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Abstract—In the Banach space L1(M, τ) of operators integrable with respect to a tracial
state τ on a von Neumann algebra M, convergence is analyzed. A notion of dispersion of
operators in L2(M, τ) is introduced, and its main properties are established. A convergence
criterion in L2(M, τ) in terms of the dispersion is proposed. It is shown that the following
conditions for X ∈ L1(M, τ) are equivalent: (i) τ(X) = 0, and (ii) ‖I + zX‖1 ≥ 1 for all z ∈ C.
A.R. Padmanabhan’s result (1979) on a property of the norm of the space L1(M, τ) is comple-
mented. The convergence in L2(M, τ) of the imaginary components of some bounded sequences
of operators from M is established. Corollaries on the convergence of dispersions are obtained.
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1. INTRODUCTION

Let τ be a faithful normal tracial state on a von Neumann algebra M, Mpr be the lattice of
projectors in M, and I be the identity operator in M. We investigate the convergence in the Banach
space L1(M, τ) of τ -integrable operators [1, 2]. We introduce the dispersion D(X) = ‖X − τ(X)I‖22
of operators X ∈ L2(M, τ) and establish its main properties (Theorem 4.1 and Corollary 4.2). We
show that infa∈C‖X − aI‖22 = D(X) for all X ∈ L2(M, τ) (Theorem 4.4). We propose a convergence
criterion for sequences of operators in L2(M, τ) in terms of the dispersion (Theorem 4.5). Let
K0 = {X ∈ L2(M, τ) : τ(X) = 0}. For Xn,X ∈ K0 (n ∈ N), we prove the equivalence of the
following conditions (Corollary 4.6):

(i) Xn
‖·‖2−−→ X as n → ∞, and

(ii) Xn
τ−→ X and D(Xn) → D(X) as n → ∞.

In Theorem 4.8, we show that the following conditions for X ∈ L1(M, τ) are equivalent:

(i) τ(X) = 0, and

(ii) ‖I + zX‖1 ≥ 1 for all z ∈ C.

We complement Padmanabhan’s result from [3] on a property of the norm of the space L1(M, τ):
if an operator A ∈ L1(M, τ)+ is nonsingular, then

∀ε > 0 ∃δ > 0 ∀P ∈ Mpr (
τ(P ) ≥ ε ⇒ ‖PAP‖1 ≥ δ

)

(Theorem 4.9). We establish the convergence in L2(M, τ) of the imaginary components of some
bounded sequences of operators in M (Theorem 4.13) and apply the result to the convergence of
dispersions (Corollaries 4.7 and 4.14).
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68 A.M. BIKCHENTAEV

2. NOTATION AND DEFINITIONS

Let M be a von Neumann algebra of operators in a Hilbert space H, Mpr be the lattice of
projectors in M, I be the identity operator in M, and P⊥ = I − P for P ∈ Mpr. For P,Q ∈ Mpr,
we write P ∼ Q (Murray–von Neumann equivalence) if P = U∗U and Q = UU∗ for some U ∈ M.
The projector P ∧Q is defined by the equality (P ∧Q)H = PH ∩QH, and P ∨Q = (P⊥ ∧Q⊥)⊥

projects onto Lin(PH ∪QH). Let Mu and M+ be the subset of unitary operators and the cone of
positive elements of M, respectively.

A positive linear functional ϕ on M is called

• faithful if ϕ(X) > 0 for all X ∈ M+, X �= 0;
• normal if Xi ↗ X (Xi,X ∈ M+) ⇒ ϕ(X) = supϕ(Xi);
• tracial if ϕ(Z∗Z) = ϕ(ZZ∗) for all Z ∈ M;
• a state if ϕ(I) = 1.

An operator in H (not necessarily bounded or densely defined) is said to be affiliated to a
von Neumann algebra M if it commutes with any unitary operator from the commutant M′ of the
algebra M. A self-adjoint operator is affiliated to M if and only if all projectors from its spectral
decomposition of unity belong to M.

The set M̃ of all closed operators that are affiliated to M and densely defined in H is a
∗-algebra with respect to taking the adjoint operator, multiplication by scalars, and the operations
of strong addition and multiplication obtained by the closure of the ordinary operations [1, 2]. For
a family L ⊂ M̃, denote by L+ and Lsa its positive and Hermitian parts, respectively. The partial
order in M̃sa generated by the proper cone M̃+ is denoted by ≤. Let i ∈ C with i2 = −1 and
X ∈ M̃. For ReX = (X + X∗)/2 and ImX = (X − X∗)/(2i), we have X = ReX + i ImX and
ReX, ImX ∈ M̃sa.

