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Abstract—The paper is devoted to the problem of approximating reachable sets for a nonlinear
control system with state constraints given as a solution set of a finite system of nonlinear
inequalities. Each of these inequalities is given as a level set of a smooth function, but their
intersection may have nonsmooth boundary. We study a procedure of eliminating the state
constraints based on the introduction of an auxiliary system without constraints such that
the right-hand sides of its equations depend on a small parameter. For state constraints with
smooth boundary, it was shown earlier that the reachable set of the original system can be
approximated in the Hausdorff metric by the reachable sets of the auxiliary control system as
the small parameter tends to zero. In the present paper, these results are extended to the
considered class of systems with piecewise smooth boundary of the state constraints.
Keywords: reachable set, state constraints, penalty function, approximation, Hausdorff
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1. INTRODUCTION

Reachable sets, solvability sets, tubes of trajectories, and their analogs are used for solving

various control problems under uncertainty and differential games (see [1–5]). In the present

paper, we consider a method for the description of reachable sets and tubes of trajectories of a

control system with state constraints. Questions of the approximate construction of reachable

sets, including reachable sets for systems with state constraints, were addressed in many publi-

cations [5–12]. A method of eliminating state constraints in the construction of reachable sets

for differential inclusions was proposed in [13, 14], where tube trajectories and reachable sets of a

differential inclusion with a convex state constraint were approximated by solutions of a family of

differential inclusions without state constraints with the right-hand side of the inclusions depending

linearly on a matrix parameter. In [15, 16], it was proposed to restrict the set of velocities of the

original system near the boundary of the constraints. The right-hand side of the approximating

auxiliary system in this procedure depends on a scalar penalty parameter, its trajectories do not

intersect the boundary of the constraints, and the reachable set of the system with state constraints

is approximated from inside by the reachable set of the approximating system. The proposed

method can be considered as an analog of the barrier function method in optimization problems.

Its application is limited by the requirement that the inward pointing condition is fulfilled (see,
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e.g., [17–19]): at any boundary point of the state constraints that is reachable from the initial state,

there must exist a velocity vector of the control system directed strictly inside the constraints.

The convergence of reachable sets can be proved by applying theorems on the approximation of

trajectories of the control system by trajectories satisfying the state constraints [17–21]. Such

theorems are used in studying the properties of the value function and in applications of the theory

of generalized solutions of Hamilton–Jacobi equations [22,23] in optimal control problems.

In [24], an auxiliary approximating system was obtained by another modification of the set of

velocities of the original system. To the right-hand side of equations of the system, a correction

term is added, which directs the velocity vector inside the set of constraints when its boundary is

intersected. The right-hand side of the auxiliary system depends on a small parameter defining the

domain of action of the correction term. The reachable set of this system, which is constructed

without regard to the state constraints, contains the reachable set of the original system with state

constraints. As the small parameter tends to zero, the reachable sets converge in the Hausdorff

metric to the reachable set of the original system. This paper extends [24], where state constraints

with smooth boundary were considered. Here, we consider piecewise smooth convex constraints.

In contrast to state constraints with smooth boundary, in the piecewise smooth case we have to

impose more severe constraints on the right-hand side of the control system in order to obtain

estimates for the approximation accuracy. Here, compared to [24], the inward pointing condition

is somewhat weakened due to the convexification of the velocity set of the system.

2. DEFINITIONS AND PROBLEM STATEMENT

We consider the control system

ẋ(t) = f(x(t), u(t)), t0 ≤ t ≤ θ, x(t0) = x0, (2.1)

where x ∈ R
n is the state vector and u(t) ∈ U for a.a. t ∈ [t0, θ] is the control. The set U is compact

in R
r, and controls are Lebesgue measurable functions u : [t0, θ] → U .

