Convergence of Integrable Operators Affiliated to a Finite von Neumann Algebra

A. M. Bikchentaev^a

Received August 13, 2015

Abstract—In the Banach space $L_1(\mathcal{M}, \tau)$ of operators integrable with respect to a tracial state τ on a von Neumann algebra \mathcal{M} , convergence is analyzed. A notion of dispersion of operators in $L_2(\mathcal{M}, \tau)$ is introduced, and its main properties are established. A convergence criterion in $L_2(\mathcal{M}, \tau)$ in terms of the dispersion is proposed. It is shown that the following conditions for $X \in L_1(\mathcal{M}, \tau)$ are equivalent: (i) $\tau(X) = 0$, and (ii) $||I + zX||_1 \ge 1$ for all $z \in \mathbb{C}$. A.R. Padmanabhan's result (1979) on a property of the norm of the space $L_1(\mathcal{M}, \tau)$ is complemented. The convergence in $L_2(\mathcal{M}, \tau)$ of the imaginary components of some bounded sequences of operators from $\mathcal M$ is established. Corollaries on the convergence of dispersions are obtained.

DOI: 10.1134/S0081543816040052

1. INTRODUCTION

Let τ be a faithful normal tracial state on a von Neumann algebra $\mathcal{M}, \mathcal{M}^{\text{pr}}$ be the lattice of projectors in M , and I be the identity operator in M . We investigate the convergence in the Banach space $L_1(\mathcal{M}, \tau)$ of τ -integrable operators [1, 2]. We introduce the dispersion $\mathbb{D}(X) = ||X - \tau(X)I||_2^2$ of operators $X \in L_2(\mathcal{M}, \tau)$ and establish its main properties (Theorem 4.1 and Corollary 4.2). We show that $\inf_{a\in\mathbb{C}}||X-aI||_2^2 = \mathbb{D}(X)$ for all $X \in L_2(\mathcal{M}, \tau)$ (Theorem 4.4). We propose a convergence criterion for sequences of operators in $L_2(\mathcal{M}, \tau)$ in terms of the dispersion (Theorem 4.5). Let $\mathcal{K}_0 = \{X \in L_2(\mathcal{M}, \tau) : \tau(X)=0\}.$ For $X_n, X \in \mathcal{K}_0 \ (n \in \mathbb{N})$, we prove the equivalence of the following conditions (Corollary 4.6):

- (i) $X_n \xrightarrow{\| \cdot \|_2} X$ as $n \to \infty$, and
- (ii) $X_n \stackrel{\tau}{\to} X$ and $\mathbb{D}(X_n) \to \mathbb{D}(X)$ as $n \to \infty$.

In Theorem 4.8, we show that the following conditions for $X \in L_1(\mathcal{M}, \tau)$ are equivalent:

- (i) $\tau(X)=0$, and
- (ii) $||I + zX||_1 \ge 1$ for all $z \in \mathbb{C}$.

We complement Padmanabhan's result from [3] on a property of the norm of the space $L_1(\mathcal{M}, \tau)$: if an operator $A \in L_1(\mathcal{M}, \tau)^+$ is nonsingular, then

$$
\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall P \in \mathcal{M}^{\text{pr}} \qquad (\tau(P) \ge \varepsilon \ \Rightarrow \ \|PAP\|_1 \ge \delta)
$$

(Theorem 4.9). We establish the convergence in $L_2(\mathcal{M}, \tau)$ of the imaginary components of some bounded sequences of operators in M (Theorem 4.13) and apply the result to the convergence of dispersions (Corollaries 4.7 and 4.14).

^a Kazan Federal University, ul. Kremlevskaya 18, Kazan, 420008 Russia.

E-mail address: Airat.Bikchentaev@kpfu.ru

2. NOTATION AND DEFINITIONS

Let M be a von Neumann algebra of operators in a Hilbert space \mathcal{H} , \mathcal{M}^{pr} be the lattice of projectors in M, I be the identity operator in M, and $P^{\perp} = I - P$ for $P \in \mathcal{M}^{pr}$. For $P, Q \in \mathcal{M}^{pr}$, we write $P \sim Q$ (Murray–von Neumann equivalence) if $P = U^*U$ and $Q = UU^*$ for some $U \in \mathcal{M}$. The projector $P \wedge Q$ is defined by the equality $(P \wedge Q) \mathcal{H} = P \mathcal{H} \cap Q \mathcal{H}$, and $P \vee Q = (P^{\perp} \wedge Q^{\perp})^{\perp}$ projects onto $\overline{\text{Lin}(P\mathcal{H} \cup Q\mathcal{H})}$. Let \mathcal{M}^{u} and \mathcal{M}^+ be the subset of unitary operators and the cone of positive elements of M , respectively.

