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Abstract—We study the minimum weight k-size cycle cover problem (Min-k-SCCP), which
consists in partitioning a complete weighted digraph into k vertex-disjoint cycles of minimum
total weight. This problem is a generalization of the known traveling salesman problem and
a special case of the classical vehicle routing problem. It is known that Min-k-SCCP is
strongly NP-hard in the general case and preserves its intractability even in the geometric

statement. For Euclidean Min-k-SCCP in R
d with k = O(log n), we construct a polynomial-

time approximation scheme (PTAS), which generalizes the approach proposed earlier for planar
Min-2-SCCP. For each fixed c > 1 the scheme finds a (1 + 1/c)-approximate solution in time

O(nO(d)(logn)(O(
√
dc))d−1

).

Keywords: cycle cover of size k, traveling salesman problem, NP-hard problem, polynomial-
time approximation scheme.

DOI: 10.1134/S0081543816090133

INTRODUCTION

In the classical statement of the traveling salesman problem (TSP), it is required to find a

minimum weight Hamiltonian cycle in a given complete edge-weighted graph. TSP plays a special

role in combinatorial optimization and operations research and ranks among the typical NP-hard

problems [1].

In the 1970s, a number of results were obtained that were related to studying the computa-

tional complexity of problems arising in graph theory, mathematical programming, combinatorial

optimization, mathematical logic, and so on. Karp proved [2] the NP-completeness of a series of

problems, including the Hamiltonian cycle problem, by reducing to them the Boolean satisfiability

problem. The inapproximability of TSP in the classical statement was proved in [3].

The study of special cases of TSP seems to be important from the viewpoint of practical

applications. Two subclasses are of special interest: metric TSP and Euclidean TSP. These sub-

classes are characterized by a special form of input data: the input of metric TSP is an undirected

graph whose edge weights satisfy the triangle inequality, whereas in Euclidean TSP the vertices of

the graph are points in R
d and edge weights are defined as pairwise distances between them.

TSP is NP-hard even in the Euclidean statement [4]. That is why optimal solutions of metric

TSP and Euclidean TSP cannot be found in polynomial time unless P = NP. Efficient approx-

imation algorithms were developed for these subclasses. For metric TSP, a 2-approximation
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algorithm [5] and a 3/2-approximation algorithm (Christofides, [6]) are known. Nevertheless,

metric TSP has no polynomial-time approximation scheme (PTAS) unless P = NP [7], and the

estimation of the effective approximability threshold in this problem remains one of the important

open questions in the study of TSP. A PTAS for planar Euclidean TSP was developed by Mitchell

in [8]. Euclidean TSP in the space of arbitrary fixed dimension has an asymptotically optimal

algorithm [9] and a PTAS proposed by Arora in [10]. Note that Mitchell’s and Arora’s algorithms

were developed almost simultaneously, but Mitchell’s approach could not be generalized to the

case of Rd.

The object of study in the present paper is the minimum weight k-size cycle cover problem

(Min-k-SCCP) [11,12], which is natural generalization of TSP.

The input of Min-k-SCCP is a complete edge-weighted directed graph G = (V,E,w) on n

vertices and a weight function w : E → R given by a matrix W = (wij) (1 ≤ i, j ≤ n). It is

required to find k vertex-disjoint cycles {C1, . . . , Ck} of minimum total weight that collectively

visit all vertices of the graph. Min-k-SCCP is strongly NP-hard, and the metric and Euclidean

statements of this problem have a similar status of computational complexity [11]. An efficient

2-approximation algorithm for metric Min-k-SCCP was proposed in [13]; its approximation ratio is

asymptotically attainable. For planar Euclidean Min-k-SCCP with fixed parameter k = 2, a PTAS

that extends Arora’s approach [10] was constructed in [11].