We use the following notation. For a real matrix A, A� denotes its transpose, and 0 is either

a zero vector of appropriate dimension or the number zero. For x, y ∈ R
n, (x, y) = x�y is the

scalar product of vectors and ‖x‖ = (x, x)1/2 is the Euclidean norm. Further, Br(x̄) = {x ∈ R
n :

‖x − x̄‖ ≤ r} is the ball of radius r > 0 centered at the point x̄. For S ⊂ R
n, we denote by

∂S, intS, clS, and coS the boundary, interior, closure, and the convex hull of S; ∇g(x) is the

gradient of the function g(x) at the point x; h(A,B) is the Hausdorff distance between the sets

A,B ⊂ R
n; and conv (Rn) is the family of convex compact subsets of Rn. We use the notation

U = {u(·) ∈ L∞[t0, θ] : u(t) ∈ U for a.a. t ∈ [t0, θ]} for the set of controls.

Further, the right-hand side of system (2.1) is assumed to obey Assumption 1.

Assumption 1. The mapping f(x, u) : Rn × U → R
n satisfies the following conditions:

(1) f(x, u) is continuous in (x, u) and locally Lipschitz in x uniformly in u ∈ U ;

(2) the sublinear growth condition is fulfilled : there exists C > 0 such that

‖f(x, u)‖ ≤ C(1 + ‖x‖), (x, u) ∈ R
n × U.

Under the specified conditions, the set of trajectories of system (2.1) corresponding to the

given initial condition x(t0) = x0 is bounded. By BR, we denote the ball BR(x̄) that contains all

trajectories of the system. System (2.1) can be represented in the form of the equivalent differential

inclusion

ẋ ∈ F (x), x(t0) = x0,
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where F (x) := f(x,U) is the set of velocities of system (2.1) for given x ∈ R
n. The multivalued

mapping F : Rn � R
n is compact-valued and locally Lipschitz in the Hausdorff metric. Solutions of

the differential inclusion are absolutely continuous functions x : [t0, θ] → R
n satisfying the condition

ẋ(t) ∈ F (x(t)) for almost all t.

The state constraints have the form

x(t) ∈ S, t ∈ [t0, θ], (2.2)

where S is a closed set in R
n containing the vector x0. In what follows, we consider as S the set

S = {x ∈ R
n : gi(x) ≤ 0, i = 1, . . . k},

where gi : R
n → R are convex continuously differentiable functions with locally Lipschitz gradients.

Denote by x(t, u(·), x0) a solution of system (2.1) with the initial condition x(t0) = x0. The

reachable set (domain) of system (2.1) with state constraint (2.2) at time θ is the set

G0(θ) =
{
x ∈ R

n : ∃u(·) ∈ U , x = x(θ, u(·), x0), x(t, u(·), x0) ∈ S, t0 ≤ t ≤ θ
}
;

it is the set of all points to which system (2.1) can be taken at time θ from the initial state x0 under

constraints (2.2). In the present paper, we consider the problem of the approximate construction

of G0(θ). The original control system is replaced by a family of control systems without state

constraints depending on a penalty parameter ε:

ẋ(t) = fε(x(t), u(t)), x(t0) = x0. (2.3)

The reachable sets of these systems are constructed without regard to the state constraints, and

they approximate G0(θ) as ε → 0.

3. APPROXIMATION OF REACHABLE SETS

In further constructions, we use the following inward pointing condition (see [17–20]).

Assumption 2. For any x ∈ ∂S ∩BR,

coF (x) ∩ intTS(x) 
= ∅. (3.1)

Here, TS(x) is the tangent cone to the set S at the point x, defined as follows:

TS(x) =
{
d ∈ R

n : lim
ξ→+0

ξ−1d(x+ ξd, S) = 0
}
,

where d(x, S) is the distance from x to the set S:

d(x, S) = min
y∈S

‖x− y‖.

This condition provides the nonemptiness of the reachable set G0(θ).

Define a function g : Rn → R:

g(x) = max
1≤i≤k

gi(x); (3.2)

the function g(x) is convex and, obviously, S = {x ∈ R
n : g(x) ≤ 0}.

For x ∈ R
n, we set

I(x) = {i ∈ {1, . . . k} : gi(x) = g(x)};
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I(x) is the set of indices i at which the maximum is attained in (3.2). In the sequel, we assume

that the following condition is satisfied.