A positive linear functional φ on M is called

- faithful if $\varphi(X) > 0$ for all $X \in \mathcal{M}^+$, $X \neq 0$;
- normal if $X_i \nearrow X$ $(X_i, X \in \mathcal{M}^+) \Rightarrow \varphi(X) = \sup \varphi(X_i)$;
- tracial if $\varphi(Z^*Z) = \varphi(ZZ^*)$ for all $Z \in \mathcal{M}$;
- a *state* if $\varphi(I)=1$.

An operator in H (not necessarily bounded or densely defined) is said to be *affiliated to a* von Neumann algebra $\mathcal M$ if it commutes with any unitary operator from the commutant $\mathcal M'$ of the algebra $\mathcal M$. A self-adjoint operator is affiliated to $\mathcal M$ if and only if all projectors from its spectral decomposition of unity belong to M.

The set $\tilde{\mathcal{M}}$ of all closed operators that are affiliated to \mathcal{M} and densely defined in \mathcal{H} is a ∗-algebra with respect to taking the adjoint operator, multiplication by scalars, and the operations of strong addition and multiplication obtained by the closure of the ordinary operations [1, 2]. For a family $\mathcal{L} \subset \tilde{\mathcal{M}}$, denote by \mathcal{L}^+ and \mathcal{L}^{sa} its positive and Hermitian parts, respectively. The partial order in $\widetilde{\mathcal{M}}^{sa}$ generated by the proper cone $\widetilde{\mathcal{M}}^{+}$ is denoted by \leq . Let $i \in \mathbb{C}$ with $i^2 = -1$ and $Y \subset \widetilde{\mathcal{M}}$. Eqn. Ree $Y = (Y + Y^*)/2$ and $\text{Im } Y = (Y - Y^*)/2i$ we have $Y = \text{Re } Y + i \text{Im } Y$ and $X \in \widetilde{\mathcal{M}}$. For Re $X = (X + X^*)/2$ and Im $X = (X - X^*)/(2i)$, we have $X = \text{Re } X + i \text{Im } X$ and $\text{Re } X, \text{Im } X \in \widetilde{\mathcal{M}}^{\text{sa}}.$

 $H X$, in $X \in \mathcal{M}$.
If X is a closed densely defined linear operator affiliated to M and $|X| = \sqrt{X^*X}$, then the spectral decomposition $P^{|X|}(\cdot)$ is contained in M. If $X \in \widetilde{\mathcal{M}}$ and $X = U|X|$ is the polar decomposition of X, then $U \subset M$ and $|Y| \subset \widetilde{M}$ + of X, then $U \in \mathcal{M}$ and $|X| \in \widetilde{\mathcal{M}}^{+}$.

Everywhere below, τ is a faithful normal state on M. Denote by $\mu_t(X)$ the *rearrangement* of the operator $X \in \tilde{\mathcal{M}}$, i.e., a nonincreasing right continuous function $\mu(X)$: $(0,1] \to [0,\infty)$ defined by the formula

$$
\mu_t(X) = \inf\{||XP||: P \in \mathcal{M}^{\text{pr}}, \ \tau(P^{\perp}) \le t\}, \qquad 0 < t \le 1.
$$

Let m be the linear Lebesgue measure on the interval $[0, 1]$. One can define a noncommutative Lebesgue L_p -space $(1 \le p < \infty)$ affiliated to (\mathcal{M}, τ) as $L_p(\mathcal{M}, \tau) = \{X \in \tilde{\mathcal{M}} : \mu(X) \in L_p([0, 1], m)\}$ with the norm $||X||_p = ||\mu(X)||_p$, $X \in L_p(\mathcal{M}, \tau)$. We have $L_q(\mathcal{M}, \tau) \subset L_p(\mathcal{M}, \tau)$ and $||\cdot||_p \leq ||\cdot||_q$ on $L_q(\mathcal{M}, \tau)$ for all $1 \leq p \leq q \leq \infty$ (assume that $L_\infty(\mathcal{M}, \tau) = \mathcal{M}$ and $\|\cdot\|_\infty = \|\cdot\|$). The state τ can be uniquely extended to a bounded linear functional on $L_1(\mathcal{M}, \tau)$, which will be denoted by the same letter τ .

The *-algebra $\tilde{\mathcal{M}}$ is equipped with the topology t_{τ} of convergence in measure [2, 4], for which a fundamental system of neighborhoods of zero is formed by the sets

$$
U(\varepsilon,\delta) = \left\{ X \in \tilde{\mathcal{M}} : \exists P \in \mathcal{M}^{pr} \left(\|XP\| \le \varepsilon \text{ and } \tau(P^{\perp}) \le \delta \right) \right\}, \qquad \varepsilon > 0, \quad \delta > 0.
$$

It is known that $\langle \tilde{M}, t_{\tau} \rangle$ is a complete metrizable topological *-algebra, and M is dense in $\langle \tilde{M}, t_{\tau} \rangle$. To denote the convergence of a net $\{X_j\}_{j\in J} \subset \tilde{\mathcal{M}}$ to $X \in \tilde{\mathcal{M}}$ in the topology t_τ , one writes $X_j \stackrel{\tau}{\to} X$; in this case, $\{X_i\}_{i\in J}$ is said to converge to X in the measure τ . The topology t_{τ} is independent of the specific choice of the tracial state τ and is a minimal topology among all metrizable topologies consistent with the ring structure on $\tilde{\mathcal{M}}$ (see [5]).