In this paper, we consider Euclidean Min-k-SCCP. We assume that the graph G is undirected

and its edge weights coincide with the distances between the corresponding vertices, which are

points in R
d. We give a generalization of the PTAS constructed for planar Euclidean Min-2-SCCP

to the case of arbitrary fixed values of the parameter k and the dimension of the space.

1. ALGORITHM OF A POLYNOMIAL-TIME APPROXIMATION SCHEME

FOR EUCLIDEAN MIN-k-SCCP IN R
d

Definition 1. A polynomial-time approximate scheme (PTAS) for a combinatorial optimization

problem is a family of algorithms that contains for each fixed c > 1 an approximation algorithm

solving this problem with performance guarantee (1 + 1/c) in a time upper bounded by some

polynomial in the input size (the order and the coefficients of the polynomial may, in general,

depend on c).

The general scheme of the algorithm develops the approach proposed in [11] for planar Min-2-

SCCP and consists of five main stages.

1. The decomposition of the problem into m (m ≤ k) independent subproblems on the cycle

cover of a graph and the derivation of an upper bound for the sides of hypercubes enclosing the

vertices of the graphs that define these subproblems using a function that expresses the linear

dependence on the weight OPT of an optimal k-cycle cover.

2. The proof of the statement that, to an arbitrary instance of Euclidean Min-k-SCCP and any

value of the parameter c, one can assign in polynomial time a rounded instance so that an arbitrary

(1 + 1/c)-approximation algorithm for the rounded instance induces a (1 + c1/c)-approximation

algorithm for the original instance (for some independent value c1 > 1).

3. The construction of a recursive dissection of the hypercube enclosing the vertices of the

graph that defines the rounded instance of Euclidean Min-k-SCCP.

4. The proof of the theorem asserting that, with probability at least 1/2 within the chosen

probabilistic model, there exists a (1 + 1/c)-optimal family of paths of a special form; this family
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is called a cycle (m, r, k)-cover of the graph G. The notion of cycle (m, r, k)-cover of a graph was

introduced in [11].

5. The construction of a (1+1/c)-optimal cycle (m, r, k)-cover by means of the dynamic program-

ming method and the standard derandomization scheme.

Stages 1, 4, and 5 play the key role, whereas stage 2 is a simple corollary of the lemma from [11].

The method of implementing stage 3 coincides with the corresponding approach proposed in [10]

for the solution of Euclidean TSP in R
d.

2. A PTAS FOR EUCLIDEAN MIN-k-SCCP IN R
d

2.1. The decomposition of the Euclidean cycle cover problem. It is known that the

diameter D of a set and the radius R of the ball circumscribed about it in Euclidean space of

dimension d are related by Young’s inequality [14]

1

2
D ≤ R ≤

( d

2d+ 2

)1/2
D. (1)

We construct a minimum spanning forest with k trees (a k-MSF) T1, T2, . . . , Tk using a simple

modification [11] of the Bor̊uvka–Kruskal algorithm [5].

Introduce the notation:

Di is the diameter of the vertex set of a tree Ti, i ∈ Nk = {1, . . . , k};
D is the maximum value of Di (i ∈ Nk);

Ri is the radius of the sphere circumscribed about Ti;

R is the maximum value of Ri (i ∈ Nk).

Consider an auxiliary complete graph GT = (VT , ET ) in which the vertex set VT is the set of the

trees of a k-MSF and the edge weights are defined by the function ρ : VT × VT → R such that the

value ρ(Ti, Tj) is the distance between the centers of the spheres circumscribed about the trees Ti

and Tj for {i, j} ⊂ Nk.

We construct a partition of the vertex set of GT into m (m ≤ k) clusters by the nearest

neighbor method [15,16] with threshold value of the distance between clusters equal to (2k + 1)R;

the computational complexity of this procedure is O(k3). For each of the constructed clusters, we

combine the vertex sets of all the trees of this cluster and denote the resulting sets by Si; thus,

we obtain the clustering S1, S2, . . . , Sm of the vertices of the original graph G. The diameter of a

cluster is understood as the maximum distance between its vertices.

