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Abstract—We prove extrapolation theorems in weighted Iwaniec–Sbordone spaces and apply
them to one-weight inequalities for several integral operators of harmonic analysis. In addition,
in weighted grand Lebesgue spaces, we establish Bernstein and Nikol’skii type inequalities and
prove direct and inverse theorems on the approximation of functions.
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INTRODUCTION

At the end of the 20th century, it became clear that classical function spaces are insufficient for
solving a number of problems both in mathematics itself and in applied sciences. The necessity of
introducing new function spaces arose, for example, in mathematical models of nonlinear elasticity
theory, incompressible fluid dynamics, and physics (Lavrent’ev phenomenon). One of the new func-
tion spaces that appeared in the 1990s is the space Lp) introduced by Iwaniec and Sbordone [13] in
connection with finding minimal conditions for the integrability of the Jacobian. A somewhat more
general function space Lp),θ was considered in [10], where the authors analyzed the inhomogeneous
n-harmonic equation divA(x,Δu) = μ. These spaces are now called the Iwaniec–Sbordone spaces or
grand Lebesgue spaces in the literature. The intensive study of these spaces has also been motivated
by the fact that they are well suited for solving the problems of existence, uniqueness, and regularity
of solutions to a wide class of nonlinear partial differential equations.

The structural properties of grand Lebesgue spaces were studied in [3, 7]. In [8], the authors
proved that the maximal Hardy–Littlewood operator is bounded in the space Lp)

w ([0, 1]), 1 < p < ∞,
if and only if the weight w belongs to the Muckenhoupt class. A similar statement for the Hilbert
transforms was obtained in [17] for Lp),θ

w ([0, 1]). One-weight inequalities for various singular integrals
and maximal functions in the spaces Lp),θ

w were later established in [14–16, 29]. In [24, 19, 20], criteria
for the existence of analogs of the well-known Sobolev theorem were proved. These criteria have
the form of necessary and sufficient conditions for the weights and the parameter θ that guarantee
the validity of the relevant inequality. In [18], for fractional integrals defined on quasimetric spaces
with measure satisfying the doubling condition, we proved a criterion for the validity of a trace
inequality in the spaces L

p),θ
w .

The present paper is devoted to weighted extrapolation theorems in Iwaniec–Sbordone spaces
and to their applications to the mapping properties of a number of integral operators generated by
integral transformations defined on general quasimetric spaces with measure satisfying the doubling
condition. In addition, applying boundedness theorems for the above-mentioned operators, we also
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prove direct and inverse theorems on the approximation of 2π-periodic functions by trigonometric
polynomials in a weighted grand Lebesgue space (more precisely, in its subspace that is the closure
of smooth functions with respect to the norm of the original space).

The paper is organized as follows. In Section 1, we give preliminary definitions and present
some known results. Section 2 is devoted to extrapolation theorems in weighted Iwaniec–Sbordone
spaces. Extrapolation theory is known to go back to Rubio de Francia’s paper [27]. Intensive
studies on extrapolation problems have been continued to date. We have proved that if some pair
of functions satisfies a one-weight inequality in a Lebesgue space with exponent r for all weights
of the Muckenhoupt class Ar, then a one-weight inequality in Iwaniec–Sbordone spaces holds for
the same pair of functions. Our result covers both cases: when the weight in the definition of the
norm of a space occupies the position of a generating measure, and when the weight appears as a
factor of an element of the space. Below, these spaces are denoted by L

p),θ
w and Lp),θ

w , respectively.
In Section 3, from extrapolation theorems we derive boundedness results for a series of integral
operators in weighted grand Lebesgue spaces. In Section 4, we apply the results of Section 3 to
the proof of analogs of well-known fundamental inequalities for trigonometric polynomials. For
the Weyl fractional derivatives of trigonometric polynomials in the space Lp),θ

w , we establish an
inequality analogous to the well-known Bernstein inequality [2]. Next, based on this inequality
and Sobolev type theorems presented in Section 3, we prove an inequality of the same type as
Nikol’skii’s important inequality [25] for the norms of trigonometric polynomials in different met-
rics. In Sections 5 and 6, using the above-mentioned inequalities, we establish direct and inverse
approximation theorems for the fractional derivatives of 2π-periodic functions in the subspace of
approximable functions of the space Lp),θ

w .
In this paper, we denote by the same symbols c and C generally different constants that are

independent of functions and (in appropriate places) of n.

1. PRELIMINARY INFORMATION AND SOME KNOWN RESULTS

Let (X, d, μ) be a quasimetric space with measure μ and quasimetric d, which means that the
following conditions hold:

(i) d(x, y) = 0 if and only if x = y;
(ii) there exists a constant k > 1 such that the inequality d(x, y) ≤ k(d(x, z) + d(z, y)) is valid

for arbitrary x, y, z ∈ X;
(iii) d(x, y) = d(y, x) for arbitrary x, y ∈ X.

For any x ∈ X and r > 0, the set B(x, r) := {y ∈ X : d(x, y) < r} is called a ball in X.
It is assumed that the measure μ is finite and is defined on a σ-algebra of subsets of X that

contains all balls. Everywhere below, we also assume that 0 < μB(x, r) < ∞ and μ{x} = 0 for all
x ∈ X and r > 0. If the measure μ satisfies the doubling condition

μB(x, 2r) ≤ CμB(x, r), (1.1)

where the constant C is independent of x ∈ X and r > 0, then (X, d, μ) is called a space of
homogeneous type. It is well known [23] that for an arbitrary quasimetric space (X, d), there exists
a continuous quasimetric ρ on X such that it is equivalent to d, each ball with respect to ρ is open
in the topology induced by the quasimetric ρ, and there exist constants C and θ ∈ (0, 1) such that

|ρ(x, z) − ρ(y, z)| ≤ Cρθ(x, y)
(
ρ(x, z) + ρ(y, z)

)1−θ
.

Without loss of generality, we will assume that the quasimetric d is continuous and all balls are
open with respect to d. Suppose also that the space of continuous functions with compact support
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WEIGHTED EXTRAPOLATION IN IWANIEC–SBORDONE SPACES 163

is everywhere dense in the space of μ-measurable functions. For the corresponding definitions,
examples, and some properties of spaces of homogeneous type, see [23, 4, 30].

If Cμ is the least constant for which (1.1) holds, then the number

Dμ := log2Cμ (1.2)

is called the doubling order of the measure μ.
Let 1 ≤ r < ∞. Denote by Lr(X,μ) the Lebesgue space on X. If w is a weight function

(i.e., a positive function on X that is locally integrable almost everywhere in the sense of the
measure μ), then we denote by Lp

w(X,μ) the Lebesgue space with weight w, i.e., f ∈ Lr
w(X,μ) if

‖f‖Lr
w(X,μ) = ‖f‖Lr(X,w dμ) < ∞.

Let μX < ∞ and 1 < p < ∞. Let, next, ϕ be a positive continuous function on the inter-
val (0, p − 1) such that it does not decrease on (0, σ) for some sufficiently small positive σ and
limx→0+ ϕ(x) = 0.

The generalized grand Lebesgue space Lp),ϕ(X,μ) is defined as the set of those f : X → R for
which the norm

‖f‖Lp),ϕ(X) = ‖f‖Lp),ϕ(X,μ) = sup
0<ε<p−1

⎛

⎝ϕ(ε)

∫

X

|f(x)|p−ε dμ(x)

⎞

⎠

1/(p−ε)

is finite. The weighted grand Lebesgue space, denoted by L
p),ϕ
w (X,μ), coincides with Lp),ϕ(X,w dμ),

i.e., ‖f‖
L
p),ϕ
w (X,μ)

= ‖f‖Lp),ϕ(X,w dμ).

Along with the space L
p),ϕ
w (X,μ), we also consider the space Lp),ϕ

w (X,μ) defined by the norm
‖wf‖Lp),ϕ(X,dμ).

For ϕ(x) = xθ, θ > 0, we will denote the spaces Lp),ϕ(X,μ) and L
p),ϕ
w by Lp),θ(X,μ) and

L
p),θ
w (X,μ), respectively. The same also applies to the spaces Lp),ϕ(X,μ) and Lp),ϕ

w (X,μ) for
ϕ(x) = xθ.

It is easy to see that in general ‖w1/pf‖Lp),ϕ(X) �= ‖f‖
L
p),ϕ
w (X)

, so the weighted space Lp),ϕ

w1/p(X,μ)

is different from the space L
p),ϕ
w (X,μ).

The space Lp),θ(X,μ) is known to be a Banach function space (see, for example, [7]). One can
easily verify that the following continuous embeddings hold for 0 < ε ≤ p− 1 and θ1 < θ2:

Lp(X,μ) ↪→ Lp),θ1(X,μ) ↪→ Lp),θ2(X,μ) ↪→ Lp−ε(X,μ).

