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Abstract—We describe a method of translating a Lambek grammar with one division into
an equivalent context-free grammar whose size is bounded by a polynomial in the size of the
original grammar. Earlier constructions by Buszkowski and Pentus lead to exponential growth
of the grammar size.
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1. LAMBEK GRAMMARS AND CONTEXT-FREE GRAMMARS

Lambek grammars were introduced by J. Lambek [12] for the mathematical description of the
syntax of natural language fragments. They form a branch of the categorial grammar framework.
Generally, grammars define formal languages (further we will omit the word “formal”), i.e., sets of
words built from elements (letters, or symbols) of a finite set Σ called the alphabet. The set of all
words over a given alphabet Σ is denoted by Σ∗; Σ+ stands for the set of all nonempty words. The
empty word is denoted by ε. We consider only grammars describing languages without the empty
word (i.e., subsets of Σ+). However, the empty word can be used inside the grammar formalism.

A language can be infinite (as a set), and therefore the task of describing it by means of a finite
grammar is nontrivial (in particular, due to cardinality issues, not every language can be defined
by a formal grammar of a particular kind).

A categorial grammar is a binary correspondence between letters of the alphabet and logical
expressions called syntactic types. Each letter is associated with a finite number of syntactic types
(possibly with more than one). A word1 w = a1 . . . an belongs to the language defined by the gram-
mar if and only if there exist syntactic types A1, . . . , An such that Ai is in the given correspondence
with ai (for all i from 1 to n) and the sequent A1 . . . An → H is derivable in a specific logical
calculus. Here H is a designated type (one for the whole grammar).

In Lambek grammars, the calculus used to determine whether a word belongs to the language
is the Lambek calculus, denoted by L. Syntactic types for the Lambek calculus are built from a set
of primitive types (variables) Pr using three binary connectives: multiplication · and left and right
divisions \ and /. The set of all types is denoted by Tp. We use capital Latin letters (A,B,C, . . . ) for
types and capital Greek letters (Γ,Δ,Π, . . . ) for finite (possibly empty) linearly ordered sequences
of types. Following the linguistic tradition, we do not use commas to separate types in the sequence.

The Lambek calculus L derives objects of the form Π → B called sequents. Here B is a syntactic
type and Π is a nonempty sequence of syntactic types.
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1Here we should note some difference in terminology between the studies of “formal” and “real” languages. In
linguistic applications, letters of Σ correspond not to letters but rather to words (word forms) of the natural
language; words over Σ correspond to sentences. Thus grammars describe not the lexical but the syntactic level
of a language structure. In this paper we use the “letter–word” terminology, not the “word–sentence” one.
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130 S.L. KUZNETSOV

The axioms of L are sequents of the form A → A, and the rules of inference are as follows:

AΠ → B
Π → A \B , where Π is nonempty, Π → A ΓBΔ → C

ΓΠ(A \B)Δ → C
,

ΠA → B
Π → B /A

, where Π is nonempty, Π → A ΓBΔ → C
Γ(B /A)ΠΔ → C

,

Γ → A Δ → B
ΓΔ → A ·B ,

ΓABΔ → C
Γ(A ·B)Δ → C

.

In addition to these rules, L admits the cut rule [12]

Π → A ΓAΔ → C
ΓΠΔ → C

(this means that adding the cut rule does not lead to new derivable sequents).
If Π → B is derivable in L, we denote this fact by L � Π → B.
Finally, a Lambek grammar is a triple G = 〈Σ,�,H〉, where Σ is an alphabet, H ∈ Tp is a

designated type, and � ⊂ Σ× Tp is a finite binary correspondence between letters of the alphabet
and syntactic types. As said before, a word w = a1 . . . an is accepted by G iff there exist types
A1, . . . , An such that ai � Ai (for all i from 1 to n) and L � A1 . . . An → H.

Note that Lambek grammars as defined above are explicitly disallowed to generate the empty
word. However, one can drop the constraint of Π being nonempty from the rules, which leads to a
modified calculus L∗. Grammars based on L∗ can define languages containing the empty word.

