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Abstract—We present the results of theoretical and experimental investigations of the motion
of a spherical robot on a plane. The motion is actuated by a platform with omniwheels placed
inside the robot. The control of the spherical robot is based on a dynamic model in the
nonholonomic statement expressed as equations of motion in quasivelocities with indeterminate
coefficients. A number of experiments have been carried out that confirm the adequacy of the
dynamic model proposed.
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1. INTRODUCTION

The study of the motion of spherical robots has recently become a popular trend, which is
confirmed by a large number of publications. There are several tens of various designs, which are
classified and described in [1, 2, 9–12, 14–19] and other papers. The control of such systems is a
complicated and interesting problem in the field of dynamics of many-body systems. Note that
the interaction between the components of a spherical robot can be described by both holonomic
(in case of an internal pendulum) and nonholonomic (internal wheel platforms) constraints. This
fact distinguishes such systems from other systems, for example, trailers, where only the constraints
corresponding to the interaction of the body with the underlying surface are nonholonomic. For the
recent studies on the motion of spherical robots that use the basic nonholonomic model, see [4, 13,
14, 20, 21]. In these studies, one can find comprehensive literature on spherical robots and related
problems. Although a nonholonomic model often leads to errors in the description of the motion of
mechanical systems, it nevertheless allows one to construct adequate control laws. An important
problem here is to determine conditions under which the application of a nonholonomic model in
experimental investigations is justified. This issue is discussed in detail in [3, 6–8].

The results of experimental and theoretical investigations of a spherical robot with an internal
omniwheel platform presented in this paper are the logical conclusion of the authors’ study [14],
where the derivation of equations of motion was thoroughly described and their analysis was carried
out. In [14], a numerical simulation was also performed and trajectories of a spherical robot with
an internal omniwheel platform were constructed. In Sections 2 and 3, we give a brief account
of the kinematic and dynamic models of the system on the basis of nonholonomic equations of
motion with the use of quasicoordinates. In Section 4, we describe an algorithm for construct-
ing a control that guarantees a steady motion of a spherical robot before and after executing a
manoeuvre corresponding to this control. In Section 5, we present the results of comparison of
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experimental trajectories of the controlled motion of a spherical robot within the kinematic and
dynamic models. We also analyze the experimental trajectories and compare them with the results
of simulation.

2. KINEMATICS OF A SPHERICAL ROBOT
WITH AN INTERNAL OMNIWHEEL PLATFORM

We model a spherical robot that moves on the horizontal plane as a system of bodies consist-
ing of a spherical shell of radius R0 and a platform inside it with three identical omniwheels of
radius Rw (Fig. 1). In this paper, by omniwheels we mean the Mechanum wheels, whose design
and nonholonomic model are described in [5]. Namely, an omniwheel is modeled by a plane disk for
which the velocity of the contact point with the underlying surface is directed along a straight line
making a constant angle with the plane of the wheel.

To describe the motion of the spherical robot, consider three systems of coordinates. The first
OXY Z is fixed and has unit vectors α, β, and γ; the second Cx′y′z′ is movable, rigidly bound to
the spherical shell, and has unit vectors ξ, η, and ζ; and the third Cxyz is movable, rigidly bound
to the omniwheel platform, and has unit vectors e1, e2, and e3 (see Fig. 1b). The design of the
moving platform is described by the following constant (in the coordinate system Cxyz) vectors:
ri, the radius vectors of the centers of omniwheels; ni, the unit vectors directed along the rotation
axes of omniwheels; αi, the unit vectors that define the directions of the rotation axes of the rollers
of each wheel at the contact points with the shell; and rm, the vector defining the position of the
center of mass of the moving platform with omniwheels.

We will define the position of the system by the coordinates of the center of the spherical shell in
the fixed system of coordinates r = (x, y, 0), by the angles of rotation of the wheels χ = (χ1, χ2, χ3),
and by two matrices that define the spatial orientation of the platform and the spherical shell:

Q = (α,β,γ), S = (ξ,η, ζ). (2.1)

Henceforth (unless otherwise stated), all vectors are expressed in terms of the projections to the
axes of the coordinate system Cxyz, which is rigidly bound to the platform.