Assumption 3. At the points x ∈ ∂S ∩ BR, the gradients ∇gi(x), i ∈ I(x), are positively

linearly independent.2

Under this assumption, condition (3.1) can be written in an equivalent form (see [24]):

max
λ∈Λ(x)

min
f∈ coF (x)

( k∑
i=1

λi∇gi(x), f
)
< 0 ∀x ∈ {x ∈ R

n : g(x) = 0} ∩BR, (3.3)

where

Λ(x) =
{
λ ∈ R

k : λi ≥ 0,
k∑

i=1

λi = 1; λi = 0 for i /∈ I(x)
}
.

Applying the minimax theorem and interchanging the minimum and maximum in (3.3), we get

min
f∈ coF (x)

max
λ∈Λ(x)

( k∑
i=1

λi∇gi(x), f
)
< 0.

Since

max
λ∈Λ(x)

( k∑
i=1

λi∇gi(x), f
)
= max

i∈I(x)
(∇gi(x), f),

we find that inequality (3.3) is equivalent to the condition

min
f∈ coF (x)

max
i∈I(x)

(
∇gi(x), f

)
< 0 ∀x ∈ {x ∈ R

n : g(x) = 0} ∩BR.

Assertion. If condition (3.3) holds, then there exist σ > 0 and ρ > 0 such that the inequality

min
f∈coF (x)

max
i∈I(x)

(∇gi(x), f) < −ρ (3.4)

is valid for all points of the set

Sσ
R = {x : 0 ≤ g(x) ≤ σ} ∩BR.

Proof. By contradiction, assume that, for any σ > 0 and ρ > 0, there exists a vector xσ,ρ ∈ BR

such that

min
f∈ coF (xσ,ρ)

max
i∈I(xσ,ρ)

(∇gi(x
σ,ρ), f) ≥ −ρ, 0 ≤ g(xσ,ρ) ≤ σ. (3.5)

Choose sequences of positive numbers σm and ρm such that σm → 0 and ρm → 0 as m → ∞,

and define xm = xσm, ρm . The sequence xm ∈ BR contains a convergent subsequence; without

loss of generality, we can assume that xm → x̄ ∈ BR. It follows from the continuity of g(x) that

g(x̄) = 0. Choose fm∈ coF (xm) that realizes the minimum in the left-hand side of inequality (3.5)

for σ = σm, ρ = ρm, and xσ,ρ = xm. The sequence fm is bounded and satisfies the inequality

max
i∈I(xm)

(∇gi(x
m), fm) ≥ −ρm;

2Vectors ai ∈ R
n, i = 1, . . . ,m, are called positively linearly independent if, for any αi ≥ 0, i = 1, . . . ,m, the

equality
∑m

i=1 αia
i = 0 implies that αi = 0, i = 1, . . . ,m.
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without loss of generality, we assume that fm → f̄ ∈ coF (x̄). Let i /∈ I(x̄); then gi(x̄) < g(x̄). By

the continuity of the functions gi(x) and g(x), for sufficiently large m, we have gi(x
m) < g(xm),

which is equivalent to the condition i /∈ I(xm). Consequently, I(xm) ⊂ I(x̄) and

max
i∈I(x̄)

(∇gi(x
m), fm) ≥ max

i∈I(xm)
(∇gi(x

m), fm) ≥ −ρm.

The function Ψ(x, f) = max i∈I(x̄)(∇gi(x), f) is continuous. Therefore, passing in the last inequality

to the limit as m → ∞, we find that

max
i∈I(x̄)

(∇gi(x̄), f̄) ≥ 0, x̄ ∈ coF (x̄), g(x̄) = 0,

which contradicts condition (3.5). �
In what follows, we will use the following strengthening of condition (3.4).

Assumption 4. There exist σ > 0, ρ > 0, and a Lipschitz function f̄(x) defined on the

set Sσ
R such that

max
i∈I(x)

(∇gi(x), f̄(x)) < −ρ, f̄(x) ∈ coF (x) ∀x ∈ Sσ
R.