Another way of describing the language syntax, introduced by Chomsky [4], is the framework
of context-free grammars. A context-free grammar is a quadruple G = 〈N,Σ, P, S〉, where Σ is the
alphabet over which we define the language, N is an auxiliary alphabet called the set of nonterminal
symbols (N and Σ are required to be disjoint), S ∈ N is the start symbol, and P is a finite set of
rules of the form A ⇒ α, where A ∈ N and α is a word in the alphabet N ∪ Σ. In our definition,
α in every rule is required to be nonempty. The symbol A and the word α are called the left- and
right-hand sides of the rule, respectively. Let η and θ be arbitrary (possibly empty) words over
N ∪ Σ. Then if (A ⇒ α) ∈ P , the word ηαθ is directly derivable from the word ηAθ in G (which is
written as ηAθ ⇒G ηαθ). The relation ⇒∗

G (“derivable in G”) is defined as the reflexive–transitive
closure of ⇒G. The language defined by the grammar G is the set {w ∈ Σ+ | S ⇒∗

G w}. Such
languages are called context-free (recall that we consider only languages without the empty word).

If G is a grammar (a Lambek grammar or a context-free one), then the language defined by G
will be denoted by L(G).

Theorem 1. Each language defined by a Lambek grammar is context-free. Each context-free
language is defined by a Lambek grammar.

The first statement of this theorem was proved by Pentus [17]; for the case where only one
division operation is used, this result was proved earlier by Buszkowski [3]. The second statement
was proved by Gaifman [2] for a weaker formalism called basic categorial grammars or Ajdukiewicz–
Bar-Hillel grammars; Buszkowski [3] noticed that Gaifman’s construction also works for Lambek
grammars. In this construction only one division operation ( \ or, symmetrically, / ) is used.

Theorem 1 states the equivalence of Lambek grammars and context-free grammars in the weak
sense. That is, the classes of languages defined by these two grammar formalisms coincide as sets
of words. Actually, both Lambek grammars and context-free ones can solve a more sophisticated
task than just determining whether a word belongs to the language. To a word that belongs to the
language, they can assign an extra structure encoding the semantics (“meaning”) of the word. If
this extra structure is also preserved under the transformation, the grammars are equivalent in the
strong sense [9, 10]. In this paper we consider only equivalence in the weak sense.
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ON TRANSLATING LAMBEK GRAMMARS 131

Apart from the Lambek calculus L itself, its extensions and fragments are also broadly studied.
Many extensions of the Lambek calculus are important for linguistic applications [8, 13, 7, 14].
Connectives of the Lambek calculus have a natural interpretation as operations (multiplication and
two divisions) on formal languages [18]; therefore, it seems very natural to extend the Lambek
calculus to cover other well-known language-theoretic operations. An interesting open problem here
is connected with the iteration (“Kleene star”). Although the question of extending the Lambek
calculus with iteration looks easy, no “good” axiomatization is known; however, there exist com-
plete systems with an ω-rule or infinite branches in derivation trees [11]. Interestingly enough, in
analogous systems for the Gödel–Löb modal logic GL and its extensions, infinite derivations can be
reduced to finite (cyclic) ones [26, 27]. Possibly, a variant of this strategy could also be successful
for the Lambek calculus with iteration.

For the fragments of L, the cut elimination theorem makes their axiomatization an easy task:
one just leaves only the rules operating the chosen connectives.

In this paper we consider the fragment of the Lambek calculus with only one division, L( \ ).
As opposed to the full Lambek calculus (L) and its fragments with two operations (L( \ , ·), L( /, ·),
and L( / , \ )) with NP-complete derivability problems [19, 25, 24], the derivability problem for L( \ )
is decidable in polynomial time [23]. On the other hand, any context-free language (see above) can
be defined by an L( \ )-grammar. In other words, only one Lambek operation, namely, one of the
two divisions, is sufficient for modeling context-free derivations.