In these coordinates, the motion of the spherical shell and the platform is described by the
following kinematic relations:

ṙ = QTv, Q̇ = ω̃Q, Ṡ = (ω̃ − ˜Ω)S, (2.2)

where v is the velocity of the center of the sphere (in the projections onto the axes of the sys-
tem Cxyz) and matrices ω̃ and ˜Ω are expressed in terms of the components of the absolute angular
velocities of the moving platform ω and the spherical shell Ω as follows:

ω̃ =

⎛

⎝

0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

⎞

⎠ , ˜Ω =

⎛

⎝

0 Ω3 −Ω2

−Ω3 0 Ω1

Ω2 −Ω1 0

⎞

⎠ .

Here, ω, Ω, and v are quasivelocities, and their relation to generalized velocities is given by formu-
las (2.2).

We will assume that the system moves without slipping at the points of contact of the spherical
shell with the plane and the omniwheels. This imposes nonholonomic constraints on the system.
The nonslipping of the spherical shell on the plane yields the constraint

F = v −R0Ω× γ = 0, (2.3)
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Fig. 1. (a) A three-dimensional model of a spherical robot with an internal omniwheel platform and
(b) a scheme of the spherical robot.

and the nonslipping of the wheels on the spherical shell yields [5] the constraint

Gi = χ̇i +
R0

(si,ni)Rw
(ω −Ω, si) = 0, (2.4)

where si = ri ×αi.
Within the kinematic model, the following assumptions are made in [14].

1. During the motion of the spherical robot, the center of mass of the platform always occupies
the lowest possible position. Then the radius vector of the center of mass can be represented as

rm = −Rmγ, (2.5)

where Rm is the distance from the origin of the moving system of coordinates to the center of mass
of the moving platform.

2. Under the first assumption, the constant nutation angles θ = θm and proper rotation angles
ϕ = ϕm define, up to sign, the spherical coordinates of the center of mass of the platform with
omniwheels in the moving system of coordinates. Singling out the corresponding constant factor in
the matrix Q, we obtain

Q = QmQψ, (2.6)

where the matrix Qm has the form

Qm =

⎛

⎝

cosϕm cos θm sinϕm sin θm sinϕm
− sinϕm cos θm cosϕm sin θm cosϕm

0 − sin θm cos θm

⎞

⎠ (2.7)

and the matrix

Qψ =

⎛

⎝

cosψ sinψ 0
− sinψ cosψ 0

0 0 1

⎞

⎠ (2.8)

corresponds to the rotation of the moving platform about the vertical axis with a precession angle ψ.
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Within the kinematic model, the role of controls is played by the angular velocities χ̇i of the
omniwheels. Expressing Ω from the constraint equation (2.3) and taking into account the assump-
tions made, we obtain a formula for the angular velocities of the wheels that realize a motion along
the trajectory rc(t) with a given function Ωγ(t):

χ̇i =
1

Rw

(QT
msi, e3 ×QT

ψ ṙc +R0(Ωγ − ωγ)e3)

(si,ni)
. (2.9)

Here the angular velocity ωγ is a free parameter; i.e., within the kinematic model, one can realize
the motion along a given trajectory up to an arbitrary rotation ωγ(t) of the platform about the
vertical axis.

When carrying out experiments, just as in [14], we consider the motion of the spherical shell
within the “rubber” rolling model; i.e., we assume that Ωγ ≡ 0.