If X is a closed densely defined linear operator affiliated to M and |X| =
√
X∗X , then the spec-

tral decomposition P |X|(·) is contained in M. If X ∈ M̃ and X = U |X| is the polar decomposition
of X, then U ∈ M and |X| ∈ M̃+.

Everywhere below, τ is a faithful normal state on M. Denote by μt(X) the rearrangement of
the operator X ∈ M̃, i.e., a nonincreasing right continuous function μ(X) : (0, 1] → [0,∞) defined
by the formula

μt(X) = inf
{
‖XP‖ : P ∈ Mpr, τ(P⊥) ≤ t

}
, 0 < t ≤ 1.

Let m be the linear Lebesgue measure on the interval [0, 1]. One can define a noncommutative
Lebesgue Lp-space (1 ≤ p < ∞) affiliated to (M, τ) as Lp(M, τ) = {X ∈ M̃ : μ(X) ∈ Lp([0, 1],m)}
with the norm ‖X‖p = ‖μ(X)‖p, X ∈ Lp(M, τ). We have Lq(M, τ) ⊂ Lp(M, τ) and ‖·‖p ≤ ‖·‖q
on Lq(M, τ) for all 1 ≤ p ≤ q ≤ ∞ (assume that L∞(M, τ) = M and ‖·‖∞ = ‖·‖). The state τ
can be uniquely extended to a bounded linear functional on L1(M, τ), which will be denoted by
the same letter τ .

The ∗-algebra M̃ is equipped with the topology tτ of convergence in measure [2, 4], for which a
fundamental system of neighborhoods of zero is formed by the sets

U(ε, δ) =
{
X ∈ M̃ : ∃P ∈ Mpr (‖XP‖ ≤ ε and τ(P⊥) ≤ δ)

}
, ε > 0, δ > 0.

It is known that 〈M̃, tτ 〉 is a complete metrizable topological ∗-algebra, and M is dense in 〈M̃, tτ 〉.
To denote the convergence of a net {Xj}j∈J ⊂ M̃ to X ∈ M̃ in the topology tτ , one writes Xj

τ−→ X;
in this case, {Xj}j∈J is said to converge to X in the measure τ . The topology tτ is independent of
the specific choice of the tracial state τ and is a minimal topology among all metrizable topologies
consistent with the ring structure on M̃ (see [5]).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 293 2016



CONVERGENCE OF INTEGRABLE OPERATORS 69

3. LEMMAS

Lemma 3.1 [6]. If X ∈ M and Y ∈ M̃, then μt(XY ) ≤ ‖X‖μt(Y ) for all t > 0. If
X,Y ∈ M̃+ and X ≤ Y, then μt(X) ≤ μt(Y ) for all t > 0.

Lemma 3.2 [7, p. 1463]. We have |τ(X)| ≤ τ(|X|) for all X ∈ L1(M, τ).
Lemma 3.3 [8, Theorem 2.3]. We have τ(X∗) = τ(X) for all X ∈ L1(M, τ).

Lemma 3.4. If Xn,X ∈ L1(M, τ) and Xn
‖·‖1−−→ X, then τ(Xn) → τ(X) as n → ∞.

Proof. We have τ(Xn) − τ(X) = τ(Xn −X) and |τ(Xn −X)| ≤ τ(|Xn −X|) = ‖Xn −X‖1
by Lemma 3.2. The lemma is proved. �

Lemma 3.5. Let a number C > 0 and a sequence {Zn}∞n=1 ⊂ M be such that ‖Zn‖ ≤ C

(n ∈ N) and Zn
τ−→ Z ∈ M̃ as n → ∞. Then Z ∈ M and Zn

‖·‖p−−→ Z as n → ∞ for all 1 ≤ p < ∞.
Proof. Since Zn

τ−→ Z, the sequence {μt(Zn)}∞n=1 converges to μt(Z) at all continuity points t
of the rearrangement of the operator Z (see [9, Lemma 1.2(iii)]). Next, X ∈ M ⇔ X ∈ M̃ and

μ0+(X) ≡ lim
t→0+

μt(X) = sup
0<t≤1

μt(X) < ∞;

in this case, ‖X‖ = μ0+(X) (see [10, Lemma 1.1(5)]). Therefore, ‖Z‖ ≤ C and ‖Zn − Z‖ ≤ 2C for
all n ∈ N.