2. SAVATEEV’S DERIVABILITY CRITERION FOR L( \ )
In this section we formulate a graph-theoretic criterion for derivability in L( \ ) that was proved

by Savateev [22]. We will use this criterion in our construction.
Let Atn = {p(i) | p ∈ Pr, i ∈ N} be the set of atoms (an atom is a primitive type with a

numerical superscript). We are going to consider finite nonempty sequences of atoms; the set of all
such sequences is denoted by Atn+.

For A = p
(i1)
1 p

(i2)
2 . . . p

(ik)
k ∈ Atn+ let A

+2 = p
(i1+2)
1 p

(i2+2)
2 . . . p

(ik+2)
k .

We define two mappings γ, γ̄ : Tp → Atn+ of L( \ )-types to sequences of atoms:

γ(p) = p(1), γ̄(p) = p(2),

γ(A \B) = γ̄(A)γ(B), γ̄(A \B) = γ̄(B)(γ(A))+2.

Let A be a finite sequence of atoms. A proof net on A is a pairing on A such that
(1) every element belongs to exactly one pair;
(2) each pair consists of p(i) and p(i+1), where p ∈ Pr, i ∈ N, and p(i) lies to the left of p(i+1) in

the sequence;
(3) one can draw the pairing as lines in the upper half-plane without intersections; in other

words, the pair dispositions

. . . p(i) . . . p(i+1) . . . q(j) . . . q(j+1) . . .

and

. . . p(i) . . . q(j) . . . q(j+1) . . . p(i+1) . . .

are allowed, while

. . . p(i) . . . q(j) . . . p(i+1) . . . q(j+1) . . .

is prohibited;
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132 S.L. KUZNETSOV

(4) if the left atom in a pair has an even superscript, then between the atoms of the pair there
exists an atom with the superscript less than the superscripts of both elements of the pair.

Note that in another paper [23] Savateev uses a slightly different criterion: for a pair in which
the left atom has an even superscript 2�, there should be an atom with superscript precisely 2�− 1
in between. This criterion is equivalent to the one described above.

Theorem 2 [22]. A sequent A1, . . . , An → B is derivable in L( \ ) if and only if there exists a
proof net on γ(A1) . . . γ(An)γ̄(B).

3. THE GROWTH OF THE LAMBEK GRAMMAR SIZE UNDER TRANSLATION
INTO A CONTEXT-FREE GRAMMAR

By Theorem 1, between the two grammar formalisms (Lambek grammars and context-free gram-
mars) there exist translations in both directions that support weak equivalence of the formalisms. In
such situations, however (see, for example, [21]), one is usually interested not only in the existence of
such translations but also in the moderate change (usually growth) of the size of the object (in our
case, the grammar) under such a transformation. If the size grows dramatically (e.g., exponentially),
the translation becomes practically useless.

Unfortunately, the translation of Lambek grammars into context-free ones that was presented
by Pentus [17] leads to exponential growth of the grammar size. In the general case such inefficiency
appears to be inevitable, because the derivability problem for L is NP-complete (see above), while
the parsing problem for context-free grammars is decidable in polynomial time.

For the one-division case another method for translating L( \ )-grammars into context-free gram-
mars was proposed earlier by Buszkowski [3], but it also leads to exponential growth of the grammar
size. Here we present a method that translates an L( \ )-grammar into a context-free grammar of
size bounded by a polynomial in the original grammar size.

First we define the notion of size for Lambek grammars and context-free grammars more accu-
rately.

Let A ∈ Tp. We define the size |A| of A as the number of primitive type occurrences in A. The
formal definition of |A| is recursive: |pi| = 1; |A \B| = |B /A| = |A ·B| = |A|+ |B|. The size of a
Lambek grammar G = 〈Σ,�,H〉 is defined as follows: |G| = |H|+

∑
〈a,A〉∈�|A|.

By the size of a context-free grammar G = 〈N,Σ, P, S〉, we will mean the number
∑

(A⇒α)∈P |α|,
where |α| is the number of letters in α. Note that |Σ| ≤ |G| (we assume that Σ does not contain
useless symbols not appearing in L(G)), |N | ≤ |G|, and |P | ≤ |G|. The size of any grammar G is
denoted by |G| (this applies both to Lambek grammars and to context-free ones).

