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Abstract—We improve previous sum–product estimates in R; namely, we prove the inequality
max{|A + A|, |AA|} � |A|4/3+c, where c is any number less than 5/9813. New lower bounds
for sums of sets with small product set are found. We also obtain results on the additive and
multiplicative energies; in particular, we improve a result of Balog and Wooley.
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1. INTRODUCTION

Let A,B ⊂ R be finite sets. We define the sum set, product set, and quotient set of A and B as

A+B := {a+ b : a ∈ A, b ∈ B}, AB := {ab : a ∈ A, b ∈ B},

and
A/B := {a/b : a ∈ A, b ∈ B, b �= 0},

respectively. The Erdős–Szemerédi conjecture [2] says that for any ε > 0 one has

max{|A+A|, |AA|} � |A|2−ε.

Roughly speaking, it asserts that an arbitrary subset of real numbers (or integers) cannot have good
additive and multiplicative structures simultaneously. Using some beautiful geometrical arguments,
Solymosi [9] proved the following

Theorem 1. Let A ⊂ R be a set. Then

|A+A|2|A/A| ≥ |A|4
4�log|A|� , |A+A|2|AA| ≥ |A|4

4�log|A|� . (1.1)

In particular,

max{|A+A|, |AA|} � |A|4/3

log1/3|A|
. (1.2)

Here and below we suppose that |A| ≥ 2.
It is easy to see that bound (1.1) is tight up to logarithmic factors if the size of A+A is small

relatively to A. We will write a � b or b � a if a = O(b logc|A|), c > 0. The notation a ∼ b means
that a � b and b � a.

In [4] we improved bound (1.2).
Theorem 2. Let A ⊂ R be a set. Then

max{|A+A|, |AA|} � |A|4/3+c′
,

where c′ = 1/20 598. The same is true if one replaces AA by A/A.
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The main result of the article is the following.
Theorem 3. Let A ⊂ R be a finite set. Then

max{|A+A|, |AA|} � |A|4/3+c,

where c = 5/9813. The same is true if one replaces AA by A/A.
In [4] the case of sets with small product/quotient sets was considered (sharper bounds for the

difference of two sets with small multiplicative doubling can be found in [7]).
Theorem 4. Let A ⊂ R be a finite set and K ≥ 1 a real number. Suppose that |A/A| ≤ K|A|

or |AA| ≤ K|A|. Then

|A+A| � |A|19/12K−5/6 (1.3)

and

|A+A| � |A|49/32K−19/32. (1.4)

Inequality (1.4) is stronger than (1.3) for K � |A|5/23.
We improve Theorem 4 for some range of parameters in the case of a small quotient set.
Theorem 5. Let A ⊂ R be a finite set and K ≥ 1 a real number. Suppose that |A/A| ≤ K|A|.

Then

|A+A| � max
{
|A|19/12K−5/6, |A|1313/830K−336/415

}
. (1.5)

One can check that the lower bound (1.5) coincides with (1.3) for K � |A|5/23 and is stronger
than both estimates (1.3) and (1.4) for |A|5/23 � K � |A|673/2867. If K � |A|673/2867, then (1.4)
gives a better result.

Finally, in Section 4 we obtain sum–product results that involve the additive and multiplicative
energies E+ and E× of sets. Similar results in this direction were obtained in [1], where the following
theorem was proved.

Theorem 6. Let A ⊂ R be a finite set and δ = 2/33. Then there are two disjoint subsets B
and C of A such that A = B � C and

max{E+(B),E×(C)} � |A|3−δ(log|A|)1−δ ,

max{E+(B,C),E×(B,C)} � |A|3−δ/2(log|A|)(1−δ)/2 .

It was also proved in [1] that one cannot take δ greater than 2/3. Our method gives an improve-
ment of Theorem 6.

Theorem 7. Let A ⊂ R be a finite set and δ = 1/5. Then there are two disjoint subsets B
and C of A such that A = B � C and

max{E+(B),E×(C)} � |A|3−δ .