Let 1 < r < ∞. A weight w is said to belong to the Muckenhoupt class Ar(X) if

[w]Ar := sup
B

⎛

⎝ 1

μB

∫

B

w(x) dμ

⎞

⎠

⎛

⎝ 1

μB

∫

B

w1−r′(x) dμ

⎞

⎠

r−1

< ∞, r′ =
r

r − 1
.

Next, w ∈ A1(X) if
Mw(x) ≤ Cw(x) (1.3)

almost everywhere in the sense of the measure μ, where M denotes the maximal Hardy–Littlewood
operator defined on a space of homogeneous type as

Mg(x) = sup
B�x

1

μB

∫

B

|g(y)| dμ(y).

Denote the best constant in inequality (1.3) by [w]A1(X).
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By Hölder’s inequality, we have

[w]Ar ≤ [w]As , 1 < s < r < ∞. (1.4)

The Muckenhoupt classes possess the following important property of openness: if w ∈ Ar(X),
then there exists a positive number σ, 0 < σ < r − 1, such that w ∈ Ar−σ(X).

The equality
[
w1−p′

]
Ap′ (X)

= [w]p
′−1

Ap(X), 1 < p < ∞, p′ =
p

p− 1
, (1.5)

is verified directly.
The class A∞(X) is defined as A∞(X) =

⋃
r>1Ar(X).

Let 1 < p, q < ∞ and ρ be a function that is positive almost everywhere in the sense of the
measure μ and such that ρq is locally integrable. It is said that ρ ∈ Ap,q(X) if

[ρ]Ap,q(X) := sup
B

⎛

⎝ 1

μB

∫

B

ρq(x) dμ

⎞

⎠

⎛

⎝ 1

μB

∫

B

ρ−p′(x) dμ

⎞

⎠

q/p′

< ∞.

For p = q, we set Ap,q = Ap.
It is easy to see that

[ρ]Ap,q(X) = [ρq]A1+q/p′ (X), 1 < p ≤ q < ∞. (1.6)

For p = q, equality (1.6) takes the form

[ρ]Ap(X) = [ρp]Ap(X), 1 < p < ∞.

By the Lebesgue theorem on the differentiation of an indefinite integral for (X, d, μ), the following
inequalities are valid:

[w]Ap(X) ≥ 1, [ρ]Ap,q(X) ≥ 1.

For the maximal Hardy–Littlewood operator defined on a space of homogeneous type, there
exists a constant c for which Buckley’s estimate

‖M‖Lp
w(X)→Lp

w(X) ≤ cp′[w]
1/(p−1)
Ap(X) , 1 < p < ∞, (1.7)

holds (see [12]).
Now we formulate known extrapolation theorems for weighted Lebesgue spaces.
The following statements in the case of Euclidean spaces were proved in [6] (see also [11] in the

nondiagonal case). For operators in the diagonal case, a similar theorem is contained in [5], and in
the nondiagonal case, in [21]. See also [9, p. 548] for similar results.

Theorem A (diagonal case). Let (X, d, μ) be a space of homogeneous type. Suppose that for
some family of pairs of nonnegative measurable functions (f, g), a number p0 ∈ [1,∞), and any
w ∈ Ap0(X), the inequality

⎛

⎝
∫

X

gp0w dμ

⎞

⎠

1/p0

≤ CN
(
[w]Ap0 (X)

)
⎛

⎝
∫

X

fp0w dμ

⎞

⎠

1/p0

(1.8)
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is satisfied, where N is an increasing function and the constant C is independent of w. Then, for
an arbitrary p, 1 < p < ∞, and any w ∈ Ap(X), we have

⎛

⎝
∫

X

gpw dμ

⎞

⎠

1/p

≤ CK(w)

⎛

⎝
∫

X

fpw dμ

⎞

⎠

1/p

, (1.9)

where C is the same constant as in (1.8) and

K(w) =

⎧
⎪⎪⎨

⎪⎪⎩

N
(
[w]Ap(X)

(
2‖M‖Lp

w(X)→Lp
w(X)

)p0−p
)
, p < p0,

N
(
[w]

(p0−1)/(p−1)
Ap(X)

(
2‖M‖

Lp′

w1−p′ (X)→Lp′

w1−p′ (X)

)(p−p0)/(p−1))
, p > p0.

Theorem B (nondiagonal case). Let (X, d, μ) be a space of homogeneous type. Suppose
that for some family of pairs (f, g) of nonnegative measurable functions, some p0 ∈ [1,∞)
and q0 ∈ (0,∞), and any w ∈ Ap0,q0(X), we have

⎛

⎝
∫

X

gq0wq0 dμ

⎞

⎠

1/q0

≤ CN
(
[w]Ap0,q0 (X)

)
⎛

⎝
∫

X

fp0wp0 dμ

⎞

⎠

1/p0

, (1.10)

where N is an increasing function and the constant C is independent of w. Then, for all p,
1 < p < ∞, and q, 0 < q < ∞, such that

1

q0
− 1

q
=

1

p0
− 1

p

and arbitrary w ∈ Ap,q(X), we have
⎛

⎝
∫

X

gqwq dμ

⎞

⎠

1/q

≤ CK(w)

⎛

⎝
∫

X

fpwp dμ

⎞

⎠

1/p

, (1.11)

where C is the same constant as in (1.10) and

K(w) =

⎧
⎪⎪⎨

⎪⎪⎩

N
(
[w]Ap,q(X)

(
2‖M‖Lγq

wq (X)→Lγq
wq (X)

)γ(q−q0)
)
, q < q0,

N
(
[w]

(γq0−1)/(γq−1)
Ap,q(X)

(
2‖M‖

Lγp′

w−p′ (X)→Lγp′

w−p′ (X)

)γ(q−q0)/(γq−1))
, q > q0,

with γ := 1/q0 + 1/p′0.
Remark. It is easy to see that inequality (1.7) implies the estimate

K(w) ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N

[(
2c

(
1 +

p′

q

))γ(q−q0)

[wq]
1+γ(q−q0)p′/q
A1+q/p′(X)

]
, q < q0,

N

[(
2c

(
1 +

q

p′

))γ(q−q0)/(γq−1)

[wq]A1+q/p′ (X)

]
, q > q0.

(1.12)

The proofs of Theorems A and B are based on the arguments used in [6]; however, for complete-
ness, below we present a detailed proof, because here we deal with a space of homogeneous type
and, moreover, we are interested in exact constants.
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The proofs of Theorems A and B are based on the following lemmas (see [6] in the case of
Euclidean spaces).

Lemma 1.1. (a) Let 1≤ p<p0<∞. If w∈Ap(X) and u∈A1(X), then wup−p0 ∈Ap0(X) and

‖wup−p0‖Ap0 (X) ≤ ‖w‖Ap(X)‖u‖p0−p
A1(X).

(b) Let 1 < p0 < p < ∞. If w ∈ Ap(X) and u ∈ A1(X), then (wp0−1up−p0)1/(p−1) ∈ Ap0(X) and
∥
∥(wp0−1up−p0)1/(p−1)

∥
∥
Ap(X)

≤ ‖w‖(p0−1)/(p−1)
Ap(X) ‖u‖(p−p0)/(p−1)

A1(X) .

The proof of the lemma follows from Hölder’s inequality and the obvious inequalities

1

μB
≤
∫

B

u(y) dμ(y) ≤ Mu(x) ≤ ‖u‖A1(X)u(x)

for almost every x ∈ B.
The following lemma is known as the Rubio de Francia algorithm.
Lemma 1.2. Let p > 1. Let f be a nonnegative function in Lp

w(X) and w ∈ Ap(X). Denote
by Mk the k-th iteration of the operator M and set M0f = f . Define the operator

Rf(x) =

∞∑

k=0

Mkf(x)

(2‖M‖Lp
w→Lp

w
)k

.