Theorem 3. For any L( \ )-grammar there exists an equivalent (in the weak sense) context-free
grammar whose size is bounded by a polynomial in the size of the original grammar.

4. SAVATEEV’S CONDITIONS AS CONTEXT-FREE RULES

The main idea of our translation of grammars is to write the proof net conditions as a context-free
grammar. Unfortunately, the sequences of atoms used in the definition of a proof net are words over
an infinite alphabet (Atn); therefore, it is formally impossible to construct a context-free grammar
for a set of them. To overcome this issue, we restrict Atn to a finite set.

Let G be an L( \ )-grammar. First we remove from Pr all primitive types not occurring in G.
After that Pr becomes a finite set. Moreover, it has at most |G| elements.

Now we define the depth of a syntactic type from Tp( \ ) recursively: d(pi) = 1; d(A \B) =
max{d(A) + 1, d(B)}. On the other hand, we denote the accordingly restricted set of atoms, {p(i) |
p ∈ Pr, i ≤ m}, by Atnm (m ∈ N).

Lemma 1. If A ∈ Tp( \ ), then γ(A) ∈ Atn+d(A) and γ̄(A) ∈ Atn+d(A)+1.
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ON TRANSLATING LAMBEK GRAMMARS 133

Proof. We proceed by structural induction on A. If A = pi, then we have d(A) = 1, γ(A) =
p
(1)
i ∈ Atn+1 , and γ̄(A) = p

(2)
i ∈ Atn+2 .

For the case of A = B \C we preliminarily notice some obvious properties of the sets Atn+m.
First, if B ∈ Atn+m1

and C ∈ Atn+m2
, then BC ∈ Atn+max{m1,m2}. Second, if B ∈ Atn+m, then

B
+2 ∈ Atn+m+2.

Finally,

γ(B \C) = γ̄(B)γ(C) ∈ Atn+max{d(B)+1,d(C)} = Atn+d(B \C),

γ̄(B \C) = γ̄(C)(γ(B))+2 ∈ Atn+max{d(C)+1,d(B)+2} = Atn+d(B \C)+1. �

By the depth of an L( \ )-grammar G = 〈Σ,�,H〉 we will mean the number d(G) = max{d(A) |
either A = H or a � A for some a ∈ Σ}. Note that since d(A) ≤ |A| for any type A (this is easily
checked by induction), for any L( \ )-grammar G we have d(G) ≤ |G|.2

Let m = d(G) + 1. Then for any sequent used for checking whether a word belongs to the
language defined by G, the corresponding sequence of atoms lies in Atn+m. On the other hand,
|Atnm| = |Pr|m ≤ |G|(d(G) + 1) ≤ |G|(|G| + 1); therefore, the sequences of atoms to be considered
are words in an alphabet of polynomially bounded (with respect to the size of the original grammar)
cardinality.

Now let us define a context-free grammar Sm that formalizes the existence of a proof net on a
given word over the alphabet Atnm. Let Sm = 〈N,Atnm, P, S〉, where N = {S,R1, . . . , Rm−1} and
P consists of the following rules:

S ⇒ Rk for all k from 1 to m− 1,

Rk1 ⇒ Rk2 if k1 > k2,

Rk ⇒ p(2�−1)Rkp
(2�) if k < m and 2� < m,

Rk ⇒ p(2�)Rkp
(2�+1) if 2�+ 1 < m and k < 2�,

R2�−1 ⇒ p(2�−1)Sp(2�) if 2� < m,

R2�−1 ⇒ p(2�−1)p(2�) if 2� < m,

Rk ⇒ RkS for all k from 1 to m− 1,

Rk ⇒ SRk for all k from 1 to m− 1.

The total number of rules is at most m + m2 + 2|Pr|m2 + 2|Pr|m + 2m ≤ 8|Pr|m2 ≤ 8|G|3.
The right-hand side of each rule is of length at most 3. Thus, |Sm| ≤ 24|G|3, i.e., the size of Sm is
bounded by a polynomial in the size of the original grammar G.