3. DYNAMICS OF A SPHERICAL ROBOT
WITH AN INTERNAL OMNIWHEEL PLATFORM

Now, consider the solution of the problem of controlling a spherical robot within the dynamic
model. For the above-described model of a spherical robot, we write equations of motion in qua-
sivelocities (ω,Ω,v, χ̇) while taking account of nonholonomic constraints and control:

d

dt

(

∂L

∂ω

)

=
∂L

∂ω
× ω +

∂L

∂v
× v +

∂L

∂γ
× γ +

(

∂G

∂ω

)T
˜λ,

d

dt

(

∂L

∂Ω

)

=
∂L

∂Ω
× ω +

(

∂G

∂Ω

)T
˜λ+

(

∂F

∂Ω

)T

λ,

d

dt

(

∂L

∂v

)

=
∂L

∂v
× ω +

(

∂F

∂v

)T

λ,

d

dt

(

∂L

∂χ̇

)

=
∂L

∂χ
+

(

∂G

∂χ̇

)T
˜λ+K.

(3.1)

Here L is the Lagrange function, λ = (λ1, λ2, λ3) and ˜λ = (˜λ1, ˜λ2, ˜λ3) are indeterminate Lagrange
multipliers, K = (K1,K2,K3) is the vector of control moments, where Ki is the moment of forces
applied to the axis of the ith wheel, and F and G are the nonholonomic constraints (2.3) and (2.4).

The kinetic energy of the system can be represented as a sum of three terms: the kinetic energy of
the spherical shell T0, the kinetic energy of the platform Tp, and the kinetic energy of the wheels Ti:

T = T0 + Tp +

3
∑

i=1

Ti

=
1

2
(m+m0)v

2 +
1

2
I0Ω

2 +
1

2
(ω, Iω) +m(v,ω × rm) +

3
∑

i=1

jχ̇i(ω,ni) +
1

2

3
∑

i=1

jχ̇2
i , (3.2)

where m = mp +
∑3

i=1 mi is the mass of the moving platform with omniwheels, m0 and I0 are
the mass and the central inertia tensor of the spherical shell, mp and Ip are the mass of the
moving platform and its tensor of inertia with respect to the center of the sphere, rp is the radius
vector from the center of the sphere to the center of mass of the platform (without omniwheels),
rm =

(

mprp +
∑3

i=1miri
)

/m is the radius vector of the center of mass of the moving platform with
omniwheels, I = Ip +

∑3
i=1 Ii is the tensor of inertia of the moving platform with omniwheels with
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respect to the center of the sphere, mi and Ii are the mass of the ith wheel and its tensor of inertia
with respect to the point C, and j is the axial moment of inertia of the wheels.

Using this notation, we can represent the potential energy of the system as

U = mg(rm,γ), (3.3)

where g is the acceleration of gravity.
Defining the Lagrange function L = T − U by relations (3.2) and (3.3), substituting it into

equations (3.1), and taking into account the indeterminate multipliers found from the last two
equations in (3.1) and the time derivative of the constraint equations (2.4), we obtain

(I+ Jss − Jns − Jsn)ω̇ +
(

Jns − Jss +mR0((γ, rm)− γ ⊗ rm)
)

Ω̇

= −
3

∑

i=1

kisiKi − ω × Iω + (Jns(Ω− ω))× ω −mR0rm × (γ × (Ω× ω))−mg(rm × γ),

(

Jsn − Jss +mR0((rm,γ)− rm ⊗ γ)
)

ω̇ +
(

I0 + Jss + (m+m0)R0
2(γ2 − γ ⊗ γ)

)

Ω̇

= −(m+m0)R0
2γ × (γ × (Ω× ω))−mR0(γ × (ω × (ω × rm)))− I0ω ×Ω+

3
∑

i=1

kisiKi

(3.4)

with ki =R0/(Rw(si,ni)), Jss =
∑3

i=1 jk
2
i (si ⊗ si), Jsn =

∑3
i=1 jki(si ⊗ni), Jns =

∑3
i=1 jki(ni ⊗ si)

and with the tensor product of vectors a and b defined as a ⊗ b = ‖aibj‖. Combined with the
Poisson equation (one of equations in (2.2))

γ̇ = γ ×ω, (3.5)

equations (3.4) form a closed reduced system of equations.
In [14], to calculate the controls for the motion of a spherical robot along a given trajectory, we

developed an algorithm based on the numerical solution of the system supplemented with initial
conditions. Numerical simulation has shown that at the final instant of time, after switching off the
control, the internal omniwheel platform is not at rest, which generally leads to chaotic motion of
the spherical robot. To eliminate this drawback, we propose a control algorithm that involves basic
manoeuvres, called gaits.