Assertion 1. Any path from an optimal k-cycle cover of a graph G passes through vertices

corresponding to only one of the clusters S1, S2, . . . , Sm. In addition, the diameters of the clusters

are upper bounded :

max
i∈Nm

DSi ≤
( d

2d+ 2

)1/2
(2k2 − k + 1)OPT. (2)

Proof. Assume by contradiction that one of the k paths of the minimum weight cycle cover

contains vertices from Si and from Sj , where {i, j} ⊂ Nm.

Denote this path by P . By the assumption, P contains at least two edges connecting vertices

from different clusters, and their total length is greater than 2(2k − 1)R.

The path P may contain vertices from different spheres (Fig. 1). Let {u, v} be an arbitrary

edge from P such that u ∈ Si and v ∈ Sj. Fixing the order of visiting the vertices of the path

P : u → ui1 → . . . → v, we construct a partition of P into fragments so that each sphere corresponds
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l1 = 1
p1 = 1

l2 = 1
p2 = 1

l3 = 0
p3 = 0l4 = 1

p4 = 1

l5 = 1
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Fig. 1. Vertices from different spheres alter-

nate in P , k = 5.

Fig. 2. A partition of P into fragments.

Fig. 3. The closure of a fragment of P and two cycles into one path (li = 2, pi = 1).

to the fragment of P between the first and the last vertices visited inside this sphere, and we remove

the edges of P that connect vertices from different fragments (Fig. 2).

To each sphere circumscribed about a tree Ti, we assign the number li (0 ≤ li ≤ k− 1) of cycles

and the number pi (0 ≤ pi ≤ 1) of fragments of the path P corresponding to this sphere (Fig. 2). If

a cycle connects vertices from several trees and intersects the corresponding circumscribed spheres,

then we assign it to only one of these spheres chosen arbitrarily. By construction, we have

k∑
i=1

li = k − 1 and 2 ≤
k∑

i=1

pi ≤ k. (3)

Let q be the number of spheres for which li + pi = 0. Consider two cases: q = 0 and q ≥ 1. In

the first case, we construct a k-cycle cover as follows. For the ith sphere, we combine into one cycle

the li closed paths and the fragment of P corresponding to this sphere by adding at most (li + pi)

new edges; note that the weight of each new edge does not exceed 2R (Fig. 3). We perform this
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transformation for each sphere, increasing the total weight of the cycle cover by at most

2R

k∑
i=1

(li + pi) ≤ 2(2k − 1)R

in view of relations (3), whereas the total weight of the removed edges exceeds this value. Thus,

under the assumption q = 0, we have proved the existence of a k-cycle cover of the graph G such

that its weight is strictly less than the weight of the original solution.

In the second case, q ≥ 1. Consequently, the (k − q) spheres for which li + pi > 0 correspond

to (k − 1) cycles and at lest two fragments of P . Note that one sphere cannot correspond to more

than one fragment of P . Then at least (q + 1) cycles are distributed among spheres that contain a

cycle or a fragment of P . We exclude from consideration q cycles so that the number of spheres for

which li + pi = 0 remain the same. Then (k − q) spheres contain (k − q − 1) cycles and fragments

of P . Therefore, we have the relations li + pi > 0, i = 1, . . . , k − q,

k−q∑
i=1

li = k − q − 1, and 2 ≤
k−q∑
i=1

pi ≤ k − q. (4)

For these (k − q) spheres, we implement a transformation similarly to the transformation in first

case. For each sphere we combine into one cycle the corresponding closed paths and a fragment

of P by adding at most (li + pi) new edges inside this sphere (Fig. 3). Thus, we construct a cycle

cover of size (k − q) increasing the weight of the cycle cover by at most

2R

k−q∑
i=1

(li + pi) ≤ 2(2k − 2q − 1)R

in view of (4). Adding to this cycle cover q cycles that were excluded earlier, we obtain a k-cycle

cover whose weight is also strictly less than the weight of the original cover.

