s− 1)

2

∂se[P ](a2)

∂xs−2∂y2
coss−2 β sin2 β = m1(s),

−s
∂se[P ](a2)

∂xs−1∂y
coss−1 α sinα+

s(s− 1)

2

∂se[P ](a2)

∂xs−2∂y2
coss−2 α sin2 α = m2(s),

|m1(s)| � M
(
a2 + h2

)(n+1−s)/2
+MHn+1−s coss β,

|m2(s)| = |μs
1[P ] + μs

2[P ]| � MHn−s
(
a2 + h2

)1/2
.
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To solve this system, we use Cramer’s rule. Denote by A the main matrix of the system and

calculate its determinant:

detA =
s2(s− 1)

2
coss−2 β sinβ coss−2 α sinα

∣∣∣∣ cos β sin β

− cosα sinα

∣∣∣∣
=

s2(s− 1)

2
coss−2 β sin β coss−2 α sinα sin(α+ β).

Then, taking into account that cosα � 1, sin β = h/
(
a2 + h2

)1/2
, h/H � sinα = h/b � h/H, and

sin β � sin(α+ β) = sin θ � sinβ, we obtain∣∣∣∣∂se[P ](a2)

∂xs−1∂y

∣∣∣∣ � |m1(s)| coss−2 α sin2 α+ |m2(s)| coss−2 β sin2 β

coss−2 β sin β coss−2 α sinα sin(α+ β)

=
|m1(s)| sinα

coss−2 β sin β sin(α+ β)
+

|m2(s)| sin β
coss−2 α sinα sin(α+ β)

� |m1(s)| sinα
coss−2 β sin2 β

+
|m2(s)|

coss−2 α sinα

�
M

(
a2 + h2

)(n+1−s)/2
sinα

coss−2 β sin2 β
+

MHn+1−s coss β sinα

coss−2 β sin2 β
+

MHn−s
(
a2 + h2

)1/2
coss−2 α sinα

� MHn+1−s

(
a2 + h2

)(n+1−s)/2

Hn+1−s

sinα

coss−2 β sin2 β
+

MHn+1−s

sin β
cos2 β

sinα

sin β
+

MHn−s
(
a2 + h2

)1/2
sinα

� MHn+1−s
(sinα
sin β

)n+1−s sinα

coss−2 β sin2 β
+

MHn+1−s

sin β
+

MHn+1−s
(
a2 + h2

)1/2
h

� MHn+1−s sinα

sin β

sinα

coss−2 β sin2 β
+

MHn+1−s

sin β
+

MHn+1−s

sinβ

� MHn+1−s

coss−2 β sin β

sin2 α

sin2 β
+

MHn+1−s

sin β
. (2.13)

Since sinα ≤ sin(2β) (which follows from the fact that sinα− sin(2β) = sin(θ+ β)− sin(2β) =

2 sin ((θ − β)/2) cos((θ+β)/2+β) = 2 sin((θ−β)/2) cos((π−α)/2+β) = −2 sin((θ−β)/2) sin(β−
α/2) ≤ 0) and β ≤ β0, we conclude that (2.13) leads to the estimate

∣∣∣∂se[P ](a2)

∂xs−1∂y

∣∣∣ � MHn+1−s

coss−4 β sin β

sin2 α

sin2(2β)
+

MHn+1−s

sin β
� MHn+1−s

cosn−4 β sin β

≤
( 1

cos β0

)n−4MHn+1−s

sin β
. (2.14)

The remaining derivative is estimated similarly:

∣∣∣∂se[P ](a2)

∂xs−2∂y2

∣∣∣ � |m1(s)| coss−1 α sinα+ |m2(s)| coss−1 β sin β

coss−2 β sin β coss−2 α sinα sin(α+ β)

=
|m1(s)| cosα

coss−2 β sin β sin(α+ β)
+

|m2(s)| cos β
coss−2 α sinα sin(α+ β)

� |m1(s)|
coss−2 β sin2 β

+
|m2(s)| cos β
sinα sinβ

�
M

(
a2 + h2

)(n+1−s)/2

coss−2 β sin2 β
+

MHn+1−s coss β

coss−2 β sin2 β
+

MHn−s
(
a2 + h2

)1/2
cos β

sinα sin β
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� MHn+1−s
(sinα
sin β