Let Xn,X ∈ M̃, n ∈ N. We have Xn
τ−→ X ⇔ limn→∞ μt(Xn −X) = 0 for every t > 0. Let

ε > 0 be an arbitrary number. There exists an N ∈ N such that με(Zn − Z) ≤ ε for all n ≥ N .
Since the rearrangement of an operator is a nonincreasing function, we have

‖Zn − Z‖pp =
1∫

0

μt(Zn − Z)p dt ≤
ε∫

0

‖Zn − Z‖p dt+
1∫

ε

ε dt < (2pCp + 1)ε

for all n ≥ N . The lemma is proved. �
Lemma 3.5 can easily be extended to the noncommutative Orlicz spaces Lf (M, τ) introduced

in [11].
Lemma 3.6 [12, Theorem 17]. If A,B ∈ M̃ and AB,BA ∈ L1(M, τ), then τ(AB) = τ(BA).
Lemma 3.7 [13, Theorem 2.2]. If A,B ∈ M̃, then there exist U, V ∈ Mu such that

|A+B| ≤ U |A|U∗ + V |B|V ∗.
Lemma 3.8 [14, Ch. V, Proposition 1.6]. We have P ∨Q−Q ∼ P −P ∧Q for all P,Q∈Mpr.

4. MAIN RESULTS

Theorem 4.1. Let D(X) = ‖X − τ(X)I‖22 be the dispersion of operators X ∈ L2(M, τ).
Then

(i) D(X) = D(X∗) = D(UXU∗) for all X ∈ L2(M, τ) and U ∈ Mu;
(ii) D(X∗X) = D(XX∗) for all X ∈ L4(M, τ);

(iii) D(|X|) ≤ D(X) for all X ∈ L2(M, τ);

(iv)
√

D(X + Y ) ≤
√

D(X) +
√

D(Y ) for all X,Y ∈ L2(M, τ);
(v) D(X + Y ) ≤ 2(D(X) + D(Y )) for all X,Y ∈ L2(M, τ);
(vi) D(aI + bX) = |b|2D(X) for all a, b ∈ C and X ∈ L2(M, τ);

(vii) D(Z) = D(ReZ) + D(ImZ) for all Z ∈ L2(M, τ);

(viii) D(aP + bP⊥) = |a − b|2τ(P )τ(P⊥) = D(bP + aP⊥) for all a, b ∈ C and P ∈ Mpr; in
particular, D(P ) = τ(P )τ(P⊥) = D(P⊥) for all P ∈ Mpr.
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Proof. By Lemma 3.3 and the definition of dispersion, we have

D(X) = τ(X∗X)− |τ(X)|2 for all X ∈ L2(M, τ). (4.1)

Assertion (i) follows from Lemma 3.3 and the unitary invariance of the trace τ on L1(M, τ).
Let us prove (ii). Setting A = X∗XX∗ and B = X and applying Lemma 3.6, relation (4.1), and

the definition of the trace τ , we have the equalities

D(X∗X) = τ(X∗XX∗ ·X)− |τ(X∗X)| = τ(X ·X∗XX∗)− |τ(XX∗)| = D(XX∗)

for all X ∈ L4(M, τ).
Assertion (iii) follows from (4.1) and Lemma 3.2.
Assertion (iv) follows from the additivity of τ and the triangle inequality for ‖·‖2.
Assertion (v) follows from (iv). By (v), we have τ(X)τ(Y ) + τ(X)τ(Y ) ≤ ‖X + Y ‖22 for all

X,Y ∈ L2(M, τ).
Assertion (vi) follows from the definition of D, relation (4.1), and Lemma 3.3.
Let us prove (vii). Let Z ∈ L2(M, τ); then the operators X = ReZ and Y = ImZ belong

to L2(M, τ)sa. Since XY, Y X ∈ L1(M, τ), we have τ(XY − Y X) = 0 by Lemma 3.6. Since
τ(X), τ(Y ) ∈ R, by virtue of (4.1) we obtain

D(X + iY ) = τ((X − iY )(X + iY ))− |τ(X + iY )|2

= τ(X2) + τ(Y 2)− τ(X)2 − τ(Y )2 = D(X) + D(Y ).