In the proof of our results we use a combination of the methods from [9, 6] and, of course, [4].
The main new idea is to introduce some more flexible quantity d∗(A) instead of d(A) (see the
definitions below). It allows us to avoid using the Balog–Szemerédi–Gowers theorem [11] and to
obtain stronger results. In addition, it allows us to prove a number of theorems on the additive
and multiplicative energies (see Section 4). We hope that our new quantity d∗(A) will help in other
problems of sum–product type.
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80 S.V. KONYAGIN, I.D. SHKREDOV

2. DEFINITIONS AND PRELIMINARY RESULTS

The additive energy E+(A,B) between two sets A and B is the number of the solutions of the
equation a1 + b1 = a2 + b2, a1, a2 ∈ A, b1, b2 ∈ B (see [11]):

E+(A,B) =
∣
∣{a1 + b1 = a2 + b2 : a1, a2 ∈ A, b1, b2 ∈ B

}∣
∣.

The multiplicative energy E×(A,B) between two sets A and B is the number of solutions of the
equation a1b1 = a2b2, a1, a2 ∈ A, b1, b2 ∈ B (see [11]):

E×(A,B) =
∣
∣{a1b1 = a2b2 : a1, a2 ∈ A, b1, b2 ∈ B

}∣
∣.

In the case of A = B we write E+(A) for E+(A,A) and E×(A) for E×(A,A). Given λ ∈ A/A, we
put Aλ = A ∩ λA. Clearly, if 0 /∈ A, then

E×(A) =
∑

λ∈A/A

|Aλ|2 (2.1)

and similarly for the energy E+(A). Next, the Cauchy–Schwarz inequality implies that

E×(A1, A2)|A/A| ≥ |A1|2|A2|2, E×(A1, A2)|AA| ≥ |A1|2|A2|2 (2.2)

for 0 /∈ A, A1 ⊂ A, and A2 ⊂ A. In particular,

E×(A)|A/A| ≥ |A|4, E×(A)|AA| ≥ |A|4. (2.3)

Finally, we will use the following inequality.
Lemma 8. Let A1, . . . , An be finite subsets of R. Then

(

E+

(
n⋃

i=1

Ai

))1/4
≤

n∑

i=1

(E+(Ai))
1/4.

Similarly, if A1, . . . , An are finite subsets of R \ {0}, then
(

E×
(

n⋃

i=1

Ai

))1/4
≤

n∑

i=1

(E×(Ai))
1/4.

Proof. A similar result for subsets of finite abelian groups follows from [11, identity (4.18),
Exercise 4.2.1]. Subsets of R can be reduced to subsets of finite groups by [11, Lemma 5.26]. �

We need several auxiliary statements. The first one is the Szemerédi–Trotter theorem [10] (see
also [11]). We call a set L of continuous plane curves a pseudo-line system if any two members
of L share at most one point in common. Define the incidence number I(P,L) between points and
pseudo-lines as I(P,L) = |{(p, l) ∈ P × L : p ∈ l}|.

Theorem 9. Let P be a set of points and L a pseudo-line system. Then

I(P,L) � |P|2/3|L|2/3 + |P| + |L|.

We need a definition from [8].
Definition 10. A finite set A ⊂ R is said to be of Szemerédi–Trotter type (abbreviated as SzT

type) with a parameter D > 0 if the inequality

∣∣{s ∈ A−B : |A ∩ (B + s)| ≥ τ
}∣∣ ≤ D|A| · |B|2

τ3
(2.4)

holds for every finite set B ⊂ R and every real number τ ≥ 1.
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The quantity D(A) can be considered as the infimum of the numbers D such that (2.4) holds for
all B and τ ≥ 1 but, of course, the definition is applicable only to sets A with small quantity D(A).

Any SzT-type set contains only a small number of solutions to a wide class of linear equations
(see, e.g., [4, Corollary 8], where nevertheless another quantity D(A) was used, and [8, Lemmas 7, 8]).