3. LEMMAS

Lemma 3.1 [6]. If $X \in \mathcal{M}$ and $Y \in \tilde{\mathcal{M}}$, then $\mu_t(XY) \leq ||X|| \mu_t(Y)$ for all $t > 0$. If $X, Y \in \widetilde{\mathcal{M}}^+$ and $X \leq Y$, then $\mu_t(X) \leq \mu_t(Y)$ for all $t > 0$.

Lemma 3.2 [7, p. 1463]. We have $|\tau(X)| \leq \tau(|X|)$ for all $X \in L_1(\mathcal{M}, \tau)$.

Lemma 3.3 [8, Theorem 2.3]. We have $\tau(X^*) = \overline{\tau(X)}$ for all $X \in L_1(\mathcal{M}, \tau)$.

Lemma 3.4. If $X_n, X \in L_1(\mathcal{M}, \tau)$ and $X_n \xrightarrow{\|\cdot\|_1} X$, then $\tau(X_n) \to \tau(X)$ as $n \to \infty$.

Proof. We have $\tau(X_n) - \tau(X) = \tau(X_n - X)$ and $|\tau(X_n - X)| \leq \tau(|X_n - X|) = ||X_n - X||_1$ by Lemma 3.2. The lemma is proved. \square

Lemma 3.5. Let a number $C > 0$ and a sequence $\{Z_n\}_{n=1}^{\infty} \subset \mathcal{M}$ be such that $||Z_n|| \leq C$ $(n \in \mathbb{N})$ and $Z_n \stackrel{\tau}{\to} Z \in \tilde{\mathcal{M}}$ as $n \to \infty$. Then $Z \in \mathcal{M}$ and $Z_n \stackrel{\|\cdot\|_p}{\longrightarrow} Z$ as $n \to \infty$ for all $1 \leq p < \infty$.

Proof. Since $Z_n \stackrel{\tau}{\to} Z$, the sequence $\{\mu_t(Z_n)\}_{n=1}^{\infty}$ converges to $\mu_t(Z)$ at all continuity points t of the rearrangement of the operator Z (see [9, Lemma 1.2(iii)]). Next, $X \in \mathcal{M} \Leftrightarrow X \in \tilde{\mathcal{M}}$ and

$$
\mu_{0+}(X) \equiv \lim_{t \to 0+} \mu_t(X) = \sup_{0 < t \le 1} \mu_t(X) < \infty;
$$

in this case, $||X|| = \mu_{0+}(X)$ (see [10, Lemma 1.1(5)]). Therefore, $||Z|| \leq C$ and $||Z_n - Z|| \leq 2C$ for all $n \in \mathbb{N}$.

Let $X_n, X \in \tilde{\mathcal{M}}, n \in \mathbb{N}$. We have $X_n \stackrel{\tau}{\to} X \Leftrightarrow \lim_{n \to \infty} \mu_t(X_n - X) = 0$ for every $t > 0$. Let 0 be an applitude under There exists an $N \subset \mathbb{N}$ such that $\mu_t(Z - Z) \leq \varepsilon$ for all $n \geq N$. $\varepsilon > 0$ be an arbitrary number. There exists an $N \in \mathbb{N}$ such that $\mu_{\varepsilon}(Z_n - Z) \leq \varepsilon$ for all $n \geq N$. Since the rearrangement of an operator is a nonincreasing function, we have

$$
||Z_n - Z||_p^p = \int_0^1 \mu_t (Z_n - Z)^p dt \le \int_0^{\varepsilon} ||Z_n - Z||^p dt + \int_{\varepsilon}^1 \varepsilon dt < (2^p C^p + 1)\varepsilon
$$

for all $n > N$. The lemma is proved. \Box

Lemma 3.5 can easily be extended to the noncommutative Orlicz spaces $L_f(\mathcal{M}, \tau)$ introduced in [11].

Lemma 3.6 [12, Theorem 17]. If $A, B \in \tilde{\mathcal{M}}$ and $AB, BA \in L_1(\mathcal{M}, \tau)$, then $\tau(AB) = \tau(BA)$. **Lemma 3.7** [13, Theorem 2.2]. If $A, B \in \tilde{\mathcal{M}}$, then there exist $U, V \in \mathcal{M}^u$ such that $|A + B| \le U|A|U^* + V|B|V^*.$

Lemma 3.8 [14, Ch. V, Proposition 1.6]. We have $P \vee Q - Q \sim P - P \wedge Q$ for all $P, Q \in \mathcal{M}^{pr}$.