Then f(x) ≤ Rf(x) almost everywhere, ‖Rf‖Lp
w(X) ≤ 2‖f‖Lp

w(X), Rf is the weight of class A1(X),
and

[Rf ]A1(X) ≤ 2‖M‖Lp
w(X)→Lp

w(X). (1.13)

This lemma follows from the estimate

‖Mk‖Lp
w(X)→Lp

w(X) ≤ ‖M‖kLp
w(X)→Lp

w(X)

and the condition in the definition of the class A1(X).
When proving Theorem A, we will follow the scheme of the proof of Theorem 1.3 from [6].
Proof of Theorem A. First, let p < p0 and f ∈ Lp

w(X). By Hölder’s inequality, assertion (a)
of Lemma 1.1, and estimate (1.13), we obtain

∫

X

gpw(x) dμ =

∫

X

gpw(Rf)p(p−p0)/p0(Rf)p(p0−p)/p0 dμ

≤

⎛

⎝
∫

X

gp0w(Rf)p−p0 dμ

⎞

⎠

p/p0 ⎛

⎝
∫

X

(Rf)pw(x) dμ

⎞

⎠

1−p/p0

≤ CpN
(
[(Rf)p−p0 ]Ap0(X)

)p
⎛

⎝
∫

X

fp0w(Rf)p−p0 dμ

⎞

⎠

p/p0⎛

⎝
∫

X

|f |pw(x) dμ

⎞

⎠

1−p/p0

≤ CpN
(
[w]Ap(X)[(Rf)p−p0 ]A1(X)

)p
∫

X

|f |pw(x) dμ

≤ CpN
(
[w]Ap(X)

(
2‖M‖Lp

w→Lp
w

)p0−p)p
∫

X

|f |pw(x) dμ.
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Now, let p > p0. Let, next, h ∈ L
p/(p−p0)
w (X) with the norm equal to 1. Define a function H so

that Hp′w1−p′ = hp/(p−p0)w. Then the function H belongs to Lp′

w1−p′ (X) and its norm in this space
is 1. Using the pointwise estimate H ≤ RH (which is valid almost everywhere) and the factorization
Lemma 1.1 (assertion (b)), we obtain

∫

X

gp0hw dμ ≤
∫

X

gp0w(p0−1)/(p−1)(RH)(p−p0)/(p−1) dμ

≤ Cp0N
([

w(p0−1)/(p−1)(RH)(p−p0)/(p−1)
]
Ap0(X)

)p0
∫

X

fp0w(p0−1)/(p−1)(RH)(p−p0)/(p−1) dμ

≤ Cp0N
(
[w]

(p0−1)/(p−1)
Ap(X)

(
2‖M‖

Lp′

w1−p′ →Lp′

w1−p′

)(p−p0)/(p−1))p0

×

⎛

⎝
∫

X

fpw dμ

⎞

⎠

p0/p⎛

⎝
∫

X

(RH)p
′
w1−p′ dμ

⎞

⎠

(1−p0)/p

.

Taking the least upper bound with respect to h, we arrive at estimate (1.9). �
Proof of Theorem B. First, notice that [w]Ap0,q0 (X) = [wq0 ]Aq0γ(X). On the other hand,

[w]Ap,q(X) = [wq]Aqγ(X), since we also have γ = 1/q + 1/p′.

Case of q < q0. In this case, p < p0. Set f ∈ Lp
wp(X). Define a function H by the equality

Hqγwq = fpwp. Then H ∈ Lqγ
wq(X). Let us construct RH following the Rubio de Francia algorithm

and apply Hölder’s inequality. Then we have
∫

X

(gw)q dμ =

∫

X

(gw)q(RH)qγ(q−q0)/q0(RH)qγ(q0−q)/q0 dμ

≤

⎛

⎝
∫

X

gq0wq(RH)γ(q−q0) dμ

⎞

⎠

q/q0⎛

⎝
∫

X

(
(RH)γw

)q
dμ

⎞

⎠

1−q/q0

. (1.14)

Using Lemma 1.1, we find that wq(RH)γ(q−q0) ∈ Aq0γ(X) and

[
wq(RH)γ(q−q0)

]
Aq0γ(X)

≤ [wq]Aqγ (X)[(RH)]
γ(q0−q)
A1(X)

.

Now, according to (1.8), we derive the estimate

⎛

⎝
∫

X

gq0wq(RH)γ(q−q0) dμ

⎞

⎠

1/q0

≤ CN
([

wr(RH)γ(q−q0)
]
Aq0γ(X)

)
⎛

⎝
∫

X

fp0wq(RH)γ(q−q0) dμ

⎞

⎠

1/p0

.

Taking into account this inequality in (1.14) and using the estimates

(RH)−1 ≤ H−1,

‖RH‖Lγq
wq (X) ≤ 2‖H‖Lγq

wq (X) = 2‖f‖p/(qγ)
Lp
wp (X)

,

[RH]A1(X) ≤ 2‖M‖Lγq
wq (X)→Lγq

wq (X),
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which follow from the Rubio de Francia algorithm, we can see that

⎛

⎝
∫

X

(gw)q dμ

⎞

⎠

1/q

≤ CN
(
[w]Aqγ (X)

(
2‖M‖Lγq

wq (X)

)γ(q−q0)
)
⎛

⎝
∫

X

(fw)p dμ

⎞

⎠

1/p

.

Case of q > q0. In this case, p > p0. Now we apply the dual argument. Let h ∈ L
q/(q−q0)
wq (X) be

a nonnegative function with the norm equal to 1. We can easily see that [w]Ap,q(X) = [w−p′ ]p
′γ−1

Ap′γ(X).

Define a function H ∈ Lp′γ
w−p′ by the equality Hp′γ

w−p′ = hq/(q−q0)wq. If we define RH by the Rubio
de Francia algorithm, then RH ∈ A1(X) and H ≤ RH. Hence,

∫

X

gq0hwq dμ =

∫

X

gq0
(
Hp′γw−(p′+q)

)(q−q0)/qwq dμ ≤
∫

X

gq0wq0p′/p′0(RH)γ(q−q0)/(qγ−1) dμ.

Notice that (wq)(q0γ−1)/(qγ−1)(RH)γ(q−q0)/(qγ−1) is a weight of class Aq0γ(X). Moreover,

[
(wq)(q0γ−1)/(qγ−1)(RH)γ(q−q0)/(qγ−1)

]
Aq0γ(X)

≤ [wr]
(q0γ−1)/(qγ−1)
Arγ(X)

[RH]
(q−q0)γ/(qγ−1)
A1(X)

. (1.15)

If we take into account (1.8), we obtain
∫

X

gq0hwq dμ ≤ CN
([

(wr)(q0γ−1)/(qγ−1)(RH)(q−q0)γ/(qγ−1)
]
Aq0γ

)q0

×

⎛

⎝
∫

X

f q0wp′(p0−1)(RH)p0γ(q−q0)/(q0(qγ−1))

⎞

⎠

q0/p0

.

Now, it suffices to apply Hölder’s inequality for the exponent p/p0 and take account of (1.15) and
the inequality [RH]A1(X) ≤ ‖M‖

Lp′γ
w−p′ (X)

to complete the proof of Theorem B. Inequality (1.7)

yields the desired estimate for the constant in this case as well. �

2. EXTRAPOLATION IN WEIGHTED IWANIEC–SBORDONE SPACES

In this section, just as in the previous one, (X, d, μ) denotes a space of homogeneous type.
Assume that μX < ∞.

Theorem 2.1 (diagonal case). Let p0 ∈ [1,∞) and F(X) be a class of pairs of nonnegative
measurable functions defined on X. Suppose that for arbitrary (f, g) ∈ F(X) and all w ∈ Ap0(X),
the inequality

⎛

⎝
∫

X

gp0w dμ

⎞

⎠

1/p0

≤ CN
(
[w]Ap0 (X)

)
⎛

⎝
∫

X

fp0w dμ

⎞

⎠

1/p0

(2.1)

is valid, where N is an increasing function and C is a positive constant independent of (f, g) and w.
Then the following inequality holds for all p, 1 < p < ∞, θ > 0, w ∈ Ap(X), and (f, g) ∈ F :

‖g‖
L
p),θ
w (X)

≤ C ‖f‖
L
p),θ
w (X)

, (2.2)

where C is independent of (f, g) but depends on w.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 293 2016



WEIGHTED EXTRAPOLATION IN IWANIEC–SBORDONE SPACES 169

Theorem 2.2 (nondiagonal case). Let 1 < p0 < ∞ and 1 < q0 < ∞. Let F(X) denote a
family of pairs of nonnegative measurable functions defined on X. Suppose that for all (f, g) ∈ F(X)
and w ∈ Ap0,q0(X),

⎛

⎝
∫

X

(gw)q0 dμ

⎞

⎠

1/q0

≤ CN
(
[w]Ap0,q0 (X)

)
⎛

⎝
∫

X

(fw)p0 dμ

⎞

⎠

1/p0

, (2.3)

where N is an increasing function and the constant C is independent of (f, g) and w. Then, for
numbers p and q, 1 < p < ∞, 1 < q < ∞, such that

1

q0
− 1

p0
=

1

q
− 1

p
,

and for any θ > 0, an arbitrary w ∈ Ap,q(X), and all (f, g) ∈ F , we have

‖g‖Lq),θq/p
w (X)

≤ C ‖f‖Lp),θ
w (X)

, (2.4)

where the constant C is independent of (f, g) but depends on w.
Proof of Theorem 2.1. Let (2.1) hold for w ∈ Ap0(X). By Theorem A and inequality (1.7),

we have
⎛

⎝
∫

X

grw dμ

⎞

⎠

1/r

≤ C1C(w, r)