Lemma 2. A sequence of atoms A ∈ Atn+m has a proof net if and only if it belongs to the
language described by Sm.

Proof. In order to use induction, we augment the statement of this lemma (S ⇒∗
Sm

A if and
only if A has a proof net) with analogous statements about other nonterminal symbols: Rk ⇒∗

Sm
B

if and only if B has a proof net and contains an atom with superscript not greater than k.
Now these statements are easily proved by simultaneous induction: in the “if” part the induction

parameter is the derivation length in Sm; for the “only if” part we proceed by induction on the length
of the sequence of atoms. �

2At the same time, if G contains a “very deep” complicated syntactic type, d(G) can be close to |G|.
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134 S.L. KUZNETSOV

Now let us describe a method to obtain a context-free grammar weakly equivalent to G from Sm.
We will need the notion of homomorphism of formal languages.

Let Σ1 and Σ2 be two alphabets. A homomorphism is a mapping h : Σ∗
1 → Σ∗

2 such that
h(uv) = h(u)h(v) for any u, v ∈ Σ∗

1. Clearly, one can arbitrarily define h on the elements of Σ1,
and then it is uniquely extended to longer words from Σ∗

1; h(ε) is always ε (otherwise the equality
h(a) = h(aε) = h(a)h(ε) is violated).

An important particular case of a homomorphism is a nonextending homomorphism, which maps
every letter a ∈ Σ1 either to the empty word or to one letter from Σ2 (but not to a longer word).

Further we will denote the alphabet Atnm by Σ1.
Recall that we are constructing a context-free grammar for the language defined by the

L( \ )-grammar G = 〈Σ,�,H〉. Let us introduce an auxiliary alphabet Σ2 = {〈a,A〉 | a � A} and a
fresh symbol $ that does not belong to the alphabets introduced before. Define two homomorphisms
g : Σ2 ∪ {$} → Σ1 and h : Σ2 ∪ {$} → Σ as follows:

g(〈a,A〉) = γ(A), g($) = γ̄(H), h(〈a,A〉) = a, h($) = ε.

It is easy to see that if Sm defines a language M , then the language defined by G is equal to
h(g−1(M) ∩ {u$ | u ∈ Σ+

2 }). One can construct a context-free grammar for this language, because
the operations of taking the preimage of a homomorphism, intersecting with a regular language,
and applying a homomorphism preserve the context-free property of the language. These facts
were independently noticed by several authors [5, 15, 28] and nowadays are included into standard
textbooks in formal language theory [1, 6, 16]. However, we will have to carefully analyze the proofs
in order to get an estimation of the size of the resulting context-free grammar.

5. ESTIMATION OF THE SIZE OF THE CONTEXT-FREE GRAMMAR

For the “inverse homomorphism” construction (the step from M to g−1(M)) we will use an
auxiliary notion of pushdown automaton (PDA). A PDA is an automaton equipped with a pushdown
memory structure (or stack). We are going to use the following version of the definition: a PDA is
a sextuple M = 〈Q,Σ,Γ,Δ, q0, Z0〉, where Q, Σ, and Γ are finite sets, q0 ∈ Q, Z0 ∈ Γ, and Δ is
a finite subset of the Cartesian product Q × (Σ ∪ {ε}) × Γ × Q × Γ∗. The set Q is called the set
of states, Σ and Γ are the input and stack alphabets, respectively, q0 is the initial state, and Z0 is
the starting stack symbol. We will write elements of Δ (transitions of the automaton) of the form
〈p, a, Z, q, β〉 as follows: p

a, Z : β−−−−→ q.
A configuration of a PDA is a triple 〈q, v, γ〉, where q ∈ Q, v ∈ Σ∗, and γ ∈ Γ∗. Informally this

means that the automaton is now in the state q with the word v not yet read from the input (v is
a suffix of the word originally given to the automaton), and the stack contains γ.

The initial configuration of the PDA has the form 〈q0, w, Z0〉, where w is the word on which we
run the automaton.

