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Convergence of Integrable Operators
Affiliated to a Finite von Neumann Algebra
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Abstract—In the Banach space Li(M,T) of operators integrable with respect to a tracial
state 7 on a von Neumann algebra M, convergence is analyzed. A notion of dispersion of
operators in Lo(M, 7) is introduced, and its main properties are established. A convergence
criterion in Lo(M,7) in terms of the dispersion is proposed. It is shown that the following
conditions for X € L;(M,7) are equivalent: (i) 7(X) = 0, and (ii) ||[I + 2X]||; > 1 for all z € C.
A.R. Padmanabhan’s result (1979) on a property of the norm of the space L1 (M, T) is comple-
mented. The convergence in Lo(M, 7) of the imaginary components of some bounded sequences
of operators from M is established. Corollaries on the convergence of dispersions are obtained.
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1. INTRODUCTION

Let 7 be a faithful normal tracial state on a von Neumann algebra M, MP" be the lattice of
projectors in M, and I be the identity operator in M. We investigate the convergence in the Banach
space L1 (M, 7) of 7-integrable operators [1, 2]. We introduce the dispersion D(X) = || X — 7(X)I||3
of operators X € Ly(M, ) and establish its main properties (Theorem 4.1 and Corollary 4.2). We
show that inf,ec|| X — al|3 = D(X) for all X € Ly(M,7) (Theorem 4.4). We propose a convergence
criterion for sequences of operators in Lo(M,7) in terms of the dispersion (Theorem 4.5). Let
Ko ={X € Ly(M,7): 7(X) = 0}. For X,,, X € Ky (n € N), we prove the equivalence of the
following conditions (Corollary 4.6):

(i) XnMXasn%oo, and

(i) X, = X and D(X,,) — D(X) as n — oo.
In Theorem 4.8, we show that the following conditions for X € L;(M, 1) are equivalent:

(i) 7(X) =0, and

(ii) [|[I + 2X]||y > 1 for all z € C.

We complement Padmanabhan’s result from [3| on a property of the norm of the space Ly (M, 7):
if an operator A € L1(M,7)" is nonsingular, then

Ve>0 36>0 VYPeM™  (7(P)>e = ||PAP|, >9)

(Theorem 4.9). We establish the convergence in La(M,T) of the imaginary components of some
bounded sequences of operators in M (Theorem 4.13) and apply the result to the convergence of
dispersions (Corollaries 4.7 and 4.14).
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68 A.M. BIKCHENTAEV

2. NOTATION AND DEFINITIONS

Let M be a von Neumann algebra of operators in a Hilbert space H, MP" be the lattice of
projectors in M, I be the identity operator in M, and P+ =1 — P for P € MP'. For P,Q € MP",
we write P ~ @ (Murray—von Neumann equivalence) if P = U*U and Q = UU* for some U € M.
The projector P A Q is defined by the equality (P A Q)H = PHNQH, and PV Q = (P+ A Q1)+
projects onto Lin(PH U QH). Let MY and M™ be the subset of unitary operators and the cone of
positive elements of M, respectively.

A positive linear functional ¢ on M is called

faithful if o(X) >0 for all X € MT, X #0;

normal if X; /X (X;, X € M1) = p(X) = supp(X;);
tracial it (Z*Z) = p(ZZ*) for all Z € M,

a state if p(I) = 1.

An operator in H (not necessarily bounded or densely defined) is said to be affiliated to a
von Neumann algebra M if it commutes with any unitary operator from the commutant M’ of the
algebra M. A self-adjoint operator is affiliated to M if and only if all projectors from its spectral
decomposition of unity belong to M.

The set M of all closed operators that are affiliated to M and densely defined in H is a
x-algebra with respect to taking the adjoint operator, multiplication by scalars, and the operations
of strong addition and multiplication obtained by the closure of the ordinary operations [1, 2|. For
a family £ ¢ M, denote by £1 and £ its positive and Hermitian parts, respectively. The partial
order in M®® generated by the proper cone M is denoted by <. Let i € C with i> = —1 and
X € M. For ReX = (X + X*)/2 and Im X = (X — X*)/(2i), we have X = Re X +iIm X and
Re X,Im X € M2,

If X is a closed densely defined linear operator affiliated to M and | X| = v/ X*X, then the spec-
tral decomposition PIXI(-) is contained in M. If X € M and X = U|X]| is the polar decomposition
of X, then U € M and |X| € M™.