⎛

⎝
∫

X

f rw dμ

⎞

⎠

1/r

(2.5)

for all w ∈ Ar(X), where

C(w, r) =

⎧
⎨

⎩

N
(
(2c r′)p0−r[w]

(p0−1)/(r−1)
Ar(X)

)
, r < p0,

N
(
(2c r)(r−p0)/(r−1)[w]Ar(X)

)
, r > p0,

and the positive constant C1 is independent of r. Set r = p − ε in (2.5). By Hölder’s inequality,
we have

‖g‖
L
p),θ
w (X)

≤ C sup
0<ε<ε0

⎛

⎝εθ
∫

X

|g(x)|p−εw(x) dμ(x)

⎞

⎠

1/(p−ε)

≤ C sup
0<ε<ε0

C(w, p − ε)

⎛

⎝εθ
∫

X

|f(x)|p−εw(x) dμ(x)

⎞

⎠

1/(p−ε)

≤ C sup
0<ε<ε0

C(w, p − ε)‖f‖
L
p),θ
w (X)

,

where the constant C depends on ε0, p0, and p and ε0 is a sufficiently small positive number such
that w ∈ Ap−ε0 . Such a number ε0 exists in view of the openness of the class Ap(X). In this case,
[w]Ar(X) ≥ 1 and [w]Ap−ε(X) ≤ [w]Ap−ε0 (X) (see (1.4)). Finally,

sup
0<ε<ε0

C(w, p − ε) < ∞. �

To prove Theorem 2.2, we introduce some notation. Let 1 < p < q < ∞, ε0 ∈ (0, q − 1), and
ε ∈ (0, ε0). Set

Φ(x) =

[
x− q

1−A(x− q)
+ p

]1−(x−q)A

, where A =
1

p
− 1

q
. (2.6)
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Next, let
Ψ(x) := Φ(xθ), θ > 0. (2.7)

Proof of Theorem 2.2. First, let us prove the theorem for p < q. Suppose that (2.3)
holds for arbitrary w ∈ Ap0,q0(X). Now, let w ∈ Ap,q(X). Then, in view of (1.6), the equality
[w]Ap,q(X) = [wq]A1+q/p′ (X) is valid. According to the openness of the Muckenhoupt class, we have
wq ∈ A1+(q−ε0)/(p−η0)′(X) for some positive ε0 and η0 satisfying the condition

1

p− η0
− 1

q − ε0
=

1

p
− 1

q
= A.

Then wq ∈ A1+(q−ε)/(p−η)′(X) for all ε and η such that 0 < ε < ε0, 0 < η < η0, and

1

p− η
− 1

q − ε
= A. (2.8)

Moreover,
[wq]A1+(q−ε)/(p−η)′ (X) ≤ [wq]A1+(q−ε0)/(p−η0)

′ (X).

Next, by Hölder’s inequality, we have

[w]Ap−ε,q−η(X) ≤ [wq]
1−ε/q
A1+(q−ε)/(p−η)′(X) =

[
wq/(q−ε)

]1−ε/q

Ap−η,q−ε(X)
.

Let functions Φ and Ψ be defined by equalities (2.6) and (2.7), respectively.
Now, we apply (1.12), where p and q are replaced with p− η and q − ε, respectively. As a result,

we obtain the estimates

‖g‖Lq),Φ(ε)
w (X)

≤ C sup
0<ε<σ0

Ψ(ε)1/(q−ε)‖wg‖Lq−ε(X)

≤ C sup
0<η<σ1

C1(w, p − η, q − ε)ηθ/(p−η)‖wf‖Lp−η(X) ≤ C‖f‖Lp),θ
w (X)

,

where σ0 and σ1 are sufficiently small positive numbers chosen so that σ0 < ε0 and σ1 < η0, and
C1(w, p − η, q − ε) is equal to the expression of K(w) in which p and q are replaced with p − η
and q − ε, respectively; the constant C depends on σ0 and q. In the last inequality, we used
estimate (1.12). Finally, obvious arguments and estimate (1.12) complete the proof of the theorem
for p < q.

The proof of the theorem for p = q is quite analogous. In this case, we follow the line of reasoning
from the proof of Theorem 2.1 and apply the easily verifiable inequalities

[wp−ε]Ap−ε(X) ≤ [wp]
1−ε/p
Ap−ε(X) ≤ [wp]

1−ε/p
Ap−ε0 (X) ≤ [wp]Ap−ε0 (X),

where w ∈ Ap(X), ε0 is chosen so that wp ∈ Ap−ε0(X), and 0 < ε < ε0. �

3. APPLICATIONS TO WEIGHTED INEQUALITIES
FOR INTEGRAL OPERATORS

In this section, we apply the results of the previous section to one-weight inequalities for integral
transformations defined on spaces of homogeneous type. Below, D(X) denotes the set of essentially
bounded functions defined on X. As above, we will assume that μX < ∞.

Recall the well-known definition of the Calderon–Zygmund kernels in quasimetric spaces with
measure.
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Let k : X ×X \ {(x, x) : x ∈ X} → R be a measurable function satisfying the conditions

|k(x, y)| ≤ c

μB(x, d(x, y))
, x, y ∈ X, x �= y,

|k(x1, y)− k(x2, y)|+ |k(y, x1)− k(y, x2)| ≤ cω

(
d(x2, x1)

d(x2, y)

)
1

μB(x2, d(x2, y))

for all x1, x2, and y such that d(x2, y) > d(x1, x2), where ω is a positive nondecreasing function on
(0,∞) satisfying the Δ2-condition (ω(2t) ≤ cω(t), t > 0) and the Dini condition

∫ 1
0 ω(t)t−1 dt < ∞.

In addition, we assume that for some p0, 1 < p0 < ∞, and all f ∈ Lp0(X,μ), the limit

(Tf)(x) = lim
ε→0

∫

X\B(x,ε)

k(x, y)f(y) dμ(y)

exists almost everywhere on X and the operator T is bounded in Lp0(X,μ).
It is known (see [26]) that there exists a constant c̃0 := c̃0([w]A∞), independent of f and

depending on [w]A∞ , such that

‖Tf‖Lp0
w (X,μ) ≤ c̃0‖Mf‖Lp0

w (X,μ), f ∈ D(X), w ∈ A∞(X,μ),

where the mapping x → c̃0(x) does not decrease on (1,∞).
Using the extrapolation Theorem 2.1, we establish the validity of the following statement.
Theorem 3.1. Let 1 < p < ∞ and θ > 0. Then there exists a positive constant C such that

‖Tf‖
L
p),θ
w (X)

≤ C‖Mf‖
L
p),θ
w (X)

for all f ∈ D(X) and any w ∈ Ap(X).
Let b ∈ BMO(X), m ∈ N ∪ {0}, and let

Tm
b f(x) =

∫

X

[b(x)− b(y)]mk(x, y)f(y) dμ(y),

where k is a Calderon–Zygmund kernel.
It is known (see [26]) that if 1 < r < ∞, b ∈ BMO(X), and w ∈ A∞(X), then the following

one-weight inequality is valid:

‖Tm
b f‖Lr

w(X) ≤ C‖b‖mBMO(X)‖Mm+1f‖Lr
w(X), f ∈ D(X),

where Mm+1 is the (m+ 1)th iteration of the maximal function M . This result and the extrapola-
tion theorem imply the following statement.

Theorem 3.2. Let 1 < p < ∞ and θ > 0. Then there exists a positive constant C such that
for any w ∈ Ap(X)

‖Tm
b f‖

L
p),θ
w (X)

≤ C‖b‖mBMO(X)‖Mm+1f‖
L
p),θ
w (X)

, f ∈ D(X).

Let

Iαf(x) =

∫

X

Kα(x, y)f(y) dμ(y), x ∈ X,
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where

Kα(x, y) =

{
μ(Bxy)

α−1, x �= y,

μ{x}, x = y, μ{x} > 0,

0 < α < 1, and Bxy := B(x, d(x, y)).
Consider also

Mαf(x) = sup
B�x

1

(μB)1−α

∫

B

|f(y)| dμ(y), 0 < α < 1.

It is known (see [1]) that if 0 < r < ∞ and w ∈ A∞(X), then the inequality

‖Iαf‖Lr
w(X) ≤ C‖Mαf‖Lr

w(X)

holds with some constant C independent of f . For b ∈ BMO(X), set

Imα,bf(x) =

∫

X

[b(x)− b(y)]mKα(x, y) dμ(y), 0 < α < 1,

Im
α,bf(x) =

∫

X

|b(x)− b(y)|mKα(x, y) dμ(y), 0 < α < 1.