Thus, we have proved the existence of a k-cycle cover whose weight is strictly less than the weight

of the original solution, which contradicts the assumption about the optimality of the latter.

Let us estimate the diameters of the obtained clusters. The diameter of a cluster in the space Rd

is greatest if the centers of the spheres circumscribed about the trees of the k-MSF that form this

cluster lie on the same straight line. Any cluster from a partition of the vertex set V of the graph G

contains at most k spheres; hence,

max
i∈Nm

DSi ≤ (k − 1)(2k + 1)R + 2R.

Applying inequality (1) and using the obvious two-sided bound D ≤ MSF ≤ OPT for the weight

of the minimum spanning forest {T1, T2, . . . , Tk}, we obtain

R ≤
( d

2d+ 2

)1/2
D ≤

( d

2d+ 2

)1/2
OPT.

Hence,

max
i∈Nm

DSi ≤
( d

2d+ 2

)1/2
(2k2 − k + 1)OPT.

The assertion is proved.
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Thus, if m = k, then Euclidean Min-k-SCCP is decomposed into k independent subproblems

equivalent to TSP. In particular, a PTAS for Euclidean Min-k-SCCP can be constructed as a

combination of PTASs for these subproblems.

However, if the number of the constructed clusters is strictly less than k, then it is necessary to

consider all possible variants of the distribution of k cycles among m clusters, solve in each case m

independent cycle cover subproblems, and choose an optimal solution. The number of such cases

coincides with the number of compositions of k of length m and equals the binomial coefficient of

(k − 1) and (m− 1) [17].

Let us consider a special case of Euclidean Min-k-SCCP in which m = 1, since this case is the

worst from the point of view of computational complexity.

2.2. A rounded instance. For completeness of presentation, we give a definition of a rounded

instance of Euclidean Min-k-SCCP introduced in [10,11].

Definition 2. A rounded instance of Euclidean Min-k-SCCP is an instance satisfying the

following constraints: all vertices of the graph have integer coordinates and the weight of any

edge eij is greater than or equal to 4.

To obtain a rounded instance of the problem, it is necessary and sufficient to perform the

following transformation.

1. Define

L =
( d

2d+ 2

)1/2
(2k2 − k + 1)MSF ≤

( d

2d+ 2

)1/2
(2k2 − k + 1)OPT

and construct a hypercube S with side L enclosing the vertices of the graph G. This construction

is possible since the original instance of Euclidean Min-k-SCCP satisfies inequality (2).

2. We construct inside S an orthogonal grid with distance L/8cn
√
d between its hyperplanes

and shift the vertices of the graph to the nearest nodes of the grid. Since the distance between any

two vertices will increase by at most L/4cn, the weight of the k-cycle will change by at most L/4c.

3. Change the distance between the hyperplanes of the grid multiplying all the coordinates

by 32cn
√
d/L. Then the minimum distance between the vertices will be 4, and the side of the

enclosing hypercube will be O(cn
√
d).

4. Let the origin coincide with a corner of S, and let the coordinate axes be directed so

that the edges of the hypercube belong to the axes and all vertices of the graph have nonnegative

coordinates.

The sufficiency of constructing a PTAS for rounded Euclidean Min-k-SCCP follows immediately

from the lemma proved in [11]. An equivalent formulation of this lemma is given below.

Lemma. Let a rounded instance of Euclidean Min-k-SCCP be obtained from an original

instance of Euclidean Min-k-SCCP by transformations that increase the weight of an arbitrary

k-cycle cover by at most O(OPT/c). Then a PTAS for rounded Euclidean Min-k-SCCP induces a

PTAS for general Euclidean Min-k-SCCP.

In what follows, we describe the construction of a PTAS for rounded Euclidean Min-k-SCCP.

2.3. A recursive dissection of the enclosing hypercube S. We construct a geometric

decomposition of the problem using the data structure of a 2d-tree, which is similar to the 4-tree

used in the planar case [10,11].