Corollary 11. Let A1, A2, A3 ⊂ R be any finite sets and α1, α2, and α3 be arbitrary nonzero
numbers. Then the number

σ(α1A1, α2A2, α3A3) :=
∣∣{α1a1 + α2a2 + α3a3 = 0: a1 ∈ A1, a2 ∈ A2, a3 ∈ A3

}∣∣ (2.5)

does not exceed O(D(A1)
1/3|A1|1/3|A2|2/3|A3|2/3). Moreover, E+(A1, A2) � D(A1)

1/2|A1| · |A2|3/2.
We also need a result from [8] on the connection between sumsets and D(A) for SzT-type sets A.
Theorem 12. Let A be of SzT type. Then

|A+A| � |A|58/37D(A)−21/37. (2.6)

Now we can introduce a new characteristic of a set A ⊂ R. Put

Sym×
t (Q,R) = {x : |Q ∩ xR−1| ≥ t}

and

d∗(A) = min
t>0

min
∅ �=Q,R⊂R\{0}

|Q|2|R|2
|A|t3 , (2.7)

where the second minimum in (2.7) is taken over all Q and R such that A ⊆ Sym×
t (Q,R) and

max{|Q|, |R|} ≥ |A|.
Lemma 13. Let A ⊂ R be a finite set. Then A is of Szemerédi–Trotter type with a parame-

ter O(d∗(A)).
Proof. Let R and Q be two sets and t > 0 be a real number such that A ⊆ Sym×

t (Q,R).
Without loss of generality assume that |Q| = max{|Q|, |R|} ≥ |A|. Let also

Sτ :=
{
s ∈ A−B : |A ∩ (B + s)| ≥ τ

}
.

Our task is to estimate the size of Sτ . It is easy to see that the bound

|Sτ | �
|Q|2|R|2|B|2

t3τ3
(2.8)

is enough. We have

τ |Sτ | ≤
∑

s∈Sτ

|A ∩ (B + s)| =
∣
∣{a− b = s : a ∈ A, b ∈ B, s ∈ Sτ

}∣
∣ := σ.

Because A ⊆ Sym×
t (Q,R), we obtain the following upper bound for the number σ:

σ ≤ t−1
∣
∣{qr − b = s : q ∈ Q, r ∈ R, b ∈ B, s ∈ Sτ

}∣
∣. (2.9)

First of all, let us prove a trivial estimate for the size of Sτ . Namely, dropping the condition s ∈ Sτ

in (2.9), we get
τ |Sτ |t ≤ |Q| · |R| · |B|,

and hence inequality (2.8) should only be checked in the range

t2τ2 � |Q| · |R| · |B|, (2.10)
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because otherwise

|Sτ | ≤
|Q| · |R| · |B|

tτ
� |Q|2|R|2|B|2

t3τ3
.

Further, consider the family L of |R| · |Sτ | lines lr,s = {(x, y) : ry − x = s}, r ∈ R, s ∈ Sτ and
the family of points P = Q×B. Applying Theorem 9 to the pair (P,L), we get

σ ≤ t−1I(P,L) � t−1
(
(|P| · |L|)2/3 + |P|+ |L|

)
. (2.11)

If the first term in (2.11) dominates, then we obtain (2.8). Now suppose that the required
bound (2.8) does not hold. Then, if the second term in (2.11) is the largest one, we obtain

|Q|2|R|2|B|2
t2τ2

� tτ |Sτ | � |P| = |Q| · |B|.

But, clearly, t ≤ min{|Q|, |R|} = |R| and τ ≤ min{|A|, |B|}; thus we arrive at a contradiction
in view of the assumption |Q| ≥ |A|. Finally, we need to consider the case when the third term
in (2.11) dominates. In the situation

tτ |Sτ | � |Sτ | · |R|

and hence in view of (2.10)
|R| · |Q| · |B| � |R|2.

But this is a contradiction, because |Q| ≥ |R| and B is large enough. This completes the proof of
the lemma. �

It is easy to see from the definition that 1 ≤ d∗(A) ≤ |A|. The second inequality can be obtained
by putting Q = A, R = {1}, and t = 1.