Assertion (viii) follows from (4.1). The theorem is proved. �
Corollary 4.2. Let P,Q ∈ Mpr. Then

(i) D(P ∨Q) ≤ D(P ) + D(Q);

(ii) D(P ∧Q) ≤ D(P ) + D(Q);

(iii) D(P ) = D(Q) ⇔ τ(P ) ∈ {τ(Q), τ(Q⊥)}.
Proof. Let us prove (i). By Lemma 3.8 we obtain τ(P ∨Q) ≤ τ(P ) + τ(Q) for all P,Q ∈ Mpr.

Taking into account the inequality max{τ(P ), τ(Q)} ≤ τ(P ∨Q) and assertion (viii) of Theorem 4.1,
we have

D(P ∨Q) = τ(P ∨Q)(1− τ(P ∨Q)) ≤ (τ(P ) + τ(Q))(1 − τ(P ∨Q))

= τ(P )(1 − τ(P ∨Q)) + τ(Q)(1 − τ(P ∨Q))

≤ τ(P )(1 − τ(P )) + τ(Q)(1 − τ(Q)) = D(P ) + D(Q).

Let us prove (ii). By De Morgan’s duality law, we have (P ∧Q)⊥ = P⊥ ∨Q⊥ for all P,Q ∈ Mpr.
By assertion (i) for the pair of projectors P⊥, Q⊥ and by assertion (viii) of Theorem 4.1, we obtain

D(P ∧Q) = D((P ∧Q)⊥) = D(P⊥ ∨Q⊥) ≤ D(P⊥) +D(Q⊥) = D(P ) + D(Q).

Assertion (iii) follows from assertion (viii) of Theorem 4.1. In particular, if P ∼ Q, then
D(P ) = D(Q). The corollary is proved. �

The set K0 = {X ∈ L2(M, τ) : τ(X) = 0} is a closed subspace in L2(M, τ): if Xn ∈ K0

(n ∈ N), X ∈ L2(M, τ), and Xn
‖·‖2−−→ X as n → ∞, then Xn,X ∈ L1(M, τ) (n ∈ N) and

Xn
‖·‖1−−→ X as n → ∞; therefore, X ∈ K0 in view of Lemma 3.4. The orthogonal complement K⊥

0 of
the subspace K0 in L2(M, τ) is one-dimensional and is generated by the operator I. Indeed, since by
Lemma 3.3 the inner product (I,X)L2(M,τ) is equal to τ(I ·X∗) = τ(X) = 0 for X ∈ K0, it follows
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CONVERGENCE OF INTEGRABLE OPERATORS 71

that I ⊥ K0. Therefore, for every X ∈ L2(M, τ), the decomposition X = (X − τ(X) · I) + τ(X) · I
is valid, where the first term on the right-hand side belongs to K0.

Example 4.3. Let M = Mn(C) be the full matrix algebra and τ = trn be the normalized
trace on M. There is a well-known Jacobi formula: det eX = enτ(X) for all X ∈ M. In particular,
if det eX = 1, then τ(X) = 0. For X ∈ M, the following conditions are equivalent:

(i) X is unitarily equivalent to a matrix with zero diagonal;
(ii) τ(X) = 0;
(iii) X is a commutator.

For the proof of the equivalence (i) ⇔ (ii), see [15, Ch. II, Problem 209], and for the equivalence
(ii) ⇔ (iii), see [16, Problem 182]. Thus, K0 coincides with the set of all commutators, and L2(M, τ)
coincides with M. Therefore, every matrix A ∈ Mn(C)

(1) is representable as a sum A = λI +X with X ∈ K0 and λ = trnA;
(2) is unitarily equivalent to a matrix with “constant” diagonal;
(3) has a rearrangement

μt(A) =
n∑

k=1

sk(A)χ[(k−1)/n, k/n)(t), 0 < t ≤ 1,

where {sk(A)}nk=1 is the set of s-numbers of the matrix A, i.e., the set of eigenvalues of |A|
taken in decreasing order and counted with their multiplicities; χB is the indicator of a
set B ⊂ R.

Theorem 4.4. If X ∈ L2(M, τ), then infa∈C ‖X − aI‖22 = D(X), i.e.,

arg inf
a∈C

‖X − aI‖22 = τ(X).