Under this assumption, we define the right-hand side fε(x, u) of control system (2.3) on the set

{x ∈ R
n : g(x) ≤ σ} ∩ BR as follows. Choose 0 < ε < σ. Let hε(τ) : R → R be a continuously

differentiable function such that 0 ≤ hε(τ) ≤ 1, hε(τ) = 1 for τ < 0, and hε(τ) = 0 for τ > ε.

Define

fε(x, u) =

{
hε(g(x))f(x, u) + (1− hε(g(x)))f̄ (x) for g(x) > 0,

f(x, u) for g(x) ≤ 0.

As hε(τ), we can take the linear–quadratic function

hε(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 for τ < 0,

1− 2τ2

ε2
for 0 ≤ τ ≤ ε/2,

2(τ − ε)2

ε2
for ε/2 ≤ τ ≤ ε,

0 for τ > ε.

Theorem 1. Let f(x, u) and the constraints of the problem satisfy Assumptions 1, 3, and 4.

Then:

(1) for 0 < ε < σ, the mapping fε(x, u) is continuous on {x ∈ R
n : g(x) ≤ σ} ∩ BR × U and

Lipschitz in x uniformly in u ∈ U ;

(2) for any u(·) ∈ U , the solution xε(t) of system (2.3) with the initial condition xε(t0) = x0

can be continued to [t0, θ] and satisfies the inequality

g(xε(t)) ≤ ε, t ∈ [t0, θ].

Proof. The first part of the proof repeats almost word-for-word the proof of Theorem 1 in [24].

Fix ε > 0. On the set S1 × U , where S1 = {x : g(x) ≤ 0} ∩ BR, the function fε(x, u) coincides

with f(x, u); hence, it is continuous. For (x, u) ∈ S2 × U , where S2 = {x : 0 ≤ g(x) ≤ σ} ∩ BR,

fε(x, u) is continuous as the superposition of continuous functions. The points x where g(x) = 0

belong to each of the sets S1 and S2; therefore, the continuity of fε(x, u) at these points follows
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from its continuity on these sets. To prove the Lipschitz condition for fε(x, u), we note that there

exist constants L1, L2 > 0, independent of u, such that ∀i = 1, 2

|fε(x, u)− fε(y, u)| ≤ Li‖x− y‖ ∀x, y ∈ Si ∀u ∈ U.

For x, y ∈ S1, the inequality follows from Assumption 1. On S2 × U , fε(x, u) is the superposition

of functions Lipschitz in x (a function convex on R
n is Lipschitz on any bounded set). We take

x ∈ S1 and y ∈ S2 and connect these points by a line segment. At the ends of the segment, the

function g takes values of different signs; hence, on this segment, there exists a point z at which

g(x) = 0. In view of the fact that z ∈ Si, i = 1, 2, we find that

|fε(x, u) − fε(y, u)| ≤ |fε(x, u)− fε(z, u)| + |fε(z, u)− fε(y, u)|

≤ L1‖x− z‖+ L2‖y − z‖ ≤ max{L1, L2}(‖x− z‖+ ‖y − z‖) = max{L1, L2}‖x− y‖ ∀u ∈ U.

Consider the solution xε(t) of system (2.3) corresponding to the control u(·) ∈ U . Since fε(x, u)
is a convex combination of the vectors f(x, u) and f(x, ū(x)), which belong to the convex set

coF (x), we have the inclusion ẋε(t) ∈ coF (xε(t)) for almost all t. Let us prove that this trajectory

does not leave the set {x ∈ R
n : g(x) ≤ σ}∩BR where the right-hand side fε(x, u) of system (2.3) is

defined. Since the solution xε(t) of the differential inclusion ẋε(t)∈ coF (xε(t)) can be approximated

arbitrarily closely in the uniform metric by solutions of the inclusion ẋ(t) ∈ F (x(t)) [25], we have

xε(t) ∈ BR for all values of t for which the solution is defined. Let γ∗ be the maximum among

numbers γ not exceeding θ such that the solution xε(t) is defined on [t0, γ]. Let us prove that the

inequality g(xε(t)) ≤ ε is fulfilled at all points [t0, γ
∗]. Assume by contradiction that g(xε(t

∗)) > ε

for some t∗ ∈ [t0, γ
∗]. Let

t∗ = max{t : t ∈ [t0, t
∗], g(xε(t)) = ε}.