Remark 14. In [5, Lemma 7] (see also [6, Lemma 27]) the same result was obtained for the
quantity

d(A) := min
C �=∅

|AC|2
|A| · |C| .

Clearly, d∗(A) ≤ d(A). Indeed, just take t = |C|, Q = AC, and R = C−1.
Remark 15. Let A be a set and Π = AA or A/A. By the Katz–Koester inclusion [3], that is,

|Π ∩ λΠ| ≥ |A| for any λ ∈ A/A, one has d∗(Π) ≤ |Π|3/|A|3. The last estimate is usually better
than the ordinary |ΠΠ|2/|Π|2 even if one applies the Plünnecke–Ruzsa inequality [11] (even for large
subsets of A).

One can easily obtain an analog of Lemma 13 in a dual form. In this case, for any sets Q and R
and a real number t > 0 we put

Sym+
t (Q,R) := {x : |Q ∩ (x−R)| ≥ t}

and consider the quantity

d+(A) := min
t>0

min
∅ �=Q,R⊂R\{0}

|Q|2|R|2
|A|t3 , (2.12)

where the second minimum in (2.12) is taken over all Q and R such that A ⊆ Sym+
t (Q,R) and

max{|Q|, |R|} ≥ |A|. After that, repeating the proof of Lemma 13, we need to estimate the cardi-
nality of the set

Sτ := {s ∈ AB−1 : |A ∩ sB| ≥ τ}.
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So, we have arrived at the equation ab−1 = s, s ∈ Sτ , a ∈ A, b ∈ B, and further to the equation
q + r = sb, s ∈ Sτ , b ∈ B, q ∈ Q, r ∈ R. It corresponds to the lines lr,s = {(x, y) : y + r = sx}, and
Theorem 9, combined with the calculations at the end of the proof of Lemma 13, gives the result.

Thus, we have obtained an analog of Lemma 13.
Lemma 16. Let A,B ⊂ R be two finite sets. Then for any real number τ ≥ 1 one has

∣
∣{s ∈ AB−1 : |A ∩ sB| ≥ τ

}∣
∣ � d+(A)|A| · |B|2

τ3
. (2.13)

So, one can say that a set A ⊂ R is of multiplicative Szemerédi–Trotter type with a parameter d
if inequality (2.13) with d+(A) replaced by d and with the symbol � replaced by ≤ holds for all
B ⊂ R and every real number τ ≥ 1.

We will consider further generalizations of the quantities d∗(A) and d+(A) in our forthcoming
paper.

3. PROOF OF THE MAIN RESULTS

We need two technical lemmas from [4].
Let A ⊂ R, 0 /∈ A, be a finite set and τ > 0 be a real number. Let also S′

τ be a set such that

S′
τ ⊂ Sτ := {λ : τ < |Aλ| ≤ 2τ} ⊆ A/A

and for any nonzero α1, α2, and α3 and different λ1, λ2, λ3 ∈ S′
τ one has

σ(α1Aλ1 , α2Aλ2 , α3Aλ3) ≤ σ.

Lemma 17. Let A ⊂ R, 0 /∈ A, be a finite set, τ > 0 be a real number,

32σ ≤ τ2 ≤ |A+A|
√
σ, (3.1)

and S′
τ and σ be as defined above. Then

|A+A|2 ≥ τ3|S′
τ |

128
√
σ
. (3.2)

Lemma 18. Let A ⊂ R, 0 /∈ A, be a finite set and L ≥ 1 be a real number. Suppose that

|A+A|2|A/A| ≤ L|A|4. (3.3)

Then there are τ ≥ E×(A)/(2|A|2) and some sets S′
τ ⊆ Sτ ⊆ A/A, |Sτ |τ2 � E×(A), |S′

τ | ≥ |Sτ |/2,
such that for any element λ from S′

τ one has

|Aλ/Aλ| � τ2L−16. (3.4)