4. MAIN RESULTS

Theorem 4.1. Let $\mathbb{D}(X) = ||X - \tau(X)I||_2^2$ be the dispersion of operators $X \in L_2(\mathcal{M}, \tau)$. Then

- (i) $\mathbb{D}(X) = \mathbb{D}(X^*) = \mathbb{D}(UXU^*)$ for all $X \in L_2(\mathcal{M}, \tau)$ and $U \in \mathcal{M}^u$;
- (ii) $\mathbb{D}(X^*X) = \mathbb{D}(XX^*)$ for all $X \in L_4(\mathcal{M}, \tau);$
- (iii) $\mathbb{D}(|X|) \leq \mathbb{D}(X)$ for all $X \in L_2(\mathcal{M}, \tau);$
- (iv) $\sqrt{\mathbb{D}(X+Y)} \leq \sqrt{\mathbb{D}(X)} + \sqrt{\mathbb{D}(Y)}$ for all $X, Y \in L_2(\mathcal{M}, \tau)$;
- (v) $\mathbb{D}(X+Y) \leq 2(\mathbb{D}(X) + \mathbb{D}(Y))$ for all $X, Y \in L_2(\mathcal{M}, \tau);$
- (vi) $\mathbb{D}(aI + bX) = |b|^2 \mathbb{D}(X)$ for all $a, b \in \mathbb{C}$ and $X \in L_2(\mathcal{M}, \tau);$
- (vii) $\mathbb{D}(Z) = \mathbb{D}(\text{Re } Z) + \mathbb{D}(\text{Im } Z)$ for all $Z \in L_2(\mathcal{M}, \tau);$
- (viii) $\mathbb{D}(aP + bP^{\perp}) = |a b|^2 \tau(P) \tau(P^{\perp}) = \mathbb{D}(bP + aP^{\perp})$ for all $a, b \in \mathbb{C}$ and $P \in \mathcal{M}^{pr}$; in particular, $\mathbb{D}(P) = \tau(P)\tau(P^{\perp}) = \mathbb{D}(P^{\perp})$ for all $P \in \mathcal{M}^{pr}$.

Proof. By Lemma 3.3 and the definition of dispersion, we have

$$
\mathbb{D}(X) = \tau(X^*X) - |\tau(X)|^2 \quad \text{for all} \quad X \in L_2(\mathcal{M}, \tau). \tag{4.1}
$$

Assertion (i) follows from Lemma 3.3 and the unitary invariance of the trace τ on $L_1(\mathcal{M}, \tau)$.

Let us prove (ii). Setting $A = X^*XX^*$ and $B = X$ and applying Lemma 3.6, relation (4.1), and the definition of the trace τ , we have the equalities

$$
\mathbb{D}(X^*X) = \tau(X^*XX^* \cdot X) - |\tau(X^*X)| = \tau(X \cdot X^*XX^*) - |\tau(XX^*)| = \mathbb{D}(XX^*)
$$

for all $X \in L_4(\mathcal{M}, \tau)$.

Assertion (iii) follows from (4.1) and Lemma 3.2.

Assertion (iv) follows from the additivity of τ and the triangle inequality for $\|\cdot\|_2$.

Assertion (v) follows from (iv). By (v), we have $\overline{\tau(X)}\tau(Y) + \tau(X)\overline{\tau(Y)} \leq ||X + Y||_2^2$ for all $X, Y \in L_2(\mathcal{M}, \tau).$

Assertion (vi) follows from the definition of D , relation (4.1) , and Lemma 3.3.

Let us prove (vii). Let $Z \in L_2(\mathcal{M}, \tau)$; then the operators $X = \text{Re } Z$ and $Y = \text{Im } Z$ belong to $L_2(\mathcal{M}, \tau)$ ^{sa}. Since $XY, YX \in L_1(\mathcal{M}, \tau)$, we have $\tau(XY - YX) = 0$ by Lemma 3.6. Since $\tau(X), \tau(Y) \in \mathbb{R}$, by virtue of (4.1) we obtain

$$
\mathbb{D}(X + iY) = \tau((X - iY)(X + iY)) - |\tau(X + iY)|^2
$$

= $\tau(X^2) + \tau(Y^2) - \tau(X)^2 - \tau(Y)^2 = \mathbb{D}(X) + \mathbb{D}(Y).$

Assertion (viii) follows from (4.1). The theorem is proved. \Box

Corollary 4.2. Let $P, Q \in \mathcal{M}^{pr}$. Then

- (i) $\mathbb{D}(P \vee Q) \leq \mathbb{D}(P) + \mathbb{D}(Q);$
- (ii) $\mathbb{D}(P \wedge Q) \leq \mathbb{D}(P) + \mathbb{D}(Q);$
- (iii) $\mathbb{D}(P) = \mathbb{D}(Q) \Leftrightarrow \tau(P) \in {\tau(Q), \tau(Q^{\perp})}.$