The function g(xε(t)) is Lipschitz and, hence, is differentiable almost everywhere. We estimate the

quantity
d

dt
g(xε(t)) at the points t ∈ [t∗, t∗] where this derivative and the derivative ẋε(t) exist.

Define Δxε(t) = xε(t+ δt)− xε(t); then

gi(xε(t+ δt)) − gi(xε(t)) = (∇gi(xε(t)),Δxε(t)) + oi(Δxε(t)), i = 1, . . . , k, (3.6)

where oi(η)/η → 0 as η → 0. Substituting Δxε(t) = ẋε(t)Δt + o(Δt) (o(Δt)/Δt → 0, Δt → 0)

into equality (3.6), we get

gi(xε(t+Δt))− gi(xε(t)) = (∇gi(xε(t)), ẋε(t))Δt+ αi(Δt), i = 1, . . . , k, (3.7)

where

αi(Δt) = ∇gi(xε(t), o(Δt)) + oi(ẋε(t)Δt+ o(Δt)).

Obviously, αi(Δt)/Δt → 0 as Δt → 0.

For i ∈ I(xε(t)), we have gi(xε(t)) = g(xε(t)). If i /∈ I(xε(t)), then gi(xε(t)) < g(xε(t));

consequently, by the continuity of g(x), gi(x), and xε(t) for sufficiently small Δt, we find that

gi(xε(t+Δt)) < g(xε(t+Δt)). Thus, g(xε(t+Δt)) = max i∈I(xε(t)) gi(xε(t+Δt)). In view of the

above, passing in both sides of equality (3.7) to the maximum over i ∈ I(xε(t)), we obtain

g(xε(t+Δt))− g(xε(t)) ≤ Δt max
i∈I(xε(t))

(∇gi(xε(t)), ẋε(t)) + max
i∈I(xε(t))

αi(Δt).
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In the limit as Δt → 0, we obtain from the above inequality that

d

dt
g(xε(t)) ≤ max

i∈I(xε(t))
(∇gi(xε(t)), ẋε(t)).

Since g(xε(t)) ≥ ε on the interval [t∗, t∗], we have hεg(xε(t)) = 0 and, consequently,

ẋε(t) = fε(xε(t), u(t)) = f̄(xε(t)).

From the definition of f̄(x), we find that
d

dt
g(xε(t)) ≤ −ρ < 0 for almost all t ∈ [t∗, t∗], which

implies that g(xε(t∗)) > g(xε(t
∗)), contrary to the assumption. The theorem is proved.

Lemma 1. Let S be a set in R
n given by the system of inequalities S = {x ∈ R

n : gi(x) ≤ 0,

i = 1, . . . ,m}, and let the functions gi(x), i = 1, . . . ,m, be convex and satisfy Slater’s condition:

∃x̄ ∈ R
n, gi(x̄) < 0, i = 1, . . . ,m.

Let D be a bounded subset of Rn. Then there exists a constant M > 0 such that

d(x∗, S) ≤ M max
{

max
i=1,...,m

gi(x
∗), 0

}
∀x∗ ∈ D. (3.8)

Proof. Assume that g(x) = maxi=1,...,m gi(x), the function g(x) is convex, and S = {x ∈ R
n :

g(x) ≤ 0, i = 1, . . . ,m}. Define h = −g(x̄) > 0. We take an arbitrary point x∗ /∈ S and connect x̄

with x∗ by a line segment. Points of this segment have the form x(λ) = x∗ + λ(x̄ − x∗), where

0 ≤ λ ≤ 1. Since g(x(0)) > 0 and g(x(1)) < 0, there exists λ in the interval [0, 1] such that

g(x(λ)) = 0. It follows from the convexity of g(x) that

0 = g(x(λ)) ≤ λg(x̄) + (1− λ)g(x∗) = −λh+ (1− λ)g(x∗),

whence

λ ≤ g(x∗)

h+ g(x∗)
≤ g(x∗)

h
.