We take the side L of the enclosing hypercube S equal to the smallest appropriate power of two.

We organize the construction of a 2d-tree as follows. Let S be the root of the tree, and we dissect
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d = 2

m1 = 2

m = 2

d = 3

m1 = 2

m = 12

d = 4

m1 = 2

m = 56

Fig. 4. An example of constructing an orthogonal grid of portals for d = 2, 3, and 4.

each hypercube, including the root, into 2d equal child hypercubes. We repeat this procedure

recursively until we obtain hypercubes containing at most one vertex of the original problem. Let

us agree that S belongs to level 0, its 2d child hypercubes belong to level 1, and so on. Note that

the constructed tree contains O(2dn) leaves and O(logL) = O(log(cn
√
d)) levels. Thus, the number

of nodes of the 2d-tree can be estimated as O(2dn log(cn
√
d)).

Fix a value of the parameter m ∈ N and assign to each (d − 1)-dimensional face of a node an

orthogonal grid consisting of m+2d−1 portals. Note that, in contrast to the planar case, not every

positive integer is an admissible value of the parameter m.

Assertion 2. The distance between nearest portals on a face of a node of the ith level in a

2d-tree is O(L/2im1/(d−1)).

Proof. The construction of an orthogonal grid on a face of a d-dimensional cube involves

(m1 + 2)d−1 − 2d−1 portals, where m1 ∈ N is the number of portals on an edge of the hypercube

(see Fig. 4).

The side of a hypercube of the ith level is L/2i by construction, whence the distance between

neighboring portals on the face of this node is L/2i(m1 + 1).

Let us show that
L

2i(m1 + 1)
≤ 3

2

L

2im1/(d−1)
.

This inequality is equivalent to m1 +1 ≥ 2

3
((m1 +2)d−1 − 2d−1)1/(d−1). As d grows infinitely large,

the value of the expression ((m1+2)d−1−2d−1)1/(d−1) tends asymptotically from below to the value

m1 + 2; hence,

m1 + 1

((m1 + 2)d−1 − 2d−1)1/(d−1)
≥ m1 + 1

m1 + 2
≥ 2

3
.

Thus, in a hypercube of level i in a 2d-tree, the distance between nearest portals can be estimated

as O(L/2im1/(d−1)).

The assertion is proved.
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The notions of central point and tree with cyclic shift, which were defined for planar Euclidean

Min-2-SCCP, are easily extended to the case of an arbitrary fixed dimension of the space.

A d-dimensional point is called central if each of its coordinates equals L/2.

Definition 3. Let a1, a2, . . . , ad ∈ NL. A 2d-tree for which the point ((L/2 + a1) mod

L, (L/2 + a2) mod L, . . . , (L/2 + ad) mod L) is central is called the 2d-tree T (a1, a2, . . . , ad).

Hypercubes belonging to an arbitrary level i ≥ 1 of a tree T (a1, a2, . . . , ad), as well as its central

point, are subject to a cyclic shift in each of the d coordinate axes. Under the shift, the position

of S and the coordinates of the vertices of G remain unchanged.

By analogy with the case d = 2, the union of dissections by portals of (d− 1)-dimensional faces

of all nodes of a 2d-tree T (a1, a2, . . . , ad) (except for S) is called an m-regular set of portals and is

denoted by P (a1, a2, . . . , ad;m).

2.4. The existence theorem. In this section we prove the existence of a k-cycle cover with

a number of properties for a given graph G.

Denote by V (C) ⊆ V the vertex set of an arbitrary cycle C in the graph G. We assign to C an

(m, r)-approximation, which is a closed polygonal line l(C) satisfying the following conditions:

(i) the vertex set of l(C) is a subset of V (C) ∪ P (a1, a2, . . . , ad;m);

(ii) l(C) visits the vertices V (C) in the order corresponding to the path C;

(iii) l(C) intersects each face of an arbitrary node of the tree T (a1, a2, . . . , ad) at most r times

(r ∈ N) and only at points of the set P (a1, a2, . . . , ad;m).