It is clear that |Imα,bf(x)| ≤ Im
α,bf(x) for f ≥ 0. In [1], it is proved that if 0 < p < ∞, 0 < α < 1,

m ∈ N ∪ {0}, w ∈ A∞(X), and b ∈ BMO(X), then there exists a constant C such that
∫

X

|Im
α,bf(x)|pw(x) dμ(x) ≤ C‖b‖mp

BMO(X)

∫

X

[
Mα(M

mf)(x)
]p
w(x) dμ(x).

The extrapolation theorem in the diagonal case allows us to derive the following statements from
the indicated result.

Theorem 3.3. Let 1 < p < ∞, θ > 0, and w ∈ Ap(X). Then there exists a positive constant C
such that

‖Iαf‖Lp),θ
w (X)

≤ C‖Mαf‖Lp),θ
w (X)

for all f ∈ D(X).
Theorem 3.4. Let 1 < p < ∞, θ > 0, and w ∈ Ap(X). Then there exists a positive constant C

such that
‖Im

α,bf‖Lp),θ
w (X)

≤ C‖b‖mBMO(X)‖Mα(M
mf)‖

L
p),θ
w (X)

for all f ∈ D(X).
Next, the following statements are valid for semilinear operators.
Theorem 3.5 (diagonal case). Let p0 ∈ (1,∞). Suppose that the following inequality holds

for a semilinear operator S, any f from the domain of the operator S, and any w ∈ Ap0(X):

‖Sf‖Lp0
w (X) ≤ CN

(
[w]Ap0 (X)

)
‖f‖Lp0

w (X),

where N is an increasing function and the constant C is independent of w. Then, for arbitrary p,

1 < p < ∞, θ > 0, w ∈ Ap(X), and f ∈ L
p),θ
w (X), we have

‖Sf‖
L
p),θ
w (X)

≤ C‖f‖
L
p),θ
w (X)

,

where C is independent of f .
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Theorem 3.6 (nondiagonal case). Let 1 < p0 < ∞ and 1 < q0 < ∞. Suppose that for a
semilinear operator S, any f from the domain of the operator S, and any w ∈ Ap0,q0(X), we have

‖Sf‖Lq0
wq0

≤ CN
(
[w]Ap0,q0 (X)

)
‖f‖Lp0

wp0
(X),

where N is an increasing function and the constant C is independent of w. Then for 1 < p < ∞
and 1 < q < ∞ subject to the condition

1

q0
− 1

p0
=

1

q
− 1

p

and for any θ > 0, w ∈ Ap,q(X), and f ∈ Lp),θ
w (X), the following inequality is valid :

‖Sf‖Lq),θq/p
w (X)

≤ C‖f‖Lp),θ
w (X)

,

where the positive constant C is independent of f .
Proof of Theorem 3.5. First, notice that according to Theorem A

‖Sf‖Lr
w(X) ≤ C1C(w, r)‖f‖Lr

w(X) (3.1)

for r ∈ (1,∞), w ∈ Ar(X), and any f ∈ Lr
w(X), where C(w, r) is defined as in Theorem 2.1 and C1

is independent of r.
Let f ∈ L

p),θ
w (X). Then f ∈ Lp−ε

w (X) for all ε ∈ (0, p − 1). In inequality (3.1), we set r = p− ε.
Applying the same arguments as in the proof of Theorem 2.1, we find

‖Sf‖
L
p),θ
w (X)

≤ C sup
0<ε<ε0

⎛

⎝εθ
∫

X

|Sf(x)|p−εw(x) dμ(x)

⎞

⎠

1/(p−ε)

≤ C sup
0<ε<ε0

C(w, p − ε)

⎛

⎝εθ
∫

X

|f(x)|p−εw(x) dμ(x)

⎞

⎠

1/(p−ε)

≤ C sup
0<ε<ε0

C(w, p − ε)‖f‖
L
p),θ
w (X)

,

where ε0 is a sufficiently small positive number and C depends on ε0, p0, and p. �
Proof of Theorem 3.6. The line of reasoning is similar to that from the proof of Theorem 2.2.

In this case, one should use the fact that if f ∈ L
p),θ
wp (X), then f ∈ Lp−η

wp (X) for all η ∈ (0, p − 1).
Applying the same arguments as in the proof of Theorem 3.5, we find that

‖Sf‖Lq),θq/p
w (X)

≤ C sup
0<η<σ1

C1(w, p − η, q − ε)‖f‖Lp),θ
w (X)

,

where σ1 is a sufficiently small positive number and the numbers ε and η satisfy equality (2.8). �
The proof of the following theorem is also based on the nondiagonal case of the extrapolation

theorem.
Theorem 3.7. Let 1 < p < ∞ and 0 < α < 1/p. Suppose that θ > 0. Let Tα denote one of

the operators Iα or Mα. If w ∈ Ap,q(X), q = p/(1 − αp), then there exists a positive constant C
such that the inequality

‖Tαf‖Lq),qθ/p
w (X)

≤ C‖f‖Lp),θ
w (X)

holds for all f ∈ Lp),θ
w (X).
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4. BERNSTEIN AND NIKOL’SKII TYPE INEQUALITIES IN THE SPACES Lp),θ
w

Bernstein and Nikol’skii inequalities for trigonometric polynomials play an important role in the
problems of approximation of functions and in the theory of function spaces. In this section, using
the boundedness of integral operators in weighted Iwaniec–Sbordone spaces, we first prove Bernstein
type weighted inequalities for the (Weyl) fractional derivatives of trigonometric polynomials and
then establish a Nikol’skii type inequality.

For the definition of the Weyl fractional derivative for periodic functions, see, for example, [31,
Ch. XII, § 8]. Henceforth, we set T = [−π, π].

Theorem 4.1. Let 1 < p < ∞, θ > 0, and w ∈ Ap. The following inequality is valid for an
arbitrary trigonometric polynomial Tn and a number α > 0:

∥
∥T (α)

n

∥
∥
Lp),θ
w

≤ cnα‖Tn‖Lp),θ
w

, (4.1)

where the constant c is independent of n and Tn.

Proof. First, we prove the inequality for positive integer α. Let α = 1. We employ the
representation

Tn(x) =
1

π

π∫

−π

Tn(t)Dn(t− x) dt, where Dn(t) =
1

2
+

n∑

k=1

cos kt. (4.2)

Differentiating equality (4.2) yields

T ′
n(x) =

2n

π

π∫

−π

Tn(x+ t) sinntKn−1(t) dt,

where Kn−1 is the Fejer kernel of order n− 1. Hence,

|T ′
n(x)| ≤ 2nσn−1(x, |Tn|).

Using the well-known estimate for the Cesàro means,

σn−1(x, |Tn|) ≤ c1M(|Tn|)(x),

where M is the maximal Hardy–Littlewood function and the constant c1 is independent of Tn

and x, and applying the theorems on the boundedness of the operator M in the spaces Lp),θ
w , we

conclude that

‖T ′
n‖Lp),θ

w
≤ cn‖Tn‖Lp),θ

w
.

Now, we proceed to the case of fractional derivatives of order α > 0. Let, first, 0 < α < 1. It is
known that the fractional derivative of smooth functions (in particular, trigonometric polynomials)
coincides with the Marchaud fractional derivative (see, for example, [28, § 19, Remark 19.1]). We
avail ourselves of the following representation of the Marchaud fractional derivative:

T (α)
n (x) =

α

Γ(1− α)

∞∫

0

Tn(x)− Tn(x− t)

t1+α
dt, (4.3)
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where Γ is the Euler gamma function. Let us pass to the absolute value and represent the inte-
gral (4.3) as a sum of two terms:

∣
∣T (α)

n (x)
∣
∣ ≤ α

Γ(1− α)

⎛

⎝
2/n∫

0

|Tn(x)− Tn(x− t)|
t1+α

dt+

∞∫

2/n

|Tn(x)− Tn(x− t)|
t1+α

dt

⎞

⎠

=
α

Γ(1− α)
(I1 + I2).

Applying Minkowski’s inequality, we obtain

‖I1‖Lp),θ
w

≤
2/n∫

0

‖Tn(x)− Tn(x− t)‖Lp),θ
w

t1+α
dt ≤

2/n∫

0

∥∥
∥∥
∥
∥

1

t

x∫

x−t

T ′
n(u) du

∥∥
∥∥
∥
∥
Lp),θ
w

dt

tα
.

In view of the boundedness of the maximal function in Lp),θ
w , from this estimate we deduce

‖I1‖Lp),θ
w

≤ c2

2/n∫

0

‖T ′
n‖Lp),θ

w

dt

tα
.