Everywhere below, 7 is a faithful normal state on M. Denote by p(X) the rearrangement of
the operator X € M, i.e., a nonincreasing right continuous function u(X): (0,1] — [0, 00) defined
by the formula

p(X) =inf{|XP|: Pe M”, 7(P+)<t}, 0<t<Ll

Let m be the linear Lebesgue measure on the interval [0, 1]. One can define a noncommutative
Lebesgue L,-space (1 < p < o0) affiliated to (M, 7) as L,(M,7) = {X € M: u(X) € L,([0,1],m)}
with the norm || X, = ||u(X)]lp, X € Lp(M, 7). We have Ly(M, 1) C Ly(M,7) and |||, < |- |lq
on Ly(M,7) for all 1 < p < ¢ < oo (assume that Loo(M,7) = M and ||-||oc = ||-]|). The state 7
can be uniquely extended to a bounded linear functional on Li(M,7), which will be denoted by
the same letter 7.

The x-algebra M is equipped with the topology ¢, of convergence in measure [2, 4], for which a
fundamental system of neighborhoods of zero is formed by the sets

U, ) ={X eM: IPe M™ (|XP| <e and 7(PY) <)}, e>0, §>0.

It is known that (M, t,) is a complete metrizable topological *-algebra, and M is dense in (M, t.).
To denote the convergence of a net {X;};c; C M to X € M in the topology t,, one writes X; 5 X;
in this case, {X;};jes is said to converge to X in the measure 7. The topology ¢, is independent of
the specific choice of the tracial state 7 and is a minimal topology among all metrizable topologies
consistent with the ring structure on M (see [5]).
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3. LEMMAS

Lemma 3.1 [6]. If X € M and Y € M, then pu(XY) < || X||t(Y) for all t > 0. If
X, Y € Mt and X <Y, then u(X) < pe(Y) for all t > 0.

Lemma 3.2 |7, p. 1463]. We have |7(X)| < 7(|X|) for all X € L1(M,T).
Lemma 3.3 [8, Theorem 2.3]. We have 7(X*) = 7(X) for all X € Li(M,T).

Lemma 3.4. If Xp, X € Li(M,7) and X, 2% X, then 7(X,) — 7(X) as n — oo

Proof. We have 7(X,,) — 7(X) = 7(X,, — X) and |7(X,, — X)| < 7(|X,, — X|) = [| X, — X|I1
by Lemma 3.2. The lemma is proved. [

Lemma 3.5. Let a number C > 0 and a sequence {Z,}5°, C M be such that || Z,]| < C

(neN)and Z, = Z € M asn — oco. Then Z € M and Z, MZasn—)ooforalll<p<oo

Proof. Since Z, = Z, the sequence {u:(Z,)}2%, converges to u(Z) at all continuity points ¢
of the rearrangement of the operator Z (see |9, Lemma 1.2(iii)]). Next, X € M < X € M and

po+(X) = lim 4, (X) = sup pe(X) < o0;
t—0+ 0<t<1

in this case, || X|| = po+(X) (see [10, Lemma 1.1(5)]). Therefore, ||Z|| < C and ||Z,, — Z|| < 2C for
all n € N.

Let X,,,X € M, n € N. We have X,, = X & limy_o0 i14(X,, — X) = 0 for every ¢ > 0. Let
e > 0 be an arbitrary number. There exists an N € N such that p.(Z, — Z) < ¢ for all n > N.
Since the rearrangement of an operator is a nonincreasing function, we have

1 € 1
12, — 2|2 = /ut(zn _ 2Pt < / 12, — 2| dt + /adt < (2707 +1)e
0 0 €

for all n > N. The lemma is proved. [

Lemma 3.5 can easily be extended to the noncommutative Orlicz spaces L¢(M, ) introduced
in [11].