4. CONTROL BY MEANS OF GAITS

This method consists in calculating controls under which the spherical robot at the initial and
final instants of time certainly moves along some stationary solution (for example, remains at rest).
In this case, the trajectory of the spherical robot during a manoeuvre is not specified in advance,
and the control problem reduces to choosing a manoeuvre such that the final trajectory of the
spherical robot satisfies necessary requirements. Consider an algorithm for searching an appropriate
manoeuvre that connects two motions along a straight line.

Motions along a straight line correspond to fixed points of the system (3.4), (3.5) and are
parameterized by four quantities: the velocity v of motion along a straight line, the angle δ between
the straight line and the axis OX, the angular velocity Ωγ of “slipping” of the shell at the point of
contact with the plane, and the constant precession angle ψ, which defines the orientation of the
omniwheel platform during motion. Note that the two other Euler angles θ and ϕ are also constant
during the motion along a straight line and are defined by the vector γ ‖ rm. These parameters are
related to the vectors α, β, γ, and Ω as follows:

Ω = Ωγγ +
v

R0
(cos(δ)β − sin(δ)α), tanψ = − β3

α3
. (4.1)
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It is easy to show that the following proposition is valid.
Proposition. Suppose that for t < 0 the spherical robot moves along a straight line with

parameters v0, δ0, Ωγ0, and ψ0. In addition, let the robot execute a manoeuvre with given vector γ
and quantity ωγ defined as functions of time

γ = γ(t), ωγ = ωγ(t), t ∈ [0, T ],

such that
γ(0) = γ(T ) =

rm

|rm| , γ̇(0) = γ̇(T ) = 0, ωγ(0) = ωγ(T ) = 0.

Then, after executing the manoeuvre (for t > T ), the spherical robot will move along a straight line
with the parameters vf, δf, Ωγf, and ψf related to the vectors α(T ), β(T ), and Ω(T ) by formulas
similar to (4.1). In this case, the functions of time α(t), β(t), and Ω(t) are found from the solution
of the first three equations in system (3.4) in which the vector ω is a known function of time and
is expressed in terms of γ(t) and ωγ(t) as follows:

ω(t) = γ(t)ωγ(t) + γ̇(t)× γ(t).

The controls that realize this manoeuvre can be obtained by substituting ω(t), Ω(t), and γ(t) into
one of equations (3.4), and the explicit form of the spherical robot’s trajectory that connects the two
motions along straight lines can be obtained by integrating the first kinematic equation in (2.2).

It is convenient to represent the vector γ that defines the manoeuvres (gaits) as

γ(t) =
(

sin θ(t) cosϕ(t), sin θ(t) sinϕ(t), cos θ(t)
)

, (4.2)

where the Euler angles ϕ(t) and θ(t) define the orientation of the moving platform during a ma-
noeuvre.

5. EXPERIMENTAL INVESTIGATIONS

At the Laboratory of Nonlinear Analysis and the Design of New Types of Vehicles, Udmurt State
University, an experimental model of a spherical robot with an internal omniwheel platform was
constructed. The design of this spherical robot corresponds to the following values of the parameters:
the radius, mass, and moment of inertia of the spherical shell are R0 = 0.15 m, m0 = 0.8 kg, and
I0 = 0.012 kg · m2; the radius of omniwheels is Rw = 0.07 m; and the radius vectors defining the
position of omniwheels and the directions of their axes and the axes of rollers are

ri = 0.057(cos ϕi, sinϕi,−1), ni =
1√
2
(cosϕi, sinϕi, 1), αi =

1√
2

(

cos
(

ϕi −
π

4

)

, sin
(

ϕi −
π

4

)

, 1
)

,

where ϕi = 2π(i − 1)/3, i = 1, 2, 3; the mass and the tensor of the moving platform with omniwheels
are m = 2.5 kg and I = diag(0.016, 0.016, 0.023) kg · m2. All experimental investigations were
carried out with this model.