Applying the already proved inequality for the first-order derivatives, we have

‖I1‖Lp),θ
w

≤ c3n
α‖Tn‖Lp),θ . (4.4)

Estimating ‖I2‖Lp),θ
w

, we obtain

‖I2‖Lp),θ
w

≤ 2

∞∫

2/n

‖Tn‖Lp),θ
w

dt

t1+α
≤ c4n

α‖Tn‖Lp),θ
w

. (4.5)

Inequalities (4.4) and (4.5) imply the validity of inequality (4.1) in the case of 0 < α < 1.
Next, if Tn is a trigonometric polynomial, then T

(α)
n is also a trigonometric polynomial of the

same degree. Therefore, it follows from what has been proved that an estimate of the form (4.1)
holds for all α > 0. �

Note that inequality (4.1) in the classical Lebesgue spaces with exact constant 1 for α ≥ 1 was
established by Lizorkin [22] in a more general context of “trigonometric integrals”

Tn(x) =

n∫

−n

eixt dσ(t).

Now, we present an analog of the well-known inequality of Nikol’skii for the norms of a trigono-
metric polynomial in different metrics.

Theorem 4.2. Let 1 < p < q < ∞, θ > 0, and θ1 ≥ θq/p. Suppose that w ∈ Ap,q. Then the
following inequality holds:

‖Tn‖Lq),θ1
w

≤ c5n
1/p−1/q‖Tn‖Lp),θ

w
. (4.6)

Proof. We set 1/p − 1/q = s and apply the representation

Tn(x) = a0(Tn) +
1

2π

π∫

−π

T (s)
n (x− t)ψs(t) dt,
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where

ψs(t) =

∞∑′

k=−∞

eikt

(ik)s
= 2

∞∑

k=1

cos(kt− sπ/2)

ks

(the prime means that the term with number k = 0 is omitted). At the same time,

|ψs(t)| ≤
c

|t|1−s

(see [28, Theorem 19.3, Lemma 19.1, corollary to Lemma 19.1]). Hence,

|Tn(x)| ≤ |a0(Tn)|+
1

2π

π∫

−π

∣
∣T (s)

n (x− t)
∣
∣

|t|1−s
dt ≤ |a0(Tn)|+

1

2π

2π∫

−2π

∣
∣T (s)

n (t)
∣
∣

|x− t|1−s
dt. (4.7)

Thus,

‖Tn‖Lq),θ
w

≤ c6

⎛

⎝|a0(T )|+

∥
∥∥
∥∥
∥

2π∫

−2π

∣∣T (s)(t)
∣∣

|x− t|1−s
dt

∥
∥∥
∥∥
∥
Lq),θ1

⎞

⎠ .

Next, since wp ∈ Ap, it follows from the openness of Ap by Hölder’s inequality that wp−ε0 ∈ Ap−ε0

for sufficiently small ε0, 0 < ε0 < p− 1. Fix a number ε0. Again by Hölder’s inequality, we have

|a0(T )| ≤ c7

π∫

−π

|Tn(x)| dx

≤ c7

⎛

⎝
π∫

−π

|Tn(x)w(x)|p0−ε dx

⎞

⎠

1/(p0−ε)⎛

⎝
π∫

−π

w−(p−ε0)/(p−ε0−1)(x) dx

⎞

⎠

1−1/(p−ε0)

.

In view of the inclusion wp−ε0 ∈ Ap−ε0 , the second factor on the right-hand side is finite. On the
other hand,

sup
0<ε≤ε0

εθ/(p−ε) = ε
θ/(p−ε0)
0

because the function x1/(p−x) increases for 0 < x < p− 1. Therefore,

|a0(T )| ≤ c8ε
θ/(p−ε0)
0

⎛

⎝
π∫

−π

|Tn(x)w(x)|p−ε0 dx

⎞

⎠

1/(p−ε0)

≤ c8‖Tn‖Lp),θ
w

≤ c8n
1/p−1/q‖Tn‖Lp),θ

w
. (4.8)

Applying Theorem 3.7 on the boundedness of the fractional integral operator from Lp),θ
w to Lq),θ1

w

under the condition w ∈ Ap,q, we have
∥
∥∥
∥
∥∥

2π∫

−2π

∣
∣T (s)

n (t)
∣
∣

|x− t|1−s
dt

∥
∥∥
∥
∥∥
Lq),θ1
w

≤ c9
∥
∥T (s)

n

∥
∥
Lp),θ
w

. (4.9)

By Hölder’s inequality, we deduce from the condition w ∈ Ap,q that w ∈ Ap. Hence, according to
Theorem 4.1, we can apply the Bernstein type inequality to the right-hand side of (4.9) to obtain

∥
∥∥
∥∥
∥

2π∫

−2π

∣
∣T (s)

n (t)
∣
∣

|x− t|1−s
dt

∥
∥∥
∥∥
∥
Lq),θ1
w

≤ c10‖Tn‖Lp),θ
w

. (4.10)

Now, (4.7), (4.8), and (4.10) imply (4.6). �
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5. DIRECT APPROXIMATION THEOREM

It is known [3] that the spaces Lp),θ
w (1 < p < ∞, θ > 0) are nonreflexive, nonseparable, and,

for w �= 1, noninvariant with respect to rearrangements. The closure of infinitely differentiable
functions in the norm of the space Lp),θ

w does not coincide with this space. Below, we will denote
this closure by L̃p),θ

w (T), where T = [−π, π]. In this section, we consider problems of approximation
of 2π-periodic functions by trigonometric polynomials. Note that the subspace Lp),θ

w (T) is described
by the condition

lim
ε→0

εθ
∫

T

|f(x)w(x)|p−ε dx = 0.

In the space L̃p),θ
w (T), we introduce structural and constructive characteristics of functions,

Ω(f, δ)Lp),θ
w

= sup
0<h≤δ

∥∥
∥∥
∥∥

1

2h

x+h∫

x−h

f(t) dt− f(x)

∥∥
∥∥
∥∥
Lp),θ
w

,

and best approximations by trigonometric polynomials,

En(f)Lp),θ
w

= sup
Tk, k≤n

‖f − Tk‖Lp),θ
w

,

where the least upper bound is taken over all trigonometric polynomials Tk of degree k ≤ n. For
f ∈ L̃p),θ

w (T), we have
lim
n→∞

En(f)Lp),θ
w

= 0.

In view of well-known general arguments, for any f ∈ L̃p),θ
w and a given n there exists a polynomial

of best approximation Tn, i.e.,
En(f)Lp),θ

w
= ‖f − Tn‖Lp),θ

w
.

Due to the boundedness of the conjugation operator in Lp),θ
w for 1 < p < ∞, θ > 0, and w ∈ Ap(T),

just as for the spaces Lp (1 < p < ∞), one can prove that the deviations of partial Fourier sums
from f ∈ Lp),θ

w have the same order as the best approximation.
Given α ≥ 0, 1 < p < ∞, θ > 0, and a weight w ∈ Ap(T), we denote by Wα

p),θ,w the subset of
those functions in Lp),θ

w for which

‖f‖Wα
p),θ,w

= ‖f‖Lp),θ
w

+
∥
∥f (α)

∥
∥
Lp),θ
w

< +∞,

where f (α)(x) denotes the Weyl fractional derivative of f of order α.
Denote by W̃α

p),θ,w the subset of those functions in L̃p),θ
w for which the expression on the right-

hand side of the above equality is finite.
Our immediate goal is to prove analogs of the direct Jackson inequalities for Lp),θ

w (T). First, we
prove the following statement.

Theorem 5.1. Let 1 < p < ∞, θ > 0, α > 0, and w ∈ Ap(T). Then the following inequality
holds for some positive constant c and all f ∈ W̃α

p),θ,w:

En(f)Lp),θ
w

≤ c

(n+ 1)α
En

(
f (α)

)
Lp),θ
w

. (5.1)
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Proof. For f ∈ Lp),θ
w , we denote by Sn(x, f) the partial sum of the Fourier series

f(x) ∼
∞∑

k=0

Ak(x, f), Ak(x, f) = ak cos kx+ bk sin kx.

Let us show that

f(x)− Sn(x, f) = cos
πα

2

∞∑

k=n+1

k−αAk

(
x, f (α)

)
+ sin

πα

2

∞∑

k=n+1

k−αAk

(
x, f (α)

)
. (5.2)

By definition,

Ak

(
x, f (α)

)
= kαAk

(
x+

πα

2k
, f
)
.

Therefore,

∞∑

k=0

Ak(x, f) = A0(x, f) + cos
πα

2

∞∑

k=1

Ak

(
x+

πα

2
, f
)
+ sin

πα

2

∞∑

k=n+1

Ak

(
x+

πα

2k
, f
)

= A0(x, f) + cos
πα

2

∞∑

k=1

k−αAk

(
x, f (α)

)
+ sin

πα

2

∞∑

k=1

k−αAk

(
x, f (α)

)
.