Lemma 3.6 [12, Theorem 17]. If A,B € M and AB,BA € L{(M,7), then 7(AB) = 7(BA).

Lemma 3.7 [13, Theorem 2.2|. If A,B € M, then there exist U,V € M™ such that
|A+ B| <U|A|U*+ V|B|V*.

Lemma 3.8 [14, Ch. V, Proposition 1.6]. We have PVQ —Q ~ P — P AQ for all P,Q € MP".

4. MAIN RESULTS

Theorem 4.1. Let D(X) = || X — 7(X)I||3 be the dispersion of operators X € Lo(M,T).
Then

(i) D(X) =D(X*) =DUXU*) for all X € Lo(M,T) and U € MY;
D(X*X) =D(XX*) for all X € Ly(M,T);
D(|X]) < D(X) for all X € La(M,T);

)
ii)
iii)
(iv) VDX +Y) < /D(X) + /DY) for all X,Y € Ly(M,T);
)
i)
i)
)

—~
—
—

—~
[
—
—

(V) DIX+Y) <2(D(X) +D(Y)) for all X,Y € Lo(M,7);
(vi) D(al +bX) = [b*D(X) for all a,b € C and X € Lo(M,T);
(vii) D(Z) =D(Re Z) + D(Im Z) for all Z € La(M,T);
(aP + bPl) = la — b‘QT(P)T(PJ‘) = D(bP + aPl) for all a,b € C and P € MP*; in
particular, D(P) = 7(P)7(P') = D(Pt) for all P € MP",

D
D
D
(viii) D
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70 A.M. BIKCHENTAEV
Proof. By Lemma 3.3 and the definition of dispersion, we have
D(X) =7(X*X) — |7(X)|? for all X € Lo(M, 7). (4.1)

Assertion (i) follows from Lemma 3.3 and the unitary invariance of the trace 7 on Li(M, 7).
Let us prove (ii). Setting A = X*XX* and B = X and applying Lemma 3.6, relation (4.1), and
the definition of the trace 7, we have the equalities

D(X*X) = r(X*XX* X) = [7(X*X)| = 7(X - X*XX*) — |r(X X*)| = D(XX*)

for all X € Ly(M, 7).

Assertion (iii) follows from (4.1) and Lemma 3.2.

Assertion (iv) follows from the additivity of 7 and the triangle inequality for ||-||2.

Assertion (v) follows from (iv). By (v), we have 7(X)7(Y) + 7(X)7(Y) < || X + Y3 for all
XY € LQ(M 7’)

Assertion (vi) follows from the definition of D, relation (4.1), and Lemma 3.3.

Let us prove (vii). Let Z € Lo(M,7); then the operators X = ReZ and Y = Im Z belong
to Lo(M,7)%. Since XY, YX € Li(M,7), we have 7(XY — Y X) = 0 by Lemma 3.6. Since
7(X),7(Y) € R, by virtue of (4.1) we obtain

D(X +iY) = 7((X —iYV)(X +1iY)) — |7(X +iY)]?
=7(X?) +7(Y?) = 7(X)* = 7(Y)* = D(X) + D(Y).

Assertion (viii) follows from (4.1). The theorem is proved. [

Corollary 4.2. Let P,QQ € MP". Then

() D(PV Q) < D(P) + D(Q):

(i) D(P A Q) < D(P) + D(Q):
(i) D(P) = D(@) & 7(P) € {r(Q), (Q)}.

Proof. Let us prove (i). By Lemma 3.8 we obtain 7(P V Q) < 7(P) + 7(Q) for all P,Q € MP".

Taking into account the inequality max{7(P),7(Q)} < 7(P V Q) and assertion (viii) of Theorem 4.1,
we have

D(PVQ)=7(PVQ)1-7(PVQ))<(r(P)+7(Q)(1—-7(PVQ))
=7(P) 1 -7(PVQ))+7(Q)(1—-7(PVQ))
T(P)(1 = 7(P)) + 7(Q)(1 = 7(Q)) = D(P) + D(Q).