Applying a transition p
a, Z : β−−−−→ q changes the configuration as follows: 〈p, aw,Zγ〉→M 〈q, w, βγ〉.

Informally, if the automaton was in state p with Z on top of the stack,3 the automaton reads a
from the input (or reads nothing if a = ε), removes Z from the top of the stack, puts the word β
onto the stack, and changes the state to q. Note that this definition requires the automaton to pop
exactly one symbol from the stack (of course, it can always immediately put it back by adding it
to β). As usual, →∗

M
is the reflexive–transitive closure of →M.

Finally, a word w is accepted by a PDA M, or, in other words, belongs to the language defined
by M, if 〈q0, w, Z0〉 →∗

M
〈q, ε, ε〉 for some4 state q ∈ Q.

3In our formalism the stack “grows” to the left.
4As one can notice, in this definition the PDA halts when the stack becomes empty rather than when a special
“halting” state is reached.
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ON TRANSLATING LAMBEK GRAMMARS 135

Note that in general M operates nondeterministically ; i.e., it can be possible to apply several
different transitions from one configuration. A word is accepted by the automaton if at least one
sequence of transitions succeeds (i.e., does not terminate in the middle of the input word and ends
by a configuration with nothing on the stack).

The further plan of building a context-free grammar for L(G) is as follows. First we transform
the grammar Sm into a PDA that defines the same language M = L(Sm). Next we build a PDA
for g−1(M) ∩ {u$ | u ∈ Σ+

2 }. After that we return to context-free grammars (transform this PDA
into a context-free grammar). Finally, by applying the nonextending homomorphism h, we obtain
a context-free grammar for L(G) = h(g−1(M) ∩ {u$ | u ∈ Σ+

2 }).
The constructions of automata and grammars used in our transformations were taken from [1, 6].

In these books one can find correctness proofs (i.e., proofs of the facts that these automata and
grammars define the needed languages). Here we focus on estimating the size of the resulting
context-free grammar.

To estimate the complexity (size) of a PDA M = 〈Q,Σ,Γ,Δ, q0, Z0〉, we will use the following
parameters: first, the number of transitions (|Δ| = δ(M)); second, the number d(M) = max

{
|β| |

(p
a, Z : β−−−−→ q) ∈ Δ

}
, which characterizes the maximum number of letters put onto the stack at one

transition; third, the number of states (|Q| = q(M)).

Lemma 3. There exists a PDA M1 that defines the language M =L(Sm) (see [1, Lemma 2.24]).
Moreover, δ(M1) ≤ 2|Sm|, q(M1) = 1, and d(M1) = 3.

Proof. Let N be the set of all nonterminal symbols of Sm.
The automaton M1 contains only one state q0 and is equal to 〈{q0},Σ1, N ∪ Σ1,Δ1, q0, S〉. Here

we take the union of the main and auxiliary alphabets of Sm as the stack alphabet, and the starting
stack symbol is the start symbol of the grammar.

The set of transitions Δ1 is built in the following way:

(1) for each rule A ⇒ α of Sm we add a transition q0
ε, A : α−−−−→ q0;

(2) for each a ∈ Σ1 we add a transition q0
a, a : ε−−−−→ q0.

The number of transitions of type (1) is equal to the number of rules in Sm. The number of
transitions of type (2) is equal to |Σ1|. Both numbers are less than or equal to |Sm|. Therefore,
δ(M1) ≤ 2|Sm|.

The equality d(M1) = 3 is due to the fact that the right-hand sides of all rules in Sm contain
at most three symbols. �

Lemma 4. Let M1 be a PDA for M as constructed in Lemma 3, and let g : Σ2 ∪ {$} → Σ1

be a homomorphism such that |g(a)| ≤ n for every a ∈ Σ2. Then there exists a PDA M2 that
defines the language g−1(M) ∩ {u$ | Σ+

2 } (see [6, Theorem 7.30] and [1, Lemma 2.22, Theo-
rem 2.26]). Moreover, q(M2) ≤ 2(n + 1)|Σ2|+ 2, δ(M2) ≤ (2n + 6)|Sm| · |Σ2|+ 2|Sm|+ 2|Σ2|+ 2,
and d(M2) = 3.