To determine the deviations of the real trajectory of the spherical robot from a given trajectory
for which the calculations of the controls were made, a motion capture system was used to determine
the coordinates of the center of the spherical robot and the orientation of the internal moving
platform. To this end, the spherical shell was fabricated of a transparent material (polyethylene
terephthalate), and the internal omniwheel platform was supplied with light-retroreflective markers.
The cameras of the capture system fixed the position of each marker with frequency of 100 Hz; these
data were processed by special software, and the trajectory of the geometric center of the object
bounded by the markers was constructed.
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Fig. 2. Comparison of experimental data on the motion of a spherical robot under controls calculated
within the kinematic (solid line) and dynamic (dashed line) models for the motion along a straight
line segment: (a) trajectories of motion and (b) components of the vector γ3.

5.1. Comparison of controls within the kinematic and dynamic models. The exper-
imental investigations of the motion of a spherical robot along a straight line and a circle under
controls calculated according to the kinematic model are reported in [14]; however, experiments on
the investigation of motion within the dynamic model were not carried out there. Figure 2 presents
the comparison results for the motion of the spherical robot under controls calculated within the
kinematic model and under control by means of gaits.

In the case of the dynamic model, the motion consisted of two manoeuvres that resulted in
acceleration from rest to velocity Ωl and stopping. Each manoeuvre can be defined by the functions
ϕ(t), θ(t), and ωγ(t).

During acceleration from rest, these functions have the form

θ(t) = θmax sin
2(πt), ϕ(t) = ϕ0 = 0, ωγ(t) = 0, t ∈ [0, 2], (5.1)

where θmax is set equal to 0.1 in numerical calculations and the angle ϕ0 defines the direction of
motion. Acceleration from rest corresponds to the following initial conditions:

Ω0 = 0, α0 = (1, 0, 0), β0 = (0, 1, 0). (5.2)

For braking to rest, the functions have the form

θ(t) = −θmax sin
2(πt), ϕ(t) = ϕ0 = 0, ωγ(t) = 0, t ∈ [0, 2]. (5.3)

The initial conditions for braking are

Ω0 = (0,Ωl, 0), α0 = (1, 0, 0), β0 = (0, 1, 0), (5.4)

where Ωl is the angular velocity of the spherical shell at the start of braking. If we assume that
the spherical robot starts braking immediately after the acceleration (5.1), (5.2), then, solving
system (3.4), (3.5) numerically, we obtain Ωl = 0.864 s−1.

Within the kinematic model, the motion was defined by the constant angular velocity Ω =
Ωl = 0.864 s−1 during 4 s, which corresponded to the execution time of two manoeuvres within the
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Fig. 3. Trajectories of the motion of a spherical robot under controls calculated within the dynamic
model with the use of gaits: (a) rectilinear motion and (b) rectilinear motion combined with a turn.
The dashed line represents the result of numerical simulation, and the solid lines demonstrate typical
trajectories of the spherical robot.

dynamic model. This motion was defined by a trajectory in the form of a straight line segment
along the OY axis:

x = 0, y = 0.13 t, ωγ = 0, Ωγ = 0, t ∈ [0, 4], (5.5)

and the controls were calculated by the expression (2.9).
The experimental trajectories of motion and the γ3-component of the vector restored by the

motion capture system are presented in Fig. 2. The solid line demonstrates the trajectory and the
γ3-component of the vector for the motion within the kinematic model. The motion of the robot
lasted 4 s, after which the omniwheels stopped, while the spherical shell continued an oscillatory
motion. The figure shows that within the dynamic model of motion, the oscillations after stopping
occurred with smaller amplitude and were damped faster. To evaluate the amplitude of these
oscillations, we calculate the root mean square deviation for the γ3-component of the vector after
the stopping time of the spherical robot. For the control within the kinematic model, this deviation
was σkin