Let us prove (ii). By De Morgan’s duality law, we have (P A Q)+ = P+ v Q* for all P,Q € MP".
By assertion (i) for the pair of projectors P+, Q' and by assertion (viii) of Theorem 4.1, we obtain

IN

D(PAQ)=D((PAQ)") =D(PVvQY) <D(PY) +D(Q") = D(P) + D(Q).

Assertion (iii) follows from assertion (viii) of Theorem 4.1. In particular, if P ~ @, then
D(P) = D(Q). The corollary is proved. [
The set Ky = {X € La(M,7): 7(X) = 0} is a closed subspace in La(M,7): if X,, € Ky

(n € N), X € Ly(M,7), and X, MXasn%oo then X,,, X € Li(M,7) (n € N) and

X Il —— X as n — oo; therefore, X € Ky in view of Lemma 3.4. The orthogonal complement ICL of
the subspace Kg in Lo (M 7) is one-dimensional and is generated by the operator I. Indeed, since by
Lemma 3.3 the inner product (I, X)r,(a,7) is equal to 7(1 - X*) = 7(X) = 0 for X € Ky, it follows
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that I L Ky. Therefore, for every X € Ly(M,7), the decomposition X = (X —7(X) - I) +7(X) - I
is valid, where the first term on the right-hand side belongs to Ky.

Example 4.3. Let M = M, (C) be the full matrix algebra and 7 = tr,, be the normalized
trace on M. There is a well-known Jacobi formula: dete® = "™ X) for all X € M. In particular,
if deteX =1, then 7(X) = 0. For X € M, the following conditions are equivalent:

(i) X is unitarily equivalent to a matrix with zero diagonal,
(i) 7(X) = 0;
(iii) X is a commutator.

For the proof of the equivalence (i) < (ii), see [15, Ch. II, Problem 209|, and for the equivalence
(i) < (iii), see [16, Problem 182|. Thus, Ky coincides with the set of all commutators, and Lo (M, T)
coincides with M. Therefore, every matrix A € M,,(C)

(1) is representable as a sum A = Al + X with X € Ky and \ = tr,, 4;
(2) is unitarily equivalent to a matrix with “constant” diagonal,

(3) has a rearrangement

n

pe(A) = se(AX g1y fn, bym) (), 0<E<T,
=1

where {s;(A)}}_, is the set of s-numbers of the matrix A, i.e., the set of eigenvalues of |A]
taken in decreasing order and counted with their multiplicities; xg is the indicator of a
set B C R.

Theorem 4.4. If X € Ly(M,7), then infuec | X — al}3 = D(X), i.e.,

arginf| X — al||3 = 7(X).
acC

Proof. Let X € Ly(M,7) and b = 7(X); then 7(X — bl) = 0 and by Lemma 3.3 we obtain

|X —all3 = [|(X —bI) — (a—b)I|3 =7((X —bI) — (a— b)) ((X —bI) — (a — b)I)

7((X = bI)*(X —bI)) — (a — b)7(X —bI) — (a — b)7(X — bI) + |a — bJ?

D(X) + |a — b> > D(X),

where the equality is attained if and only if a = b = 7(X). The theorem is proved. O

Theorem 4.5. Let 1 <p <2 and X,,, X € Lo(M,7), n € N. The following conditions are
equivalent:

(i) XnMX as n — oo;

(i) X, Mo, ¢ and D(X,,) — D(X) as n — o0;

(iii) X, & X and D(X,) — D(X) as n — oo and limsup,,_, . |7(X,)| < |7(X)].

Proof. (i) = (ii). Since X, M2y 3 o n — 00, it follows that || Xp,[e — || X2 and X, My 5

as n — oo. Therefore, X, I, % and 7(Xp) = 7(X) as n — oo by Lemma 3.4. In view of (4.1),

we have

D(Xn) = [ Xl = I7(Xn)? = | X[~ [7(X)P =D(X)  as n—cc.
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(i) = (). If X, e, % a5 1 — 00, then X,, =+ X as n — oo in view of [5, Theorem 1]. Since
X, Iy X as n — 00, it follows that 7(X,) — 7(X) as n — oo by Lemma 3.4.