Proof. Let X ∈ L2(M, τ) and b = τ(X); then τ(X − bI) = 0 and by Lemma 3.3 we obtain

‖X − aI‖22 = ‖(X − bI)− (a− b)I‖22 = τ
(
(X − bI)− (a− b)I

)∗(
(X − bI)− (a− b)I

)

= τ
(
(X − bI)∗(X − bI)

)
− (a− b)τ(X − bI)− (a− b)τ(X − bI) + |a− b|2

= D(X) + |a− b|2 ≥ D(X),

where the equality is attained if and only if a = b = τ(X). The theorem is proved. �
Theorem 4.5. Let 1 ≤ p < 2 and Xn,X ∈ L2(M, τ), n ∈ N. The following conditions are

equivalent :

(i) Xn
‖·‖2−−→ X as n → ∞;

(ii) Xn
‖·‖p−−→ X and D(Xn) → D(X) as n → ∞;

(iii) Xn
τ−→ X and D(Xn) → D(X) as n → ∞ and lim supn→∞|τ(Xn)| ≤ |τ(X)|.

Proof. (i) ⇒ (ii). Since Xn
‖·‖2−−→ X as n → ∞, it follows that ‖Xn‖2 → ‖X‖2 and Xn

‖·‖p−−→ X

as n → ∞. Therefore, Xn
‖·‖1−−→ X and τ(Xn) → τ(X) as n → ∞ by Lemma 3.4. In view of (4.1),

we have

D(Xn) = ‖Xn‖22 − |τ(Xn)|2 → ‖X‖22 − |τ(X)|2 = D(X) as n → ∞.
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(ii) ⇒ (iii). If Xn
‖·‖p−−→ X as n → ∞, then Xn

τ−→ X as n → ∞ in view of [5, Theorem 1]. Since

Xn
‖·‖1−−→ X as n → ∞, it follows that τ(Xn) → τ(X) as n → ∞ by Lemma 3.4.
(iii) ⇒ (i). We have X∗

n
τ−→ X∗ as n → ∞ in view of the tτ -continuity of the involution from M̃

to M̃. Therefore, X∗
nXn

τ−→ X∗X as n → ∞ due to the joint tτ -continuity of the product from
M̃ × M̃ to M̃. Since X∗

nXn,X
∗X ∈ L1(M, τ)+, we have

τ(X∗X) ≤ lim inf
n→∞

τ(X∗
nXn)

by Fatou’s lemma [6, Theorem 3.5(i)]. Now, in view of the properties of the lower limit of number
sequences, we have

|τ(X)|2 − lim inf
n→∞

τ(X∗
nXn) ≤ |τ(X)|2 − τ(X∗X) = lim inf

n→∞

(
|τ(Xn)|2 − τ(X∗

nXn)
)

≤ lim inf
n→∞

|τ(Xn)|2 − lim inf
n→∞

τ(X∗
nXn).

Therefore, |τ(X)|2 ≤ lim infn→∞|τ(Xn)|2, and since the real function t �→
√
t (t ≥ 0) is monotone

and continuous, we obtain |τ(X)| ≤ lim infn→∞|τ(Xn)|. Hence, |τ(X)| = limn→∞|τ(Xn)| and

‖Xn‖22 = D(Xn) + |τ(Xn)|2 → D(X) + |τ(X)|2 = ‖X‖22 as n → ∞.

Since the real function t �→
√
t (t ≥ 0) is continuous, we find that ‖Xn‖2 → ‖X‖2 as n → ∞.

Consequently, Xn
‖·‖2−−→ X as n → ∞ in view of [6, Theorem 3.7]. The theorem is proved. �

Corollary 4.6. Let Xn,X ∈ K0, n ∈ N. The following conditions are equivalent :

(i) Xn
‖·‖2−−→ X as n → ∞;

(ii) Xn
τ−→ X and D(Xn) → D(X) as n → ∞.

Theorem 4.5 and Lemmas 3.4 and 3.5 imply
Corollary 4.7. Under the hypotheses of Lemma 3.5, it holds that D(Zn) → D(Z) and

τ(Zn) → τ(Z) as n → ∞.
Theorem 4.8. For X ∈ L1(M, τ), the following conditions are equivalent :

(i) τ(X) = 0;

(ii) ‖I + zX‖1 ≥ 1 for all z ∈ C.

Proof. (i) ⇒ (ii). By Lemma 3.2, we have

‖I + zX‖1 = τ(|I + zX|) ≥ |τ(I + zX)| = |1 + zτ(X)| = 1.