Proof. Let us prove (i). By Lemma 3.8 we obtain $\tau(P \vee Q) \leq \tau(P) + \tau(Q)$ for all $P, Q \in \mathcal{M}^{pr}$. Taking into account the inequality $\max{\lbrace \tau(P), \tau(Q) \rbrace} \leq \tau(P \vee Q)$ and assertion (viii) of Theorem 4.1, we have

$$
\mathbb{D}(P \lor Q) = \tau(P \lor Q)(1 - \tau(P \lor Q)) \leq (\tau(P) + \tau(Q))(1 - \tau(P \lor Q))
$$

= $\tau(P)(1 - \tau(P \lor Q)) + \tau(Q)(1 - \tau(P \lor Q))$
 $\leq \tau(P)(1 - \tau(P)) + \tau(Q)(1 - \tau(Q)) = \mathbb{D}(P) + \mathbb{D}(Q).$

Let us prove (ii). By De Morgan's duality law, we have $(P \wedge Q)^{\perp} = P^{\perp} \vee Q^{\perp}$ for all $P, Q \in \mathcal{M}^{pr}$. By assertion (i) for the pair of projectors P^{\perp} , Q^{\perp} and by assertion (viii) of Theorem 4.1, we obtain

$$
\mathbb{D}(P \wedge Q) = \mathbb{D}((P \wedge Q)^{\perp}) = \mathbb{D}(P^{\perp} \vee Q^{\perp}) \le \mathbb{D}(P^{\perp}) + \mathbb{D}(Q^{\perp}) = \mathbb{D}(P) + \mathbb{D}(Q).
$$

Assertion (iii) follows from assertion (viii) of Theorem 4.1. In particular, if $P \sim Q$, then $\mathbb{D}(P) = \mathbb{D}(Q)$. The corollary is proved. \Box

The set $\mathcal{K}_0 = \{X \in L_2(\mathcal{M}, \tau): \tau(X)=0\}$ is a closed subspace in $L_2(\mathcal{M}, \tau):$ if $X_n \in \mathcal{K}_0$ $(n \in \mathbb{N}), X \in L_2(\mathcal{M}, \tau), \text{ and } X_n \stackrel{\|\cdot\|_2}{\longrightarrow} X \text{ as } n \to \infty, \text{ then } X_n, X \in L_1(\mathcal{M}, \tau) \text{ (}n \in \mathbb{N} \text{) and } X_n \stackrel{\|\cdot\|_2}{\longrightarrow} X \text{ as } n \to \infty.$ $X_n \xrightarrow{||\cdot||_1} X$ as $n \to \infty$; therefore, $X \in \mathcal{K}_0$ in view of Lemma 3.4. The orthogonal complement \mathcal{K}_0^{\perp} of the subspace \mathcal{K}_0 in $L_2(\mathcal{M}, \tau)$ is one-dimensional and is generated by the operator I. Indeed, since by Lemma 3.3 the inner product $(I, X)_{L_2(\mathcal{M}, \tau)}$ is equal to $\tau(I \cdot X^*) = \overline{\tau(X)} = 0$ for $X \in \mathcal{K}_0$, it follows

that $I \perp \mathcal{K}_0$. Therefore, for every $X \in L_2(\mathcal{M}, \tau)$, the decomposition $X = (X - \tau(X) \cdot I) + \tau(X) \cdot I$ is valid, where the first term on the right-hand side belongs to \mathcal{K}_0 .

Example 4.3. Let $\mathcal{M} = \mathbb{M}_n(\mathbb{C})$ be the full matrix algebra and $\tau = \text{tr}_n$ be the normalized trace on M. There is a well-known Jacobi formula: det $e^X = e^{n\tau(X)}$ for all $X \in \mathcal{M}$. In particular, if det $e^X = 1$, then $\tau(X) = 0$. For $X \in \mathcal{M}$, the following conditions are equivalent:

- (i) X is unitarily equivalent to a matrix with zero diagonal;
- (ii) $\tau(X)=0;$
- (iii) X is a commutator.

For the proof of the equivalence (i) \Leftrightarrow (ii), see [15, Ch. II, Problem 209], and for the equivalence (ii) \Leftrightarrow (iii), see [16, Problem 182]. Thus, \mathcal{K}_0 coincides with the set of all commutators, and $L_2(\mathcal{M}, \tau)$ coincides with M. Therefore, every matrix $A \in M_n(\mathbb{C})$

- (1) is representable as a sum $A = \lambda I + X$ with $X \in \mathcal{K}_0$ and $\lambda = \text{tr}_n A$;
- (2) is unitarily equivalent to a matrix with "constant" diagonal;
- (3) has a rearrangement

$$
\mu_t(A) = \sum_{k=1}^n s_k(A) \chi_{[(k-1)/n, k/n)}(t), \qquad 0 < t \le 1,
$$

where $\{s_k(A)\}_{k=1}^n$ is the set of s-numbers of the matrix A, i.e., the set of eigenvalues of |A| taken in decreasing order and counted with their multiplicities; χ_B is the indicator of a set $\mathcal{B} \subset \mathbb{R}$.