Similarly, if
|A+A|2|AA| ≤ L|A|4, (3.5)

then there exist τ ≥ E×(A)/(2|A|2) and some sets S′
τ ⊆ Sτ ⊆ A/A, |Sτ |τ2 � E×(A), |S′

τ | ≥ |Sτ |/2,
such that for any λ ∈ S′

τ one has
|AλAλ| � τ2L−16. (3.6)

Proof of Theorem 3. Consider the situation with A/A, because the case of AA is similar.
By Π we denote A/A. Without loss of generality, suppose that 0 /∈ A. Now assume that inequal-
ity (3.3) holds with some parameter L. Let also |A/A|3 ≤ L′|A|4. Our task is to find a lower
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84 S.V. KONYAGIN, I.D. SHKREDOV

bound for the quantities L and L′. Using Lemma 18, we find a number τ ≥ E×(A)/(2|A|2) and
sets S′

τ ⊆ Sτ ⊆ A/A, |Sτ |τ2 � E×(A), |S′
τ | � |Sτ |, such that for any element λ from S′

τ one has
|Aλ/Aλ| � τ2L−16. Using the Katz–Koester inclusion, namely, Aλ/Aλ ⊆ Π ∩ λΠ−1, λ ∈ Π (see [3]),
we get

|Π ∩ λΠ−1| ≥ |Aλ/Aλ| � τ2L−16 := t

for any λ ∈ S′
τ . In particular, S′

τ ⊆ Sym×
t (Π,Π). Since S′

τ ⊆ Sτ , we obtain
∑

a∈A
|A ∩ aS′

τ | =
∑

λ∈S′
τ

|A ∩ λA| � τ |S′
τ |

and hence there is a ∈ A such that for the set A′ := A ∩ aS′
τ one has

|A′| � τ |S′
τ | · |A|−1. (3.7)

We know that S′
τ ⊆ Sym×

t (Π,Π). Hence A′ ⊆ Sym×
t (aΠ,Π). Applying formula (2.7) with Q = aΠ

and R = Π, we obtain

d∗(A
′) � |Π|4

|A′|t3 � |Π|4L48

|A′|τ6 � L48|A| · |Π|4
|Sτ |τ7

. (3.8)

Using Theorem 12 and Lemma 13 as well as inequalities (2.3), (3.7), and (3.8), we get

|A+A| ≥ |A′ +A′| � |A′|58/37d∗(A′)−21/37 �
(
τ |Sτ | · |A|−1

)58/37(|Sτ |τ7L−48|A|−1|Π|−4
)21/37

� (E×(A))79/37τ47/37L−1008/37|A|−79/37|Π|−84/37

� (E×(A))126/37L−1008/37|A|−173/37|Π|−84/37

≥
(
|A|4|Π|−1

)126/37
L−1008/37|A|−173/37|Π|−84/37

≥ |A|331/37L−1008/37|Π|−210/37 ≥ L−1008/37(L′)−70/37|A|51/37.

The last estimate is greater than |A|4/3 by some power of |A|. Easy calculations show that one can
take any number less than 5/9813 for the constant c. This completes the proof. �

Proof of Theorem 5. Let Π = A/A and |Π| = K|A|. In the proof we can restrict ourselves to
the case |A|5/23 ≤ K ≤ γ|A|1/4 where γ > 0 is a small constant. Without loss of generality, suppose
that 0 /∈ A. Using the pigeonhole principle, we find τ ≥ |A|/(2K) and Sτ with |Sτ |τ � |A|2.
Consider two subsets S′

τ and S′′
τ of Sτ such that |S′

τ | = |S′′
τ | ≥ |Sτ |/2 and for some parameter

κ ∈ (0, 1] the following holds: |Aλ/A| ≤ κ|Π| for all λ ∈ S′
τ and |Aλ/A| ≥ κ|Π| for all λ ∈ S′′

τ . For
any λ ∈ S′

τ one has

d∗(Aλ) ≤ d(Aλ) ≤
κ2|Π|2

|Aλ| · |A|
≤ κ2|Π|2τ−1|A|−1. (3.9)