(iii) = (i). We have X* 5> X* as n — oo in view of the ¢,-continuity of the involution from M
to M. Therefore, XX, = X*X as n — oo due to the joint t,-continuity of the product from
M x M to M. Since X} X, X*X € L1(M,7)", we have

7(X*X) <liminf 7(X} X,,)

n—oo

by Fatou’s lemma [6, Theorem 3.5(i)]. Now, in view of the properties of the lower limit of number
sequences, we have

I7(X)* = liminf 7(X} X,,) < |7(X)]? — 7(X*X) = liminf (|7(X,)]* — 7(X:X,))

n—oo n—oo

< liminf|7(X,,)|? — liminf 7( X} X,,).

n—oo n—oo

Therefore, |7(X)[? < liminf, o |7(X,)|?, and since the real function ¢ — /¢ (t > 0) is monotone
and continuous, we obtain |7(X)| < liminf, o |7(Xy,)|. Hence, |7(X)| = lim,,_,o|7(X,,)| and

IXal3 = D(Xp) + 17(Xn)]? = DX) + [7(X)* = IX]IF  as n— oo,

Since the real function t — /¢ (t > 0) is continuous, we find that || X,|2 — [|X]]2 as n — oo.
Consequently, X, M X as n — oo in view of [6, Theorem 3.7|. The theorem is proved. [

Corollary 4.6. Let X,,, X € Ko, n € N. The following conditions are equivalent:

(1) XnMX as n — oo;

(i) X, = X and D(X,) — D(X) as n — oo.
Theorem 4.5 and Lemmas 3.4 and 3.5 imply

Corollary 4.7. Under the hypotheses of Lemma 3.5, it holds that D(Z,) — D(Z) and
7(Zn) = 7(Z) as n — 0.

Theorem 4.8. For X € Li(M,1), the following conditions are equivalent:
(i) 7(X) = 0;
(ii) [ +2X|[1 > 1 for all z € C.

Proof. (i) = (ii). By Lemma 3.2, we have
1+ X1 =7(I+2X]|) > |7T(I+2X)| = |1+ 27(X)| = 1.

(ii) = (i). Let us rewrite inequality (i) as 7(p~ (]I + pe’® X| — I)) > 0, where p > 0 and 6 € R.
Since
1
T+ p21= 1) = (2Re 2+ plZP)(1 +pZ) + 1)
for all p > 0 and Z € M, and since the involution from M to M is t,-continuous, the product

from M x M to M is jointly t,-continuous, and the operator function Z — v/Z from M to M+
is t;-continuous, by [3, Theorem 2.1| we have

1 4 . .
p(|] + pe? X| — 1) 5 Re(e¥ X) as p— 0+ (4.2)
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for all @ € R. Let p > 0 and 6 € R. By Lemma 3.7, there exists an operator U,y € M" such that
p 4+ e?X| < p7' T+ Up0lX|U; y; therefore,

1 : 1
‘ I—i—e’eX'— I < U, X|Usy. (4.3)
p p ’

Applying once again Lemma 3.7, we find V, 9, W, 9 € M" such that

1 1 . : 1 .
[—' [+619X—629X' < Voo T+ ePX|Vig+ W, X|Wry:
p p p ’ ’
hence,
1 . 1
‘ I ezﬁX‘ s VW X WV (4.4)
p p b K

From (4.3) and (4.4), for the operator Y, g = U, | X|U; 5 + VW, | X[W),V, 9 € Li(M,7)* we
obtain

1 . 1
~Y,4 < ' I+ e“gX‘ — T <Y,
p p
therefore, by [17, Theorem 1], for some S, 5 € M" N M we have

1 . 1 1
H I+ GZGX‘ — I‘ < 9 (Yp,g + S 0Y, 7.95 79). (4.5)
p p

Recall [6] that i1 (A + B) < pi(A) + pus(B) and s (A) = ps(|A|) for all A, B € M and t, s > 0.