Theorem 4.4. If $X \in L_2(\mathcal{M}, \tau)$, then $\inf_{a \in \mathbb{C}} ||X - aI||_2^2 = \mathbb{D}(X)$, i.e.,

$$
\underset{a \in \mathbb{C}}{\arg \inf} \|X - aI\|_2^2 = \tau(X).
$$

Proof. Let $X \in L_2(\mathcal{M}, \tau)$ and $b = \tau(X)$; then $\tau(X - bI) = 0$ and by Lemma 3.3 we obtain

$$
||X - aI||_2^2 = ||(X - bI) - (a - b)I||_2^2 = \tau((X - bI) - (a - b)I)^*((X - bI) - (a - b)I)
$$

= $\tau((X - bI)^*(X - bI)) - \overline{(a - b)}\tau(X - bI) - (a - b)\overline{\tau(X - bI)} + |a - b|^2$
= $\mathbb{D}(X) + |a - b|^2 \ge \mathbb{D}(X),$

where the equality is attained if and only if $a = b = \tau(X)$. The theorem is proved. \Box

Theorem 4.5. Let $1 \le p < 2$ and $X_n, X \in L_2(\mathcal{M}, \tau)$, $n \in \mathbb{N}$. The following conditions are equivalent:

- (i) $X_n \xrightarrow{\| \cdot \|_2} X \text{ as } n \to \infty;$
- (ii) $X_n \xrightarrow{\|\cdot\|_p} X$ and $\mathbb{D}(X_n) \to \mathbb{D}(X)$ as $n \to \infty$;
- (iii) $X_n \stackrel{\tau}{\to} X$ and $\mathbb{D}(X_n) \to \mathbb{D}(X)$ as $n \to \infty$ and $\limsup_{n \to \infty} |\tau(X_n)| \leq |\tau(X)|$.

Proof. (i) \Rightarrow (ii). Since $X_n \xrightarrow{\|\cdot\|_2} X$ as $n \to \infty$, it follows that $||X_n||_2 \to ||X||_2$ and $X_n \xrightarrow{\|\cdot\|_p} X$ as $n \to \infty$. Therefore, $X_n \xrightarrow{||\cdot||_1} X$ and $\tau(X_n) \to \tau(X)$ as $n \to \infty$ by Lemma 3.4. In view of (4.1), we have

$$
\mathbb{D}(X_n) = \|X_n\|_2^2 - |\tau(X_n)|^2 \to \|X\|_2^2 - |\tau(X)|^2 = \mathbb{D}(X) \quad \text{as} \quad n \to \infty.
$$

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 293 2016

(ii) \Rightarrow (iii). If $X_n \xrightarrow{||\cdot||_p} X$ as $n \to \infty$, then $X_n \xrightarrow{\tau} X$ as $n \to \infty$ in view of [5, Theorem 1]. Since $X_n \xrightarrow{||\cdot||_1} X$ as $n \to \infty$, it follows that $\tau(X_n) \to \tau(X)$ as $n \to \infty$ by Lemma 3.4.

(iii) \Rightarrow (i). We have X_n^* $\tilde{\to} X^*$ as $n \to \infty$ in view of the t_τ -continuity of the involution from $\tilde{\mathcal{M}}$ to $\widetilde{\mathcal{M}}$. Therefore, $X_n^* X_n \stackrel{\tau}{\to} X^* X$ as $n \to \infty$ due to the joint t_τ -continuity of the product from $\widetilde{\mathcal{M}} \times \widetilde{\mathcal{M}}$ to $\widetilde{\mathcal{M}}$. Since $X_n^* X_n, X^* X \in L_1(\mathcal{M}, \tau)^+$, we have

$$
\tau(X^*X) \le \liminf_{n \to \infty} \tau(X_n^*X_n)
$$

by Fatou's lemma [6, Theorem 3.5(i)]. Now, in view of the properties of the lower limit of number sequences, we have

$$
|\tau(X)|^2 - \liminf_{n \to \infty} \tau(X_n^* X_n) \le |\tau(X)|^2 - \tau(X^* X) = \liminf_{n \to \infty} (|\tau(X_n)|^2 - \tau(X_n^* X_n))
$$

$$
\le \liminf_{n \to \infty} |\tau(X_n)|^2 - \liminf_{n \to \infty} \tau(X_n^* X_n).
$$

Therefore, $|\tau(X)|^2 \leq \liminf_{n \to \infty} |\tau(X_n)|^2$, and since the real function $t \mapsto \sqrt{t}$ $(t \geq 0)$ is monotone and continuous, we obtain $|\tau(X)| \leq \liminf_{n \to \infty} |\tau(X_n)|$. Hence, $|\tau(X)| = \lim_{n \to \infty} |\tau(X_n)|$ and

 $||X_n||_2^2 = \mathbb{D}(X_n) + |\tau(X_n)|^2 \to \mathbb{D}(X) + |\tau(X)|^2 = ||X||_2^2$ as $n \to \infty$.