Thus, applying Corollary 11 and Lemma 17, we see that

|A+A|2 � τ3|Sτ |
(
κ2|Π|2τ−1|A|−1

)−1/6
τ−5/6 = τ7/3|Sτ | · |A|1/6|Π|−1/3κ−1/3,

provided that conditions (3.1) hold. Using the inequalities τ ≥ |A|/(2K) and |Sτ |τ � |A|2, we
obtain

|A+A|2 � |A|2(|A|K−1)4/3|A|1/6(|A|K)−1/3κ−1/3 � |A|19/6K−5/3κ−1/3.
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Hence
|A+A| � |A|19/12K−5/6κ−1/6. (3.10)

For the set S′′
τ we use the arguments as in the proof of Theorem 3. Using the Katz–Koester

inclusion, namely, Aλ/A ⊆ Π ∩ λΠ−1, we get

|Π ∩ λΠ−1| ≥ |Aλ/A| ≥ κ|Π| := t

for any λ ∈ S′′
τ . In particular, S′′

τ ⊆ Sym×
t (Π,Π). Since S′′

τ ⊆ Sτ , we obtain
∑

a∈A
|A ∩ aS′′

τ | =
∑

λ∈S′′
τ

|A ∩ λA| � τ |S′′
τ | � ητ |Sτ |,

and hence there is a ∈ A such that for the set A′ := A ∩ aS′′
τ one has

|A′| � τ |Sτ | · |A|−1. (3.11)

We know that S′′
τ ⊆ Sym×

t (Π,Π). Hence A′ ⊆ Sym×
t (aΠ,Π). Applying formula (2.7) with Q = aΠ

and R = Π, we obtain

d∗(A
′) ≤ |Π|4

|A′|t3 =
|Π|

|A′|κ3 � |A| · |Π|
κ3|Sτ |τ

. (3.12)

Using Theorem 12 and Lemma 13 as well as inequalities (2.3), (3.11), and (3.12), we get

|A+A| ≥ |A′ +A′| � |A′|58/37d∗(A′)−21/37 �
(
τ |Sτ | · |A|−1

)58/37(
κ3τ |Sτ | · |A|−1|Π|−1

)21/37

= (|Sτ |τ)79/37|A|−79/37|Π|−21/37κ63/37 � |A|79/37|Π|−21/37κ63/37

≥ |A|58/37K−21/37κ63/37. (3.13)

Combining bound (3.13) with (3.10), we find that the optimal choice of κ is

κ = |A|7/830K−59/415 ≤ 1, (3.14)

because |A|5/23 ≤ K. Substituting the last inequality into (3.10), we obtain

|A+A| � |A|19/12K−5/6
(
|A|7/830K−59/415

)−1/6
= |A|1313/830K−336/415.

We only need to check conditions (3.1). The inequality τ2 ≥ 32σ follows easily from (3.9) and
the inequality K � |A|1/4. Indeed, by Corollary 11, inequality (3.9), and the bound τ ≥ |A|/(2K),
we have

σ ≤
(
K2|A|τ−1

)1/3
τ5/3 � γ2/3τ2

and σ ≤ τ2/32 if γ is small enough. It remains to check that τ2 ≤ |A + A|√σ. We have taken
σ = τ4/3K2/3|A|1/3κ2/3. Thus we need to verify the inequality

τ8 ≤ |A+A|6K2|A|κ2. (3.15)

By bound (1.1) one has |A + A|2 � |A|3K−1 log−1|A|. In addition, in view of (3.14) and the
estimate K � |A|1/4, we have κ � |A|−9/332 ≥ |A|−3/100. Thus,

|A+A|6K2|A|κ2 � |A|10−3/50K−1 log−3 |A| � |A|9,

and (3.15) is true for large |A| since τ ≤ |A|. This completes the proof. �
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4. RESULTS ON ENERGIES

In this section we obtain results on the additive and multiplicative energies.
Let us start with a lemma that can be of interest in its own right.
Lemma 19. Let A,P ⊂ R be two finite sets. Put

σ∗ :=
∑

x∈P
|A ∩ xA|.