(ii) ⇒ (i). Let us rewrite inequality (ii) as τ(ρ−1(|I + ρeiθX| − I)) ≥ 0, where ρ > 0 and θ ∈ R.
Since

1

ρ
(|I + ρZ| − I) = (2ReZ + ρ|Z|2)(|I + ρZ|+ I)−1

for all ρ > 0 and Z ∈ M̃, and since the involution from M̃ to M̃ is tτ -continuous, the product
from M̃ × M̃ to M̃ is jointly tτ -continuous, and the operator function Z �→

√
Z from M̃+ to M̃+

is tτ -continuous, by [3, Theorem 2.1] we have

1

ρ
(|I + ρeiθX| − I)

τ−→ Re(eiθX) as ρ → 0+ (4.2)
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for all θ ∈ R. Let ρ > 0 and θ ∈ R. By Lemma 3.7, there exists an operator Uρ,θ ∈ Mu such that
|ρ−1I + eiθX| ≤ ρ−1I + Uρ,θ|X|U∗

ρ,θ; therefore,
∣∣
∣∣
1

ρ
I + eiθX

∣∣
∣∣−

1

ρ
I ≤ Uρ,θ|X|U∗

ρ,θ. (4.3)

Applying once again Lemma 3.7, we find Vρ,θ,Wρ,θ ∈ Mu such that

1

ρ
I =

∣∣
∣∣
1

ρ
I + eiθX − eiθX

∣∣
∣∣ ≤ Vρ,θ

∣∣
∣∣
1

ρ
I + eiθX

∣∣
∣∣V

∗
ρ,θ +Wρ,θ|X|W ∗

ρ,θ;

hence, ∣
∣∣
∣
1

ρ
I + eiθX

∣
∣∣
∣−

1

ρ
I ≥ −V ∗

ρ,θWρ,θ|X|W ∗
ρ,θVρ,θ. (4.4)

From (4.3) and (4.4), for the operator Yρ,θ ≡ Uρ,θ|X|U∗
ρ,θ + V ∗

ρ,θWρ,θ|X|W ∗
ρ,θVρ,θ ∈ L1(M, τ)+ we

obtain

−Yρ,θ ≤
∣
∣
∣∣
1

ρ
I + eiθX

∣
∣
∣∣−

1

ρ
I ≤ Yρ,θ;

therefore, by [17, Theorem 1], for some Sρ,θ ∈ Mu ∩Msa we have
∣
∣∣
∣

∣
∣∣
∣
1

ρ
I + eiθX

∣
∣∣
∣−

1

ρ
I

∣
∣∣
∣ ≤

1

2
(Yρ,θ + Sρ,θYρ,θSρ,θ). (4.5)

Recall [6] that μt+s(A+B) ≤ μt(A) + μs(B) and μt(A) = μt(|A|) for all A,B ∈ M̃ and t, s > 0.
Consequently, for all t > 0, by Lemma 3.1 and the unitary invariance of rearrangements, we have

μt

(∣∣
∣∣
1

ρ
I + eiθX

∣∣
∣∣−

1

ρ
I

)
≤ 1

2
μt(Yρ,θ + Sρ,θYρ,θSρ,θ) ≤

1

2

(
μt/2(Yρ,θ) + μt/2(Sρ,θYρ,θSρ,θ)

)

= μt/2(Yρ,θ) ≤ μt/4

(
Uρ,θ|X|U∗

ρ,θ

)
+ μt/4

(
V ∗
ρ,θWρ,θ|X|W ∗

ρ,θVρ,θ

)

= 2μt/4(X).

Let us apply the dominated convergence theorem (see [18, Proposition 3.3(ii)]): if {A}∞n=1 ∈
L1(M, τ), An

τ−→ A ∈ M̃ as n → ∞, and μ(An) ≤ f ∈ L1(R
+,m) for all n ∈ N, then A ∈ L1(M, τ)

and An
‖·‖1−−→ A as n → ∞. Therefore, from (4.2) and (4.5) with f(t) ≡ 2μt/4(X), taking account of

Lemma 3.3, we obtain

Re(eiθτ(X)) = τ(Re(eiθX)) = lim
ρ→0+

τ

(
1

ρ
(|I + ρeiθX| − I)

)
≥ 0,

and this relation holds for all θ ∈ R. Choosing θ such that eiθτ(X) = −|τ(X)|, we get τ(X) = 0.
The theorem is proved. �

For A ∈ L1(M, τ), it was essentially established in [3, Proposition 2] that

∀ε > 0 ∃δ > 0 ∀P ∈ Mpr (
τ(P ) ≤ δ ⇒ ‖PAP‖1 ≤ ε

)
.