γ3, t>4 = 0.018; within the dynamic model, it was σdyn
γ3, t>4 = 0.001. The results obtained

demonstrate the advantages of the dynamic model, and the development of the basic dynamic
manoeuvres—acceleration, braking, and turn—allows one to significantly increase the accuracy with
which the spherical robot passes along a trajectory, thus complementing or completely replacing
the kinematic control model.

5.2. Experimental investigations of the motion under control with the use of gaits.
Next, consider the trajectories of motion under control by gaits in more detail and analyze the
deviations of the experimental data from the theoretical (prescribed) ones.

1. Motion along a straight line. The motion along a straight line was defined by two manoeuvres,
acceleration and stopping, which are described by the expressions (5.1), (5.2) and (5.3), (5.4).
Figure 3 demonstrates the results of a series of experiments carried out under identical conditions;
the dashed line shows a trajectory obtained by numerical simulation, and the solid lines represent
typical trajectories of the spherical robot.
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The results of the experimental investigations are presented in Fig. 3a. For the stopping point,
we constructed confidence intervals calculated for a probability of 95% by the standard deviation for
five experiments. For the motion along a straight line, the stop coordinates of the spherical robot
under simulation are xt = −0.0695 mm and yt = 344.6 mm, while in the experiment we obtained
xe = −1.392 ± 28.9 mm and ye = 369.2 ± 37.7 mm.

2. Rectilinear motion combined with a turn. The next experiment included three manoeuvres:
acceleration from rest of the form (5.1), (5.2), a turn defined by the expressions

θ(t) = θmax sin
2(πt), ϕ(t) = ϕ90 =

π

2
, ωγ(t) = 0, t ∈ [0, 2], (5.6)

with the initial conditions (5.4), and braking of the form (5.3) but for ϕ(t) = π/4 and with the
initial conditions

Ω0 = (0.868, 0.852, 0), α0 = (1, 0, 0), β0 = (0, 1, 0). (5.7)

The results of the experimental investigations are presented in Fig. 3b. For the rectilinear motion
followed by a turn according to the manoeuvres (5.1), (5.2), (5.6), and (5.4) and braking with the
initial conditions (5.7), numerical simulation yields xt = −173.2 mm and yt = 519.4 mm, while in
the experiment we obtained xe = −151.3 ± 32.4 mm and ye = 482.4 ± 112.1 mm. One can see that
the coordinates of the stopping points of the spherical robot moving under the control with the use
of the gaits obtained by numerical simulation (solution of system (3.4), (3.5)) fall into the given
confidence interval.

CONCLUSIONS

In conclusion, we summarize the main results presented in the paper and formulate open ques-
tions.

1. We have solved a nonholonomic problem of controlling the motion of a spherical robot with
an internal omniwheel platform in the kinematic (quasistatic) and dynamic statements.

2. We have carried out an experimental evaluation test of the theoretical results obtained within
the control models developed. We have shown that for technically feasible speeds of motion, these
models well agree with the results of experiments.

3. We have shown that a control algorithm using gaits based on the nonholonomic dynamic
model allows one to significantly increase the accuracy of following the trajectory and can be used
to control a real spherical robot with an internal omniwheel platform.

4. One of the most important conditions for the implementability of the control models developed
is the fulfillment of nonholonomic no-slip conditions of the spherical shell on the surface and of the
rollers of the omniwheels on the surface of the spherical shell. In laboratory conditions, this was
achieved by the choice of the materials of the spherical shell and the rollers. In reality, it is difficult to
guarantee these conditions, and possible slipping can be compensated for by introducing feedbacks
into the system.
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