This implies (5.2).
On the other hand, applying Abel’s transformation, we can write

∞∑

k=n+1

k−αAk

(
x, f (α)

)
=

∞∑

k=n+1

k−α
[
Sk

(
x, f (α)

)
− f (α)(x)−

(
Sk−1

(
x, f (α)

)
− f (α)(x)

)]

=

∞∑

k=n+2

(k−α − (k + 1)−α)
(
Sk

(
x, f (α)

)
− f (α)(x)

)
.

A similar equality is valid for f̃ (α). Passing to the norms and using the fact that

‖f(x)− Sn(x, f)‖Lp),θ
w

≤ cEn(f)Lp),θ
w

,

we obtain

‖f(x)− Sn(x, f)‖Lp),θ
w

≤ c

(

En

(
f (α)

)
[ ∞∑

k=n+1

(k−α − (k + 1)−α) + (n+ 1)−α

]

+ En

(
f̃ (α)

)[
(k−α − (k + 1)−α) + (n+ 1)−α

]
)

≤ c

(n+ 1)α
En(f)Lp),θ

w
.

Notice that in view of the boundedness of the conjugation operator in Lp),θ
w for w ∈ Ap(T),

we have
En

(
f̃ (α)

)
≤ cEn

(
f (α)

)
.

The theorem is proved. �
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For any f ∈ Lp),θ
w (1 < p < ∞, θ > 0) and w ∈ Ap(T), we introduce a so-called K2-functional

defined as

K2

(
f, δ;Lp),θ

w ,W 2
p),θ,w

)
= inf

g∈W 2
p),θ,w

{
‖f − g‖Lp),θ

w
+ δ2‖g′′‖Lp),θ

w

}
, δ > 0.

Theorem 5.2. Let 1 < p < θ, θ > 0, and w ∈ Ap(T). Then there exist positive constants c1
and c2 such that

c1Ω(f, δ) ≤ K2

(
f, δ;Lp),θ

w ,W 2
p),θ,w

)
≤ c2Ω(f, δ) (5.3)

for an arbitrary f ∈ Lp),θ
w and a positive δ.

Proof. Given a δ > 0, we take a positive integer n such that 1/n < δ < 2/n. Consider the
sequence of operators

(Knf)(x) = n2

1/n∫

0

t∫

0

u∫

−u

f(x+ τ) dτ du dt, x ∈ T, f ∈ Lp),θ
w .

Then
(Knf)

′′(x) = cn2(I −m1/n)f(x), (5.4)

where I is the identity operator,

(m1/nf)(x) =
n

2

x+1/n∫

x−1/n

f(t) dt,

and c is a constant independent of f and n.
In view of the boundedness of the maximal function in Lp),θ

w and the Minkowski type inequality,
we can conclude that the sequence Knf is uniformly bounded in the norm. Indeed,

‖Knf‖Lp),θ
w

≤ cn2

1/n∫

0

t∫

0

2u‖mhf‖Lp),θ
w

du dt ≤ cn2‖f‖Lp),θ
w

1/n∫

0

t∫

0

2u du dt ≤ c‖f‖Lp),θ
w

. (5.5)

At the same time, in view of (5.4), we have (Knf)
′′ ∈ Lp),θ

w for any fixed n.
Next, it follows from (5.5) that f −Knf ∈ Lp),θ

w and

K2

(
f, δ;Lp),θ

w ,W 2
p),θ,w

)
≤ K2

(
f,

1

n
;Lp),θ

w ,W 2
p),θ,w

)

≤ c
(
‖f −Knf‖Lp),θ

w
+ n−2‖(Knf)

′′‖Lp),θ
w

)
= c(I1 + I2). (5.6)

Let us estimate each term in the parentheses:

I1 = ‖f −Knf‖Lp),θ
w

≤ cn2

1/n∫

0

t∫

0

‖(I −mu)f‖Lp),θ
w

du dt

≤ c sup
0<u≤1/n

‖I −muf‖Lp),θ
w

= cΩ

(
f,

1

n

)

Lp),θ
w

. (5.7)
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Next, it follows from (5.4) that

I2 = n−2‖(Knf)
′′‖Lp),θ

w
≤ c‖(I −m1/n)f‖Lp),θ

w
≤ cΩ

(
f,

1

n

)

Lp),θ
w

. (5.8)

Formulas (5.7) and (5.8) imply the validity of the estimate on the right-hand side of (5.3).
Let us proceed to estimating the K2-functional from below. For g ∈ W 2

p),θ,w, we have

(I −mhg)(x) =
1

2h

h∫

−h

(
g(x)− g(x+ t)

)
dt =

c

h

h∫

0

t∫

0

u∫

−u

g′′(x+ τ) dτ du dt.

Hence

‖(I −mhg)‖Lp),θ
w

≤ c

h

h∫

0

t∫

0

u

∥∥
∥∥
∥∥

1

2u

u∫

−u

g′′(x+ τ) dτ

∥∥
∥∥
∥∥
Lp),θ
w

du dt ≤ c

h

h∫

0

t∫

0

u‖g′′‖Lp),θ
w

du dt

= ch2‖g′′‖Lp),θ
w

. (5.9)

As a result, for g ∈ W 2
p),θ,w we obtain the estimate

Ω(g, δ)Lp),θ
w

≤ cδ2‖g′′‖Lp),θ
w

with a constant c independent of g and δ.
Next, for f ∈ Lp),θ

w and an arbitrary g ∈ W 2
p),θ,w, we have

Ω(f, δ)Lp),θ
w

≤ c
(
‖f − g‖Lp),θ

w
+ δ2‖g′′‖Lp),θ

w

)
.

Hence,
Ω(f, δ)Lp),θ

w
≤ cK2

(
f, δ;Lp),θ

w ,W 2
p),θ,w

)
.

The theorem is proved. �
Now, let us prove an analog of the Jackson inequality.
Theorem 5.3. Let 1 < p < ∞, θ > 0, and w ∈ Ap(T). For an arbitrary α ≥ 0 and all

f ∈ W̃ 2
p),θ,w, the inequality

En(f)Lp),θ
w

≤ c

(n+ 1)α
Ω

(
f (α),

1

n

)

Lp),θ
w

, n ∈ N, (5.10)

holds with a constant c independent of f and n.
Proof. First, we prove (5.10) for α = 0. We will apply the estimates established in the proof

of Theorem 5.2. Obviously,

En(f) ≤ En(f −Knf) + En(Knf). (5.11)

In view of (5.7), we have the estimate

En(f −Knf) ≤ ‖f −Knf‖ ≤ cΩ

(
f,

1

n

)

Lp),θ
w

.
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According to Theorem 5.1 and in view of estimate (5.8),

En(Knf) ≤
c

n2
En((Knf)

′′) ≤ c

n2
‖(Knf)

′′‖ ≤ cΩ

(
f,

1

n

)

Lp),θ
w

.

Now, (5.11) implies (5.10) for α = 0.
By virtue of Theorem 5.1 and what has been proved above for f ∈ W̃α

p),θ,w, we have

En(f)Lp),θ
w

≤ c

nα
En

(
f (α)

)
Lp),θ
w

≤ c

nα
Ω

(
f (α),

1

n

)

Lp),θ
w

.

The theorem is proved. �

6. INVERSE APPROXIMATION THEOREMS IN L̃p),θ
w

In this section, we prove the following statements.
Theorem 6.1. Let 1 < p < ∞ and θ > 0. Suppose that w ∈ Ap(T). Then the following

inequality holds for f ∈ L̃p),θ
w (T):

Ω

(
f,

1

n

)

Lp),θ
w

≤ c

n2

n∑

ν=0

(ν + 1)Eν(f)Lp),θ
w

,

where the constant c is independent of f and n.
Theorem 6.2. Let 1 < p < ∞, θ > 0, and w ∈ Ap(T). If the condition

n∑

ν=1

να−1Eν(f)Lp),θ
w

< +∞ (6.1)

holds for f ∈ L̃p),θ
w and some α > 0, then f (α) ∈ L̃p),θ

w and

En

(
f (α)

)
Lp),θ
w

≤ c1

(

nαEn(f)Lp),θ
w

+

∞∑

ν=n+1

να−1Eν(f)Lp),θ
w

)

, (6.2)

Ω

(
f (α),

1

n

)

Lp),θ
w

≤ c2

(
1

n2

n∑

ν=0

(ν + 1)α+1Eν(f)Lp),θ
w

+

∞∑

ν=n+1

να−1Eν(f)Lp),θ
w

)

, (6.3)

where the constants c1 and c2 are independent of n and f .
Proof of Theorem 6.1. Let Tn be a trigonometric polynomial of degree n corresponding to

the function f ∈ L̃p),θ
w . We choose m from the condition 2m ≤ n < 2m+1. By Theorem 5.2, we have

the estimate

Ω

(
f,

1

n

)

Lp),θ
w

≤ c
(
En(f)Lp),θ

w
+ n−2‖T ′′

n‖Lp),θ
w

)
.