Theorem 4.9. Let A ∈ L1(M, τ)+ be a nonsingular operator. Then

∀ε > 0 ∃δ > 0 ∀P ∈ Mpr (
τ(P ) ≥ ε ⇒ ‖PAP‖1 ≥ δ

)
.

Proof. Let ε > 0 be an arbitrary number and λ > 0 be such that the spectral projector
Q = PA((λ,+∞)) satisfies the inequality τ(Q) > 1 − ε/2. Let P ∈ Mpr with τ(P ) ≥ ε be
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arbitrary. By Lemma 3.8, we have τ(P ∧ Q) + τ(P ∨ Q) = τ(P ) + τ(Q) and, taking into account
the inequality τ(P ∨Q) ≤ 1, obtain τ(P ∧Q) ≥ ε/2.

If X,Y ∈ M̃+ and Z ∈ M̃, then the inequality X ≤ Y implies that ZXZ∗ ≤ ZY Z∗ (see [18,
p. 720]). We have μt(ZZ∗) = μt(Z

∗Z) for all t > 0 and Z ∈ M̃ (see [10, formula (1)]). Then, by
Lemma 3.1, we obtain

‖PAP‖1 = τ(PAP ) =

1∫

0

μt(PAP ) dt =

1∫

0

μt

(√
A · P ·

√
A
)
dt ≥

1∫

0

μt

(√
A · P ∧Q ·

√
A
)
dt

=

1∫

0

μt(P ∧Q ·A · P ∧Q) dt ≥
1∫

0

μt(λ · P ∧Q) dt = λτ(P ∧Q) ≥ λ
ε

2
≡ δ.

The theorem is proved. �
The Radon–Nikodym theorem (see [19]) and Theorem 4.9 imply
Corollary 4.10. Let ϕ be a faithful normal positive linear functional on M. Then

∀ε > 0 ∃δ > 0 ∀P ∈ Mpr (
τ(P ) ≥ ε ⇒ ϕ(P ) ≥ δ

)
.

Theorem 4.11. Let ϕ be a faithful normal state on M such that the Radon–Nikodym deriva-
tive dϕ/dτ belongs to M. Then there exists a number λ ∈ (0, 1] and a faithful normal state ψ
on M such that τ = λϕ+ (1 − λ)ψ.

Proof. Obviously, A ≡ dϕ/dτ ∈ M+, ‖A‖ ≥ 1, and τ(A) = 1. We have ϕ(X) = τ(AX) for
all X ∈ M. Take a constant C > ‖A‖ and set λ = C−1. Let

ψ(X) ≡ 1

1− λ
τ((I − λA)X) for all X ∈ M.

Since I − λA ∈ M+ and this operator is invertible, ψ is a faithful normal state on M. The rest is
obvious. The theorem is proved. �

Remark 4.12. If the state ϕ in Theorem 4.11 is tracial, then A ∈ M ∩ M′ and ψ is also a
tracial state. Let μ(1)(X) and μ(2)(X) be the rearrangements of the operator X ∈ M̃ with respect
to ϕ and ψ, respectively. We have

μ
(1)
t (X) = inf

{
‖XP‖ : P ∈ Mpr, λ−1τ(P⊥)− (λ−1 − 1)ψ(P⊥) ≤ t

}

≤ inf
{
‖XP‖ : P ∈ Mpr, λ−1τ(P⊥) ≤ t

}
= μλt(X)

for all 0 < t ≤ 1. In a similar way we obtain μ
(2)
t (X) ≤ μ(1−λ)t(X) for all 0 < t ≤ 1. Therefore,

Lp(M, τ) ⊂ Lp(M, ϕ) ∩ Lp(M, ψ) for all 1 ≤ p < ∞.
Theorem 4.13. Let numbers 1 ≤ p < ∞ and C > 0 and a sequence {Zn}∞n=1 in M be such

that ‖Zn‖ ≤ C (n ∈ N), ‖ReZn‖1 → 1, and |Zn|
τ−→ I as n → ∞. Then ‖ImZn‖p → 0 as n → ∞.