Since the real function $t \mapsto \sqrt{t}$ $(t \ge 0)$ is continuous, we find that $||X_n||_2 \to ||X||_2$ as $n \to \infty$. Consequently, $X_n \xrightarrow{\|\cdot\|_2} X$ as $n \to \infty$ in view of [6, Theorem 3.7]. The theorem is proved. \square

Corollary 4.6. Let $X_n, X \in \mathcal{K}_0, n \in \mathbb{N}$. The following conditions are equivalent:

(i) $X_n \xrightarrow{\| \cdot \|_2} X \text{ as } n \to \infty;$

(ii) $X_n \stackrel{\tau}{\to} X$ and $\mathbb{D}(X_n) \to \mathbb{D}(X)$ as $n \to \infty$.

Theorem 4.5 and Lemmas 3.4 and 3.5 imply

Corollary 4.7. Under the hypotheses of Lemma 3.5, it holds that $\mathbb{D}(Z_n) \to \mathbb{D}(Z)$ and $\tau(Z_n) \to \tau(Z)$ as $n \to \infty$.

Theorem 4.8. For $X \in L_1(\mathcal{M}, \tau)$, the following conditions are equivalent:

- (i) $\tau(X) = 0;$
- (ii) $||I + zX||_1 \ge 1$ for all $z \in \mathbb{C}$.

Proof. (i) \Rightarrow (ii). By Lemma 3.2, we have

$$
||I + zX||_1 = \tau(|I + zX|) \ge |\tau(I + zX)| = |1 + z\tau(X)| = 1.
$$

(ii) \Rightarrow (i). Let us rewrite inequality (ii) as $\tau(\rho^{-1}(|I + \rho e^{i\theta} X| - I)) \ge 0$, where $\rho > 0$ and $\theta \in \mathbb{R}$. Since

$$
\frac{1}{\rho}(|I + \rho Z| - I) = (2 \operatorname{Re} Z + \rho |Z|^2)(|I + \rho Z| + I)^{-1}
$$

for all $\rho > 0$ and $Z \in \tilde{\mathcal{M}}$, and since the involution from $\tilde{\mathcal{M}}$ to $\tilde{\mathcal{M}}$ is t_{τ} -continuous, the product from $\widetilde{M} \times \widetilde{M}$ to \widetilde{M} is jointly t_{τ} -continuous, and the operator function $Z \mapsto \sqrt{Z}$ from \widetilde{M}^{+} to \widetilde{M}^{+} is to continuous by $[2,$ Theorem 2.11 we have is t_{τ} -continuous, by [3, Theorem 2.1] we have

$$
\frac{1}{\rho}(|I + \rho e^{i\theta} X| - I) \xrightarrow{\tau} \text{Re}(e^{i\theta} X) \qquad \text{as} \quad \rho \to 0+ \tag{4.2}
$$

for all $\theta \in \mathbb{R}$. Let $\rho > 0$ and $\theta \in \mathbb{R}$. By Lemma 3.7, there exists an operator $U_{\rho,\theta} \in \mathcal{M}^{\mathrm{u}}$ such that $|\rho^{-1}I + e^{i\theta}X| \leq \rho^{-1}I + U_{\rho,\theta}|X|U_{\rho,\theta}^*;$ therefore,

$$
\left|\frac{1}{\rho}I + e^{i\theta}X\right| - \frac{1}{\rho}I \le U_{\rho,\theta}|X|U_{\rho,\theta}^*.
$$
\n(4.3)

Applying once again Lemma 3.7, we find $V_{\rho,\theta}, W_{\rho,\theta} \in \mathcal{M}^{\mathrm{u}}$ such that

$$
\frac{1}{\rho}I = \left|\frac{1}{\rho}I + e^{i\theta}X - e^{i\theta}X\right| \le V_{\rho,\theta}\left|\frac{1}{\rho}I + e^{i\theta}X\right|V_{\rho,\theta}^* + W_{\rho,\theta}|X|W_{\rho,\theta}^*;
$$

hence,

$$
\left|\frac{1}{\rho}I + e^{i\theta}X\right| - \frac{1}{\rho}I \ge -V_{\rho,\theta}^*W_{\rho,\theta}|X|W_{\rho,\theta}^*V_{\rho,\theta}.
$$
\n(4.4)