The following statement is equivalent to Theorem 5 from [10].

Theorem 1 (the structure theorem for Euclidean TSP in R
d). Suppose that a rounded in-

stance of TSP in R
d is given by a complete Euclidean graph G, the side of the enclosing hypercube S

for this graph is L, and a positive constant c is given. Let discrete random values a1, a2, . . . , ad be

distributed uniformly and independently on the set NL.

Then for any η ∈ (0, 1) there exist D1,D2 > 0 such that, for r =
⌈
(D1

√
dc)d−1

⌉
and m =⌈

(D2dc logL)
d−1

⌉
, for an arbitrary simple cycle C of weight W (C) in the graph G, with probability

at least 1−η there exists an (m, r)-approximation l(C) whose weight does not exceed (1+1/c)W (C).

Definition 4 [11]. Let C = {C1, . . . , Ck} be an arbitrary k-cycle cover of a graph G, and let

l(Ci) be an (m, r)-approximation of a cycle Ci. The set L(C) = {l(C1), . . . , l(Ck)} is called a cycle

(m, r, k)-cover of the graph G.

Let us extend the result of Theorem 3 from [11] to the case of Euclidean Min-k-SCCP in the

space of arbitrary fixed dimension. We prove the following theorem.

Theorem 2. Suppose that c > 0 is an arbitrary constant, L is the size of the enclosing

hypercube S for a rounded statement of Euclidean Min-k-SCCP in R
d, and discrete random values

a1, a2, . . . , ad are distributed uniformly and independently on the set NL. Then for the parameters

m = (O(dc log L))d−1 and r = (O(
√
dc))d−1 with probability at least 1/2 there exists a cycle (m, r, k)-

cover of cost not exceeding (1 + 1/c)OPT.

Proof. Consider a minimum weight k-cycle cover C∗ = {C∗
1 , C

∗
2 , . . . , C

∗
k}, which is a solution

the rounded instance of Euclidean Min-k-SCCP. As usual, we denote its weight by OPT; i.e.,∑k
i=1W (C∗

i ) = OPT.

We apply Theorem 1: for η = 1/2k and each cycle C∗
i with probability at least 1− 1/2k, there

exists an (m, r)-approximation l(C∗
i ) with weight

W (l(C∗
i )) ≤ (1 + 1/c)W (C∗

i ). (5)
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The values of the parameters m and r satisfy the bounds (O(dc logL))d−1 and (O(
√
dc))d−1,

respectively.

Since the values a1, a2, . . . , ad are distributed uniformly, the probability of the union of the

complementary events, which consist in the absence of an (m, r)-approximation l(C∗
i ) with weight

satisfying (5) for a cycle C∗
i , is upper bounded by 1/2. Thus, with probability at least 1/2, there

exists a cycle (m, r, k)-cover {l(C∗
1 ), l(C

∗
2 ), . . . , l(C

∗
k)} such that

k∑
i=1

W (l(C∗
i )) ≤

(
1 +

1

c

) k∑
i=1

W (C∗
i ) =

(
1 +

1

c

)
OPT.

The theorem is proved.

2.5. A remark on the dynamic programming procedure. The procedure of finding

a minimum weight cycle (m, r, k)-cover {l1, l2, . . . , lk} in Euclidean Min-k-SCCP is based on the

dynamic programming method and develops the approach proposed in [10, 11]. The running time

of the algorithm is O(n(log n)(O(
√
dc))d−1

).

The interior subproblem for a node of the 2d-tree S consists in finding a minimum cost part

of the cycle (m, r, k)-cover that lies entirely inside S and visits all the vertices of the graph that

belong to this node.