Consequently, for all ¢ > 0, by Lemma 3.1 and the unitary invariance of rearrangements, we have

!

1 : 1 1 1
pI + ewX‘ - pI> < Ql‘t(ypﬁ + 5p,0Y),050,0) < 9 (/‘t/2(yp,9) + 11/2(Sp,6Y, ﬂspﬁ))

= ,ut/2(Yp,9) < Ht/4 (Upﬂ’X‘U;,e) + Ht/4 (foewpﬂ’X‘W;,@V ,«9)
= 2/1/4(X).

Let us apply the dominated convergence theorem (see [18, Proposition 3.3(ii)|): if {A}22, €
LiM,7), A, 5 Ae Masn — oo, and pu(A,) < f € Li(RT,m) for all n € N, then A € Ly(M, )

and A, I 4 as m = oo Therefore, from (4.2) and (4.5) with f(t) = 2u;/4(X), taking account of
Lemma 3.3, we obtain

Re(e7(X)) = 7(Re(e? X)) = pllr(r]1+7</1)(|f + pe? X| — I)) >0,

and this relation holds for all # € R. Choosing 6 such that e?7(X) = —|7(X)|, we get 7(X) = 0.
The theorem is proved. [

For A € Li(M, ), it was essentially established in |3, Proposition 2| that

Ve>0 36>0 YPeM”  (7(P)<é = ||PAP| <e).

Theorem 4.9. Let A€ Li(M,7)" be a nonsingular operator. Then
Ve>0 36>0 YPeMP  (r(P)>e = ||PAP|>9).

Proof. Let € > 0 be an arbitrary number and A > 0 be such that the spectral projector
Q = PA((\,+00)) satisfies the inequality 7(Q) > 1 — ¢/2. Let P € MP" with 7(P) > ¢ be
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arbitrary. By Lemma 3.8, we have 7(P A Q) + 7(P V Q) = 7(P) 4+ 7(Q) and, taking into account
the inequality 7(P V @) < 1, obtain 7(P A Q) > ¢/2.

If X,Y € Mt and Z € M, then the inequality X <Y implies that ZXZ* < ZY Z* (see [18,
p. 720]). We have 11,(ZZ*) = u(Z*Z) for all t > 0 and Z € M (see [10, formula (1)]). Then, by
Lemma 3.1, we obtain

1 1 1
|PAP|, = 7(PAP) :/Mt (PAP)d p(VA-P-VAYdt > [ w(VA-PAQ-VA)dt
0

o

™
Il
&

0
1 1
—/MtPAQ A-PAQ)dt > /ut)\ PAQ)dt=AT(PAQ)> A
0 0

The theorem is proved. [
The Radon-Nikodym theorem (see [19]) and Theorem 4.9 imply
Corollary 4.10. Let ¢ be a faithful normal positive linear functional on M. Then

Ve>0 36>0 YPeMP  (7(P)>e= p(P)=>9).

Theorem 4.11. Let ¢ be a faithful normal state on M such that the Radon—Nikodym deriva-
tive do/dt belongs to M. Then there exists a number A € (0,1] and a faithful normal state 1)
on M such that T = Ap + (1 — A\).

Proof. Obviously, A = dp/dr € M™, |A|| > 1, and 7(A) = 1. We have p(X) = 7(AX) for
all X € M. Take a constant C' > ||A|| and set A = C~L. Let

1
1-A
Since I — AA € M™ and this operator is invertible, 1) is a faithful normal state on M. The rest is
obvious. The theorem is proved. [

Remark 4.12. If the state ¢ in Theorem 4.11 is tracial, then A € M N M’ and ¢ is also a
tracial state. Let u(V)(X) and u(®(X) be the rearrangements of the operator X € M with respect
to ¢ and 1, respectively. We have

P(X) = T((I — NA)X) forall X e M.

V(X)) = it {| XP||: P e MP, A7r(PY) = (A = Dy(PH) <t}
<inf{||XP|: P € MP", \"'r(P) <t} = pn(X)

for all 0 < ¢ < 1. In a similar way we obtain ,uEQ) (X) < pa—xe(X) for all 0 <t < 1. Therefore,
L,(M,7) C Ly(M, )N Ly(M, 1) for all 1 < p < co.