)n+1−s 1

coss−2 β sin2 β
+MHn+1−s cos

2 β

sin2 β
+MHn+1−s sinα

sin β

cosβ

sinα sin β

� MHn+1−s

coss−2 β sin2 β

sinα

sin β
+

MHn+1−s

sin2 β
+

MHn+1−s

sin2 β
. (2.15)

Finally, since sinα ≤ sin(2β) and β ≤ β0, inequality (2.15) gives the estimate∣∣∣∂se[P ](a2)

∂xs−2∂y2

∣∣∣ � MHn+1−s

coss−3 β sin2 β

sinα

sin(2β)
+

MHn+1−s

sin2 β
�

( 1

cos β0

)n−3MHn+1−s

sin2 β
. (2.16)

To complete the proof of the lemma, it remains to prove (2.2) for s = 1.

In the case s = 1, there is no need to consider a system of equations. It is sufficient to

consider the restriction of the function e[P ] to the side [a2, a3] and use estimates for the error of

approximation of the derivative of the function by the derivative of the interpolation polynomial,

on the one hand, and the representation of a directional derivative as the sum of partial derivatives,

on the other hand. Thus,

∂e[P ](a2)

∂τ23
= C2(1)

∂n+1f(ζ123)

∂τn+1
23

(
a2 + h2

)n/2
=

∂e[P ](a2)

∂x
cos β +

∂e[P ](a2)

∂y
sin β,

where C2(1) can be upper bounded by a value depending on n and ζ123 is a point between a2 and a3.

Further, taking into account that (2.2) has been proved for all s for j = 0, we obtain∣∣∣∂e[P ](a2)

∂y

∣∣∣ � MHn

sin β
.

The lemma is proved. �
To complete the proof of Theorem 1, we apply expansion (2.1) and the lemma.

Theorem 2 is a trivial corollary of Theorem 1 and follows from the representation of a derivative

of any order along any direction as the sum of partial derivatives of the same order with coefficients

whose absolute values can be upper bounded by values depending only on n.

Corollary. If n = 3, then the constraint on the angle β and the dependence of the value

C(n, β0) on β0 can be eliminated from the statements of Theorems 1 and 2.

Proof. The proof follows from (2.14), (2.16), and (2.1).

3. PROOF OF THEOREMS 3 AND 4

Theorem 3 is proved similarly to Theorem 1. We introduce a rectangular coordinate system

Ox1y1 such that the point a3 coincides with the origin, the point a1 belongs to the axis Ox1, and the

point a2 is in the upper half-plane (see Fig. 2). Replacing the angle β by θ and the variables x and y

by x1 and y1, respectively, we repeat almost completely the proof of the lemma. The exception

is that estimates of form (2.14) and (2.16) are not proved. The proof ends at the estimates of

form (2.13) and (2.15), which imply the following inequalities for any s = 2, . . . , n:∣∣∣∂se[P ](a3)

∂xs−1
1 ∂y1

∣∣∣ �
( 1

cos β0

)n−2MH

sin β
,

∣∣∣∂se[P ](a2)

∂xs−2
1 ∂y21

∣∣∣ �
( 1

cos β0

)n−2 MH

sin2 β
.

The remaining part of the proof of the lemma is the same. �
Theorem 4 is a corollary of Theorem 3.
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4. CONSTRUCTION OF A FINITE ELEMENT SPACE

Let Δ be an arbitrary triangle from the triangulation of the domain Ω, and let β be the middle

angle of this triangle. Obviously, 0 ≤ β ≤ π/2. Let us represent the interval [0, π/2] in the form of

the union of two intervals. For example, [0, π/2] = [0, π/3] ∪ [π/3, π/2].

If β < π/3, then, constructing a finite element, we take the polynomial P given by condi-

tions (0.4) and (0.5), for which estimates (0.6) and (0.7) hold. In particular, for any unit vectors

ξ1, . . . , ξs and 0 ≤ s ≤ n, we have∥∥Ds
ξ1...ξs(f − P )

∥∥
C(Δ)

� MHn+1−s(sin θ)−min{s,2}.

If β ≥ π/3, we take the polynomial P̃ given by conditions (0.2). In view of (0.3) and the

constraint on the angle β, for any unit vectors ξ1, . . . , ξs and 0 ≤ s ≤ n, we have∥∥Ds
ξ1...ξs(f − P̃ )

∥∥
C(Δ)

� MHn+1−ssin−s θ � MHn+1−ssin−s β � MHn+1−s.

Since the definitions of the polynomials P and P̃ involve condition (0.4), the resulting spline

on Ω is a continuous function.
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