Then there is A′ ⊆ A such that A′ is of SzT type with d∗(A′) � |P |2|A|2|A′|2/σ3
∗ and |A′| � σ∗|P |−1.

Similarly, put

σ+ :=
∑

x∈P
|A ∩ (x+A)|.

Then there exists A′′ ⊆ A such that A′′ is of SzT type with d+(A
′′) � |P |2|A|2|A′′|2/σ3

+ and
|A′′| � σ+|P |−1.

Proof. We have
σ∗ =

∑

x∈A
|P ∩ xA−1|,

and thus by the pigeonhole principle there is a set A′ ⊆ A and a number q ≤ |A| such that |A′|q ∼ σ∗
and q < |P ∩ xA−1| ≤ 2q for any x ∈ A′. Since q ≤ |P |, we have |A′| � σ∗|P |−1. Using Lemma 13
with Q = P and R = A, we see that the set A′ is of SzT type with d∗(A′) estimated as

d∗(A
′) � |P |2|A|2

q3|A′| � |P |2|A|2|A′|2
σ3
∗

,

as required.
Applying similar arguments and Lemma 16 instead of Lemma 13, we obtain the existence of a

set A′′. This completes the proof. �
Now we are ready to formulate the main result of the section, which shows that any set either

has small multiplicative energy or contains a large subset with small additive energy, and vice
versa. Similar results were obtained in [1] but, as we said in the Introduction, we do not use the
Balog–Szemerédi–Gowers theorem in the proof.

Theorem 20. Let A ⊂ R be a set. Then there is A1 ⊆ A such that |A1| � E×(A)|A|−2 and

E+(A1)E
×(A) � |A1|7/2|A|2. (4.1)

Similarly, there is A2 ⊆ A such that |A2| � E+(A)|A|−2 and

E×(A2)E
+(A) � |A2|7/2|A|2. (4.2)

Proof. Put
E×
3 (A) :=

∑

x

|A ∩ xA|3.

By the pigeonhole principle there is P ⊆ A/A and a number Δ such that Δ3|P | ∼ E∗
3(A) and

Δ < |A ∩ xA| ≤ 2Δ for any x ∈ P . Applying Lemma 19 with σ∗ ∼ Δ|P |, we find a set A1 ⊆ A,
|A1| � Δ, such that d∗(A1) � |A|2|A1|2/(|P |Δ3). We have Δ � E×

3 (A)Δ
−2|P |−1 and hence, by the

Cauchy–Schwarz inequality, we get |A1| � E×(A)2|A|−2Δ−2|P |−1. Next,

E×(A) ≥
∑

x∈P
|A ∩ xA|2 ≥ Δ2|P |.
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Therefore, |A1| � E×(A)|A|−2. Using Corollary 11, we get

(E+(A1))
2E×

3 (A) � (E+(A1))
2|P |Δ3 � |A1|7|A|2.

Finally, applying the Cauchy–Schwarz inequality again, we obtain (4.1), as required.
By similar arguments we obtain the existence of a set A2. This completes the proof. �
Now we can prove Theorem 7 from the Introduction.
Proof of Theorem 7. Let M ≥ 1 be a parameter, which we will choose later. Our arguments

are a sort of an algorithm. We construct a decreasing sequence of sets C1 = A ⊇ C2 ⊇ . . . ⊇ Ck

and an increasing sequence of sets B0 = ∅ ⊆ B1 ⊆ . . . ⊆ Bk−1 ⊆ A such that for any j = 1, 2, . . . , k
the sets Cj and Bj−1 are disjoint and, moreover, A = Cj � Bj−1. If at some step j we have
E×(Cj) ≤ |A|3/M , then we stop our algorithm and put C = Cj , B = Bj−1, and k = j − 1. In
the opposite situation, where E×(Cj) > |A|3/M , we apply Theorem 20 to the set Cj and find a
subset Dj of Cj such that |Dj | � |A|/M and