Theorem 4.13. Let numbers 1 < p < oo and C > 0 and a sequence {Z,}52, in M be such
that ||Z,|| < C (n €N), |[Re Z,|l1 — 1, and |Z,| = I as n — oo. Then |[Im Z,||, — 0 as n — oo.

Proof. By Lemma 3.5, we have |Z,,| M Iasn — oo. Let Z, = X,, +1Y, with X,,,Y,, € M52,

n € N. By Lemma 3.1, we have
el = ZpZn) = (I = Zal?) = pe (L + 1 Za)I = |Z3])) < |1+ | Zal || e (1 — | Z0))
< (C+ Dl = |Znl)

for all t > 0 and n € N; therefore, ZZ, Iy 7 as n = oo, Let Zr = V,|Z!| be a polar

decomposition of the operator Z¥; then |Z,| = V,,|Z:|V,} and Z}Z,, = V,Z,ZV,F for all n € N.
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Since the von Neumann algebra M is finite, the partial isometry V,, can be extended to an operator
U, € M" with the property Z* = U,|Z}| (see |5, proof of Theorem 2|). Thus, Z}Z,, = U, Z,Z}U}
for all n € N. Now,

[ 2,25 =U1 - 22 Z)0, Y0 as 0o oo

due to the unitary invariance of the norm ||-|;. Hence,

IRIES

- (X2+Y)) = (I-2Z:Z)+ T~ 2,2}) —=0 as n— .

1
2
Since I — /X2 +V2 = (I +/X2+Y2) Y (I - (X2 +Y2) and (I +/X2+Y2)"! < for all
n € N, by Lemma 3.1 we have

(1= V/X2+Y2) <||(T+VX2+Y2) (I = (X2+Y2) < (I — (X2 +Y2))

for all ¢ > 0 and n € N. Therefore, \/X2 + Y2 I, 7 as n s oo, Since X2 < X24Y2, it follows

no

that /X2 = |X,| < /X2 +Y;2 for all n € N, because the function A\ — v/A (A > 0) is operator
monotone.

Let A, = /X2 +Y2—|X,| and B, = \/X2+ Y2 +|X,| for all n € N. Then 4,,B, € M*
and 7(A,,) = ||An]l1 — 0 as n — oco. Since

VX2 + Y2 || = VIXZ+ V2 < VIXE + 121 < VXl + [Ya]? < V2C,
it follows that ||B,|| < (v/2+ 1)C for all n € N. It is easy to see that
2Y? = A,B, + B,A,  (neN).

Now, by the triangle inequality for the norm ||-||1, the equality ||T'||; = ||T%||1 for all T' € Ly(M, 1),
and Lemma 3.1, we have

1 1
”YnH% = T(Ynz) = HYnQ“l = 9 HAan + BnAn”l < 9 (HAan”l + ”BnAn”l) = ”BnAn”l
< Bl - [|Anlh < (V2+ 1)C|| Anlly

for all n € N. Thus, Y, M 0 as n — oo. Therefore, Y;, = 0 as n — oo in view of [5, Theorem 1],

and by Lemma 3.5 we have Y,, M 0 as n — oo. The theorem is proved. [J

Theorems 4.5 and 4.13 imply

Corollary 4.14. Under the hypotheses of Theorem 4.13, we have D(Im Z,,) — 0 as n — oo.

Remark 4.15. If M = L*(Q,%,v) and 7(f) = [o fdv, where (,%,v) is a probability
space, then the x-algebra M coincides with the algebra of all measurable complex functions f
on (2,%,v). In this case, the topology t, is the ordinary topology of convergence in probability;
the rearrangement

pe(f) =inf{s > 0: v({w € Q: |f(w)| > s}) <t}

coincides with the nonincreasing rearrangement of the function |f|. In this commutative case,
Theorem 4.5 is new, while Theorems 4.8 and 4.13 are given in [20, Exercise 2.12.104] and [20,
Exercise 2.12.105], respectively.
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