Proof. By Lemma 3.5, we have |Zn|
‖·‖1−−→ I as n → ∞. Let Zn = Xn + iYn with Xn, Yn ∈ Msa,

n ∈ N. By Lemma 3.1, we have

μt(I − Z∗
nZn) = μt(I − |Zn|2) = μt

(
(I + |Zn|)(I − |Zn|)

)
≤

∥
∥I + |Zn|

∥
∥μt(I − |Zn|)

≤ (C + 1)μt(I − |Zn|)

for all t > 0 and n ∈ N; therefore, Z∗
nZn

‖·‖1−−→ I as n → ∞. Let Z∗
n = Vn|Z∗

n| be a polar
decomposition of the operator Z∗

n; then |Zn| = Vn|Z∗
n|V ∗

n and Z∗
nZn = VnZnZ

∗
nV

∗
n for all n ∈ N.
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Since the von Neumann algebra M is finite, the partial isometry Vn can be extended to an operator
Un ∈ Mu with the property Z∗

n = Un|Z∗
n| (see [5, proof of Theorem 2]). Thus, Z∗

nZn = UnZnZ
∗
nU

∗
n

for all n ∈ N. Now,

I − ZnZ
∗
n = U∗

n(I − Z∗
nZn)Un

‖·‖1−−→ 0 as n → ∞

due to the unitary invariance of the norm ‖·‖1. Hence,

I − (X2
n + Y 2

n ) =
1

2

(
(I − Z∗

nZn) + (I − ZnZ
∗
n)
) ‖·‖1−−→ 0 as n → ∞.

Since I −
√

X2
n + Y 2

n = (I +
√

X2
n + Y 2

n )−1(I − (X2
n + Y 2

n )) and (I +
√

X2
n + Y 2

n )
−1 ≤ I for all

n ∈ N, by Lemma 3.1 we have

μt

(
I −

√
X2

n + Y 2
n

)
≤

∥∥(I +
√

X2
n + Y 2

n

)−1∥∥μt

(
I − (X2

n + Y 2
n )

)
≤ μt

(
I − (X2

n + Y 2
n )

)

for all t > 0 and n ∈ N. Therefore,
√

X2
n + Y 2

n
‖·‖1−−→ I as n → ∞. Since X2

n ≤ X2
n + Y 2

n , it follows
that

√
X2

n = |Xn| ≤
√
X2

n + Y 2
n for all n ∈ N, because the function λ �→

√
λ (λ ≥ 0) is operator

monotone.
Let An ≡

√
X2

n + Y 2
n − |Xn| and Bn ≡

√
X2

n + Y 2
n + |Xn| for all n ∈ N. Then An, Bn ∈ M+

and τ(An) = ‖An‖1 → 0 as n → ∞. Since
∥
∥
√
X2

n + Y 2
n

∥
∥ =

√
‖X2

n + Y 2
n ‖ ≤

√
‖X2

n‖+ ‖Y 2
n ‖ ≤

√
‖Xn‖2 + ‖Yn‖2 ≤

√
2C,

it follows that ‖Bn‖ ≤ (
√
2 + 1)C for all n ∈ N. It is easy to see that

2Y 2
n = AnBn +BnAn (n ∈ N).

Now, by the triangle inequality for the norm ‖·‖1, the equality ‖T‖1 = ‖T ∗‖1 for all T ∈ L1(M, τ),
and Lemma 3.1, we have

‖Yn‖22 = τ(Y 2
n ) = ‖Y 2

n ‖1 =
1

2
‖AnBn +BnAn‖1 ≤

1

2

(
‖AnBn‖1 + ‖BnAn‖1

)
= ‖BnAn‖1

≤ ‖Bn‖ · ‖An‖1 ≤ (
√
2 + 1)C‖An‖1

for all n ∈ N. Thus, Yn
‖·‖2−−→ 0 as n → ∞. Therefore, Yn

τ−→ 0 as n → ∞ in view of [5, Theorem 1],

and by Lemma 3.5 we have Yn
‖·‖p−−→ 0 as n → ∞. The theorem is proved. �

Theorems 4.5 and 4.13 imply
Corollary 4.14. Under the hypotheses of Theorem 4.13, we have D(ImZn) → 0 as n → ∞.
Remark 4.15. If M = L∞(Ω,Σ, ν) and τ(f) =

∫
Ω f dν, where (Ω,Σ, ν) is a probability

space, then the ∗-algebra M̃ coincides with the algebra of all measurable complex functions f
on (Ω,Σ, ν). In this case, the topology tτ is the ordinary topology of convergence in probability;
the rearrangement

μt(f) = inf
{
s ≥ 0: ν({ω ∈ Ω: |f(ω)| > s}) ≤ t

}

coincides with the nonincreasing rearrangement of the function |f |. In this commutative case,
Theorem 4.5 is new, while Theorems 4.8 and 4.13 are given in [20, Exercise 2.12.104] and [20,
Exercise 2.12.105], respectively.
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