Proof. Let us build the PDA M2 = 〈Q2,Σ2 ∪ {$},Γ2,Δ2, q0, S〉 in the following way. Let
Γ2 = N ∪Σ1 ∪ {#}. The new symbol # will play the role of a stack bottom marker, forbidding the
automaton to halt too early, even if the stack is empty and the input word is read up to the end.

For Q2 we take the set of all pairs of the form 〈i, x〉, where i ∈ {0, 1} and x ∈ Σ∗
1 is a suffix of

a word g(a) for some letter a ∈ Σ2 (in particular, x can be empty; the states 〈0, ε〉 and 〈1, ε〉 will
play a special role in M2), and two additional states q0 (the initial one) and qF (the final one).

Finally, the transitions of M2 (elements of Δ2) are as follows:

(1) q0
ε, S : S#−−−−−→ 〈0, x〉;

(2) 〈0, ε〉 a, X : X−−−−−→ 〈0, g(a)〉 for all X ∈ Γ2 and a ∈ Σ2;

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 294 2016



136 S.L. KUZNETSOV

(3) 〈0, ε〉 a, X : X−−−−−→ 〈1, g(a)〉 for all X ∈ Γ2 and a ∈ Σ2;

(4) 〈1, ε〉 $, X : X−−−−−→ 〈1, g($)〉 for all X ∈ Γ2;

(5) 〈i, bv〉 ε, X : α−−−−→ 〈i, v〉 if q0
b, X : α−−−−→ q0 is a transition of M1;

(6) 〈1, ε〉 ε, # : ε−−−−→ qF.

The workflow of M2 can be informally interpreted as follows. Transition (1) puts a special
symbol # to the bottom of the stack. Since the only way to remove it is transition (6), the
automaton can finish its operation only in the state qF. Next, by transition (2), the automaton
reads the ongoing symbol a and stores the word g(a) in the “internal memory” (the second component
of the state). Several applications of transition (5) emulate the operation of M1 on this word. After
this emulation the “internal memory” is again empty, and M2 is ready for reading the next letter
of the input. The penultimate letter is read by transition (3), changing the first component of the
state from 0 to 1. This guarantees that the word is nonempty and does not consist of only one
symbol $. After that we again apply transition (5) several times. Finally, transition (4) and several
applications of transition (5) do the same job for $. This ensures that this symbol appears only
once and is located at the end of the word (i.e., this handles the intersection with {u$ | u ∈ Σ+

2 }).
The correctness of this construction follows easily from the proofs of the propositions from [1, 6]

mentioned in the statement of the lemma.
It is easy to see that d(M2) = d(M1) = 3. Let us estimate δ(M2) = |Δ2|. We have |Γ2| · |Σ2|

transitions of type (2) and the same number of transitions of type (3). The number of transitions
of type (4) is equal to |Γ2|. Since the length of each word g(a) (a ∈ Σ2) is not greater than n,
every such word has at most n + 1 suffixes (from the empty word to the whole one). The total
number of such suffixes is less than or equal to (n + 1)|Σ2|. Each transition of type (5) is defined
by such a suffix and a transition of M1; hence the number of such transitions is not greater than
(n+ 1)|Σ2|δ(M1). Finally, transitions of types (1) and (6) are unique, so there are two of them.

Thus, the total number of transitions in M2 is not greater than

2|Γ2| · |Σ2|+ |Γ2|+ (n+ 1)|Σ2|δ(M1) + 2.

Recalling that |Γ2| = |N |+ |Σ1|+ 1 ≤ 2|Sm|+ 1 and δ(M1) ≤ 2|Sm|, we get the required estimation
(2n + 6)|Sm| · |Σ2|+ 2|Sm|+ 2|Σ2|+ 2.