The equality x(λ)− x∗ = λ(x̄− x∗) implies that λ = ‖x(λ) − x∗‖/‖x̄ − x∗‖.
As a result, in view of the inclusion x(λ) ∈ S, we come to the inequality

d(x∗, S) ≤ ‖x(λ)− x∗‖ ≤ g(x∗)

h
‖x̄− x∗‖ ≤ Mg(x∗)

for M = maxx∗∈D ‖x̄− x∗‖/h, which completes the proof for x∗ /∈ S. For x∗ ∈ S, the inequality is

obvious. �
Lemma 2. Assume that S = {x ∈ R

n : g(x) ≤ 0, i = 1, . . . ,m}, where gi(x), i = 1, . . . ,m,

are convex continuously differentiable functions satisfying Assumption 3. Then, there exists M > 0

such that inequality (3.8) holds for all x ∈ BR.

Proof. Indeed, let us choose any point x ∈ ∂S. By the condition, the gradients ∇gi(x),

i ∈ I(x), are positively linearly independent. Then, there exists h ∈ R
n such that (∇gi(x), h) < 0,

i ∈ I(x) (see [26]). We take x̄ = x+ ξh; for small positive ξ, we have gi(x̄) < 0, i = 1, . . . , k; i.e.,

Slater’s condition holds. To complete the proof, we apply Lemma 1. �
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Theorem 2. Let f(x, u) and the constraints of the problem satisfy Assumptions 1, 3, and 4.

Then, for any 0 < ε < σ, we have the inclusion G0(θ) ⊂ Gε(θ). There exists a constant L > 0 such

that

h(G0(θ), Gε(θ)) ≤ Lε. (3.9)

Proof. The trajectories of auxiliary system (2.3) are trajectories of the differential inclusion

ẋ(t) ∈ coF (x(t)), x(t0) = x0,

where F (x) = f(x,U) is a compact-valued locally Lipschitz multivalued mapping. Fix ε0 = σ/2

and consider ε < ε0. For any δ > 0 and any trajectory xε(t) of system (2.3), there exists a trajectory

x̄ε(t) of the differential inclusion

ẋ(t) ∈ F (x(t)) (3.10)

(of control system (2.1)) such that (see [25])

max
t∈[t0,t1]

‖x̄ε(t)− xε(t)‖ ≤ δ.

We can choose δ so small that

max
t∈[t0,t1]

g(x̄ε(t)) < 3
ε

2
.

By [21, Theorem 1], there exists a constant K > 0 such that, for any trajectory x̄ε(t) of (3.10),

there exists a trajectory x̂(t) of (3.10) satisfying the state constraints x̂(t) ∈ S and the inequality

max
t∈[t0,t1]

‖x̄ε(t)− x̂(t)‖ ≤ K max
t∈[t0,t1]

(d(x̄ε(t)), S). (3.11)

By Lemmas 1 and 2, there exists M > 0 such that

d(x̄ε(t), S) ≤ M max
{

max
i=1,...,m

gi(x̄ε(t)), 0
}
≤ 3Mε

2
;

consequently, inequality (3.11) can be written in the form

max
t∈[t0,t1]

‖x̄ε(t))− x̂(t))‖ ≤ 3KMε

2
.

Since, for g(x) ≤ 0, we have fε(x, u) = f(x, u) ∀u ∈ U , it follows that G0(θ) ⊂ Gε(θ). For

x̂(θ) ∈ G0(θ) and xε(θ) ∈ Gε(θ), we have

‖x̂(θ)− xε(θ)‖ ≤ δ +
3KMε

2
.

Since δ can be chosen arbitrarily small, we obtain (3.9) for L =
3KM

2
. Theorem 2 is proved.
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