Next,

‖T ′′
n‖Lp),θ

w
≤ ‖T ′′

n − T ′′
2m+1‖Lp),θ +

(

‖T ′′
1 − T ′′

0 ‖Lp),θ
w

+
m∑

i=1

‖T ′′
2i+1 − T ′′

2i‖Lp),θ

)

.

Applying inequality (2.1), we obtain

‖T ′′
n‖Lp),θ

w
≤ cE2n(f)Lp),θ

w
· 2(m+1)2 +

m∑

i=0

22(i+1)E2i(f)Lp),θ
w

.
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Since the sequence of best approximations is monotone, it holds that

22(i+1)E2i(f)Lp),θ
w

≤ c

2i∑

ν=2i−1−1

νEν(f)Lp),θ
w

,

Ω

(
f,

1

n

)

Lp),θ
w

≤ cn−2

(

E0(f) + E1(f) + En(f)Lp),θ
w

+

2m∑

ν=1

νEν(f)Lp),θ
w

)

≤ c

n2

n∑

ν=0

(ν + 1)Eν(f)Lp),θ
w

.

The theorem is proved. �
Proof of Theorem 6.2. First, we prove that under condition (6.1) the function f belongs

to Wα
p),θ,w. To this end, it is necessary to show that the series

∞∑

k=1

kαAk

(
x+

πα

2k
, f
)

(6.4)

converges in the norm of the space Lp),θ
w and, hence, is a Fourier series of the fractional derivative

f (α) ∈ Lp),θ
w . Here Ak(x, f) := ak(f) cos kx+ bk(f) sin kx. Let us prove that

lim
m,n→∞
n>m

∥
∥∥
∥∥

n∑

k=m

kαAk

(
x+

πα

2k
, f
)
∥
∥∥
∥∥
= 0.

Let [2l, 2l+1) and [2t, 2t+1) be the least dyadic intervals containing m and n, respectively. Then

∥
∥∥
∥
∥

n∑

k=m

kαAk

(
x+

πα

2k
, f
)
∥
∥∥
∥
∥
Lp),θ
w

≤
∥
∥∥
∥
∥

2t+1−1∑

k=2l

kαAk

(
x+

πα

2k
, f
)
∥
∥∥
∥
∥
Lp),θ
w

+

∥
∥∥
∥∥

m−1∑

k=2l

kαAk

(
x+

πα

2k
, f
)
∥
∥∥
∥∥
Lp),θ
w

+

∥
∥∥
∥∥

2t+1−1∑

k=n+1

kαAk

(
x+

πα

2k
, f
)
∥
∥∥
∥∥
Lp),θ
w

= I1 + I2 + I3.

Applying the Bernstein type inequality (4.1), we obtain
∥
∥
∥∥
∥

2t+1−1∑

k=2l

kαAk

(
x+

πα

2k

)
∥
∥
∥∥
∥
Lp),θ
w

≤ c

t∑

k=l

∥
∥
∥∥
∥

2N+1−1∑

k=2N

kαAk

(
x+

πα

2k
, f
)
∥
∥
∥∥
∥
Lp),θ
w

= c
t∑

k=l

∥
∥∥
∥∥

(
2μ+1−1∑

j=2μ

Ak(x, f)

)(α) ∥∥∥
∥∥
Lp),θ
w

≤ c
t∑

k=l

2μαE2μ(f)Lp),θ
w

.

In view of condition (6.1), the right-hand side of this estimate tends to zero as m → ∞ and n → ∞.
The terms I2 and I3 are estimated identically. For example,

I2 =

∥∥
∥∥
∥

m−1∑

k=2l

kαAk

(
x+

πα

2k
, f
)
∥∥
∥∥
∥
Lp),θ
w

≤
∥∥
∥∥
∥

(
m−1∑

k=2l

Ak(x, f)

)(α) ∥∥
∥∥
∥
Lp),θ
w

≤ cmα

∥∥
∥∥
∥

m−1∑

k=2l

Ak(x, f)

∥∥
∥∥
∥
Lp),θ
w

≤ c2lαE2l(f)Lp),θ
w

.

Since the series (6.1) converges, we have

lim
m→∞

2lαE2l(f)Lp),θ
w

= 0.
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Thus, the series (6.4) is a Fourier series of some function from Lp),θ
w , and this function is pre-

cisely f (α).
Now, given a positive integer n, suppose that the number m is chosen so that 2m ≤ n < 2m+1.
Next, if Tn is a trigonometric polynomial of best approximation of a function f ∈ Lp),θ

w , then,
applying inequality (4.1), we have

∥
∥f (α) − T (α)

n

∥
∥
Lp),θ
w

≤
∥
∥T (α)

2m+1 − T (α)
n

∥
∥+

∞∑

j=m

∥
∥T (α)

2j+2 − T
(α)
2j+1

∥
∥
Lp),θ
w

≤ c

(

2mα

∥∥
∥∥T2m+1 − Tn

∥∥
∥∥
Lp),θ
w

+

∞∑

j=m

2jαE2j+1(f)Lp),θ
w

)

≤ c

(

nαEn(f)Lp),θ
w

+

∞∑

j=m

2jαE2j+1(f)Lp),θ
w

)

≤ c

(

nαEn(f)Lp),θ
w

+
∞∑

j=n+1

να−1Eν(f)Lp),θ
w

)

,

which yields the desired estimate (6.2).
Condition (6.1), the monotonicity of En(f), and inequality (6.2) imply that

lim
n→∞

En

(
f (α)

)
= 0;

hence, f (α) ∈ L̃p),θ
w .

By Theorem 6.1, for f ∈ W̃α
p),θ,w we have

Ω

(
f (α),

1

n

)
≤ c

n2

m∑

ν=0

(ν + 1)Eν

(
f (α)

)
Lp),θ
w

.

Now, it suffices to apply the just-proved inequality (6.2) to the right-hand side and change the order
of summation, and we arrive at inequality (6.3). �

Corollary 6.1. Let f ∈ L̃p),θ
w , w ∈ Ap, 1 < p < ∞, and θ > 0. If

En(f)Lp),θ
w

= O

(
1

nβ

)
, β > 0,

then

Ω(f, δ)Lp),θ
w

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

O(δβ), β < 2,

O

(
δ2 log

1

δ

)
, β = 2,

δ2, β > 2.

Denote by Hβ
p),θ,w the subclass of functions in L̃p),θ

w such that

Ω(f, δ) = O(δβ).

Then, from the direct theorem and Corollary 6.1 we obtain a constructive description of the
class Hβ

p),θ,w; namely, f ∈ Hβ
p),θ,w, β < 2, if and only if

En(f) = O

(
1

nβ

)
.
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Applying the Nikol’skii type inequality and the same arguments as above, we prove the following
theorem.

Theorem 6.3. Let 1 < p < q < ∞, θ > 0, and θ1 ≥ θq/p. Suppose that w ∈ Ap,q. If the
condition

∞∑

ν=1

ν1/p−1/q+α−1Eν(f)Lp),θ
w

< ∞

is satisfied for some α ≥ 0, then f ∈ W̃α
q),θ1,w

and the inequalities

En

(
f (α)

)
Lq),θ1
w

≤ c

{

nα+1/p−1/qEn(f)Lp),θ
w

+

∞∑

ν=n+1

ν1/p−1/q+α−1Eν(f)Lp),θ
w

}

,

Ω

(
f (α),

1

n

)

Lq),θ1
w

≤ C

{
1

n2

n∑

ν=0

(ν + 1)1/p−1/q+α+1Eν(f)Lp),θ
w

+
∞∑

ν=n+1

ν1/p−1/q+α−1Eν(f)Lp),θ

}

are valid with constants c and C independent of f and n.
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5. O. Dragičević, L. Grafakos, M. C. Pereyra, and S. Petermichl, “Extrapolation and sharp norm estimates for

classical operators on weighted Lebesgue spaces,” Publ. Mat. 49 (1), 73–91 (2005).
6. J. Duoandikoetxea, “Extrapolation of weights revisited: New proofs and sharp bounds,” J. Funct. Anal. 260 (6),

1886–1901 (2011).
7. A. Fiorenza, “Duality and reflexivity in grand Lebesgue spaces,” Collect. Math. 51 (2), 131–148 (2000).
8. A. Fiorenza, B. Gupta, and P. Jain, “The maximal theorem for weighted grand Lebesgue spaces,” Stud. Math.

188 (2), 123–133 (2008).
9. L. Grafakos, Classical Fourier Analysis, 3rd ed. (Springer, New York, 2014), Grad. Texts Math. 249.

10. L. Greco, T. Iwaniec, and C. Sbordone, “Inverting the p-harmonic operator,” Manuscr. Math. 92, 249–258 (1997).
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