Finally, the estimation q(M2) = |Q2| ≤ 2(n + 1)|Σ2|+ 2 also follows from the estimation of the
number of suffixes of words of the form g(a). �

Lemma 5. Let M2 = 〈Q2,Σ2 ∪ {$},Γ2,Δ2, q0, S〉 be a PDA that defines a language over the
alphabet Σ2 ∪ {$}. Then there exists a context-free grammar G2 that defines the same language
(see [1, Lemma 2.26]). Moreover, |G2| ≤ (d(M2) + 1)δ(M2)(q(M2))

d(M2) + q(M2).
Proof. The desired grammar G2 = 〈N2,Σ2, P2, S2〉 is built as follows.
For nonterminal symbols of this grammar we use triples 〈q, Z, r〉, where q, r ∈ Q2 and Z ∈ Γ2,

and also a special symbol S2. Following [1], we denote 〈q, Z, r〉 by [qZr] (note that this is one
symbol of N2).

The rules of G2 (elements of P2) are the following ones:

(1) [qZr] ⇒ a[rX1s1][s1X2s2] . . . [sk−1Xksk] if q
a, Z : X1...Xk−−−−−−−−→ r is a transition of M2, a ∈

Σ2 ∪ {$, ε}, and s1, . . . , sk are arbitrary elements of Q2; in particular, for a transition of
the form q

a, Z : ε−−−−→ r we add the rule [qZr] ⇒ a;
(2) S2 ⇒ [q0Sq] for every q ∈ Q2.

For each rule of type (1), we have k ≤ d(M2). Since every such rule corresponds to a tran-
sition of M2 and k states s1, . . . , sk ∈ Q2, the total number of such rules is not greater than
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δ(M2)(q(M2))
d(M2), and the total length of the right-hand sides of these rules is less than or equal

to (d(M2) + 1)δ(M2)(q(M2))
d(M2).

The number of rules of type (2) is equal to |Q2| = q(M2), and the right-hand side of every such
rule contains only one letter. This yields the required inequality for |G2|. �

Let us simplify the estimation of |G2|. By construction, |Σ2| ≤ |G|, and for every a ∈ Σ2 we
have |g(a)| ≤ |G|, where G is the original L( \ )-grammar. Moreover, |Sm| ≤ 24|G|3. Let n = |G|.
By Lemma 4, d(M2) = 3, q(M2) ≤ 2(n + 1)n+ 2 = 2n2 + 2n+ 2, and

δ(M2) ≤ (2n + 6) · 24n3 · n+ 2 · 24n3 + 2n+ 2 = 48n5 + 144n4 + 48n3 + 2n+ 2.

Therefore,

|G2| ≤ 4
(
48n5 + 144n4 + 48n3 + 2n + 2

)
(2n2 + 2n+ 2)3 + 2n2 + 2n+ 2 = O(n11).

Finally, the application of a nonextending homomorphism h to the right-hand sides of G2

does not increase its size and gives a context-free grammar of size O(|G|11) for the language
h(g−1(M) ∩ {u$ | u ∈ Σ+

2 }) = L(G). This completes the proof of Theorem 3.

6. CONCLUSION

Despite the fact that the full Lambek calculus L is NP-complete, and therefore Theorem 3
could hardly be generalized to all Lambek grammars, for grammars where all types have constantly
bounded depth there exists a polynomial (O(n4)) algorithm for checking whether a word belongs
to the language defined by such a grammar [20]. Therefore, the question of translating a Lambek
grammar with types of bounded depth into a context-free grammar of polynomial size is worth
further investigation.

The polynomial (O(n3)) algorithm for checking derivability in L( \ ) [23] is essentially the ap-
plication of the standard dynamic programming technique (the Cocke–Younger–Kasami algorithm,
CYK) to the grammar Sm. Unfortunately, this grammar is ambiguous (for some words it yields
more than one parsing tree), and so most of the efficient parsing algorithms are either inapplicable
to this grammar or work slower than the CYK. Moreover, the size of Sm depends on the complexity
of the original sequent; therefore, even Valiant’s universal algorithm [29] on this grammar works
slower than the CYK. Nevertheless, the presented interpretation of Savateev’s criterion in terms of
context-free rules could be useful in attempts of constructing a more efficient algorithm for checking
derivability in L( \ ).
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