E+(Dj) � |Dj |7/2M |A|−1. (4.3)

After that we put Cj+1 = Cj \ Dj and Bj = Bj−1 � Dj and repeat the procedure. Clearly,
Bk =

⊔k
j=1Dj and, since |Dj | � |A|/M , we have k � M . Finally, by the Hölder inequality,

Lemma 8, and (4.3), we get

(E+(Bk))
1/4 ≤

k∑

j=1

(E+(Dj))
1/4 � (M |A|−1)1/4

k∑

j=1

|Dj |7/8 ≤ (M |A|−1)1/4

(
k∑

j=1

|Dj |
)7/8

k1/8

� (M |A|−1)1/4|A|7/8M1/8 = M3/8|A|5/8.

Hence
E+(Bk) � M3/2|A|5/2.

Optimizing over M , that is, choosing M = |A|1/5, we obtain the result. This completes the
proof. �

From Theorem 20 we immediately get

E+(A1)E
×(A) � |A|11/2 and E×(A2)E

+(A) � |A|11/2.

If E×(A) (respectively, E+(A)) is not too large, then it is not difficult to construct larger sets A1

and A2 satisfying these inequalities.
Corollary 21. Let A ⊂ R be a set. Then there is A1 ⊆ A such that |A1| � (E×(A))1/3 and

E+(A1)E
×(A) � |A|11/2. (4.4)

Similarly, there is A2 ⊆ A such that |A2| � (E+(A))1/3 and

E×(A2)E
+(A) � |A|11/2. (4.5)

Proof. We proceed as in the proof of Theorem 7.
We construct a decreasing sequence of sets C1 = A ⊇ C2 ⊇ . . . ⊇ Ck and an increasing sequence

of sets B0 = ∅ ⊆ B1 ⊆ . . . ⊆ Bk−1 ⊆ A such that for any j = 1, 2, . . . , k the sets Cj and Bj−1

are disjoint and, moreover, A = Cj � Bj−1. If at some step j we have |Bj−1| > (E×(A))1/3/2,
then we stop our algorithm and put A1 = Bj−1 and k = j − 1. In the opposite situation, where

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 294 2016



88 S.V. KONYAGIN, I.D. SHKREDOV

|Bj−1| ≤ (E×(A))1/3/2, we apply Theorem 20 to the set Cj and find a subset Dj of Cj such that
|Dj | � E×(Cj)/|Cj |2 and

E+(Dj) � |Dj |7/2|Cj |2E×(Cj)
−1.

We observe, however, that the inequality E×(Bj−1) ≤ E×(A)/8 due to |Bj−1| ≤ (E×(A))1/3/2
implies E×(Cj) � E×(A). Therefore,

|Dj | � E×(A)/|A|2 and E+(Dj) � |Dj |7/2|A|2E×(A)−1.

Next we put Cj+1 = Cj \Dj and Bj = Bj−1 �Dj and repeat the procedure.
By Lemma 8, we have

(E+(Bk−1))
1/4 ≤

k−1∑

j=1

(E+(Dj))
1/4 � |A|1/2E×(A)−1/4

k−1∑

j=1

|Dj |7/8

� |A|1/2E×(A)−1/4
k−1∑

j=1

|Dj |
(
E×(A)|A|−2

)−1/8

≤ |A|1/2E×(A)−1/4E×(A)1/3
(
E×(A)|A|−2

)−1/8

= |A|3/4E×(A)−1/24 ≤ |A|11/8E×(A)−1/4.

So,
E+(Bk−1) � |A|11/2E×(A)−1. (4.6)

Next,
E+(Dk) � |Dk|7/2|A|2E×(A)−1 ≤ |A|11/2E×(A)−1. (4.7)

Since A1 = Bk = Bk−1 ∪Dk, we combine (4.6) and (4.7) to complete the proof of the first claim of
the corollary. The proof of the second claim is similar. �
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