In the beginning of the dynamic programming procedure, we consider the leaves of the 2d-tree

T (a1, a2, . . . , ad). Let S be an arbitrary leaf of the tree. By construction S contains at most one

vertex of the graph G, and the corresponding subproblem can be solved by direct search in O(2dr)

operations.

Consider the case when S is not a leaf of T (a1, a2, . . . , ad). Denote by S1, . . . , S2d its child hyper-

cubes, for which the interior subproblems are assumed to be solved. We construct a solution for S

recursively, assuming that the answer consists of intervals of (m, r)-approximations {l1, l2, . . . , lk}.
To estimate the complexity of the dynamic programming procedure, we preserve the notation

introduced in [11]: P is the family of all possible multisets P consisting of at most 2dr portals

located on the faces of child hypercubes S1, . . . , S2d that are inner with respect to S. By construc-

tion, on each of these faces, there are m+ 2d−1 portals and, by the constraints imposed on a cycle

cover, a face can be intersected at most r times. We find that |P| = O((m+ 2d−1)2dr).

For an arbitrary multiset P ∈ P, there exist O((dr)2dr) ways to assign to each portal a polygonal

line corresponding to one of the k (m, r)-approximations, and there are O((2dr)!) variants of

partitioning the multiset into ordered pair.

The complexity of the subproblem corresponding to S can be estimated as

O
(
(m+ 2d−1)2dr(dr)2dr(2dr)!

)
.

The problem of finding a minimum weight cycle (m, r, k)-cover is equivalent to solving the

subproblem for the enclosing hypercube S.
Let us find an upper bound for the number of subproblems in order to derive the total complexity

of the dynamic programming procedure. Note that, for each node of an 2d-tree S, there are

O((m+ 2d−1)2dr) ways to choose the multiset P of portals on (d− 1)-dimensional faces of S.

For each of these multisets, there are O((2dr)!) ways of partitioning it into ordered pairs; for each

of these partitions, there are O(kdr) ways to distribute these pairs among the paths {l1, l2, . . . , lk}.
Since the total number of nodes of T (a1, a2, . . . , ad) is O(2dn log(cn

√
d)), we obtain the desired

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 295 Suppl. 1 2016



PTAS FOR MIN-k-SCCP S129

bound for the complexity of the procedure for an arbitrary fixed central point (a1, a2, . . . , ad):

O
(
2dn log(cn

√
d)× (m+ 2d−1)4dr((2dr)!)2(dr)2dr × kdr

)
. (6)

The variables d and c are not a part of the input of Euclidean Min-k-SCCP. For the values

m = (O(dc log(cn
√
d)))d−1 and r = (O(

√
dc))d−1, since the number of the ways to distribute k

cycles among m clusters is O(2k), bound (6) is equivalent to the bound

O
(
n(k log n)(O(

√
dc))d−1

2k
)
.

Remark. The computational complexity of the standard derandomization scheme that in-

volves the exhaustive search of shifts of the 2d-tree T (a1, a2, . . . , ad) is O(nd).

Thus, the following theorem is proved.

Theorem 3. Euclidean Min-k-SCCP in R
d has a PTAS with complexity

O
(
nd+1(k log n)(O(

√
dc))d−1

2k
)
. (7)

For d = 2, the computational complexity of the PTAS constructed for Euclidean Min-k-SCCP

coincides with the complexity of the PTAS constructed in [11] for Euclidean Min-2-SCCP and

differs from it, as follows from relation (7), by a constant factor 2kkO(c).

Corollary. Euclidean Min-k-SCCP in R
d with the condition that k is a part of the input has

a PTAS with complexity O(nO(d)(log n)(O(
√
dc))d−1

) for k = O(log n).

CONCLUSIONS

In this paper, we have extended the result obtained for planar Euclidean Min-2-SCCP and

validated a polynomial-time approximation scheme for arbitrary fixed values of the parameter k

and of the dimension of space d. The proposed algorithm is also a PTAS in the case if the

parameter k is a part of the input of Euclidean Min-k-SCCP in R
d for k = O(log n).
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