From (4.3) and (4.4), for the operator $Y_{\rho,\theta} \equiv U_{\rho,\theta} |X| U_{\rho,\theta}^* + V_{\rho,\theta}^* W_{\rho,\theta} |X| W_{\rho,\theta}^* V_{\rho,\theta} \in L_1(\mathcal{M},\tau)^+$ we obtain

$$
-Y_{\rho,\theta} \le \left| \frac{1}{\rho} I + e^{i\theta} X \right| - \frac{1}{\rho} I \le Y_{\rho,\theta};
$$

therefore, by [17, Theorem 1], for some $S_{\rho,\theta} \in \mathcal{M}^{\mathrm{u}} \cap \mathcal{M}^{\mathrm{sa}}$ we have

$$
\left| \left| \frac{1}{\rho} I + e^{i\theta} X \right| - \frac{1}{\rho} I \right| \le \frac{1}{2} (Y_{\rho,\theta} + S_{\rho,\theta} Y_{\rho,\theta} S_{\rho,\theta}). \tag{4.5}
$$

Recall [6] that $\mu_{t+s}(A + B) \leq \mu_t(A) + \mu_s(B)$ and $\mu_t(A) = \mu_t(|A|)$ for all $A, B \in \tilde{\mathcal{M}}$ and $t, s > 0$. Consequently, for all $t > 0$, by Lemma 3.1 and the unitary invariance of rearrangements, we have

$$
\mu_t \left(\left| \frac{1}{\rho} I + e^{i\theta} X \right| - \frac{1}{\rho} I \right) \le \frac{1}{2} \mu_t (Y_{\rho, \theta} + S_{\rho, \theta} Y_{\rho, \theta} S_{\rho, \theta}) \le \frac{1}{2} \left(\mu_{t/2} (Y_{\rho, \theta}) + \mu_{t/2} (S_{\rho, \theta} Y_{\rho, \theta} S_{\rho, \theta}) \right)
$$

= $\mu_{t/2} (Y_{\rho, \theta}) \le \mu_{t/4} (U_{\rho, \theta} | X | U_{\rho, \theta}^*) + \mu_{t/4} (V_{\rho, \theta}^* W_{\rho, \theta} | X | W_{\rho, \theta}^* V_{\rho, \theta})$
= $2\mu_{t/4} (X).$

Let us apply the dominated convergence theorem (see [18, Proposition 3.3(ii)]): if $\{A\}_{n=1}^{\infty}$ \in $L_1(\mathcal{M}, \tau)$, $A_n \stackrel{\tau}{\to} A \in \tilde{\mathcal{M}}$ as $n \to \infty$, and $\mu(A_n) \leq f \in L_1(\mathbb{R}^+, m)$ for all $n \in \mathbb{N}$, then $A \in L_1(\mathcal{M}, \tau)$ and $A_n \xrightarrow{||\cdot||_1} A$ as $n \to \infty$. Therefore, from (4.2) and (4.5) with $f(t) \equiv 2\mu_{t/4}(X)$, taking account of Lemma 3.3, we obtain

$$
\operatorname{Re}(e^{i\theta}\tau(X)) = \tau(\operatorname{Re}(e^{i\theta}X)) = \lim_{\rho \to 0+} \tau\left(\frac{1}{\rho}(|I + \rho e^{i\theta}X| - I)\right) \ge 0,
$$

and this relation holds for all $\theta \in \mathbb{R}$. Choosing θ such that $e^{i\theta}\tau(X) = -|\tau(X)|$, we get $\tau(X)=0$. The theorem is proved. \Box

For $A \in L_1(\mathcal{M}, \tau)$, it was essentially established in [3, Proposition 2] that

$$
\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall P \in \mathcal{M}^{\text{pr}} \qquad \big(\tau(P) \leq \delta \ \Rightarrow \ \|PAP\|_1 \leq \varepsilon \big).
$$

Theorem 4.9. Let $A \in L_1(\mathcal{M}, \tau)^+$ be a nonsingular operator. Then

 $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall P \in \mathcal{M}^{\text{pr}} \qquad (\tau(P) \geq \varepsilon \Rightarrow ||PAP||_1 \geq \delta).$

Proof. Let $\varepsilon > 0$ be an arbitrary number and $\lambda > 0$ be such that the spectral projector $Q = P^{A}((\lambda, +\infty))$ satisfies the inequality $\tau(Q) > 1 - \varepsilon/2$. Let $P \in \mathcal{M}^{pr}$ with $\tau(P) \geq \varepsilon$ be

arbitrary. By Lemma 3.8, we have $\tau(P \wedge Q) + \tau(P \vee Q) = \tau(P) + \tau(Q)$ and, taking into account the inequality $\tau(P \vee Q) \leq 1$, obtain $\tau(P \wedge Q) \geq \varepsilon/2$.

If $X, Y \in \tilde{\mathcal{M}}^+$ and $Z \in \tilde{\mathcal{M}}$, then the inequality $X \leq Y$ implies that $ZXZ^* \leq ZYZ^*$ (see [18, p. 720]). We have $\mu_t(ZZ^*) = \mu_t(Z^*Z)$ for all $t > 0$ and $Z \in \tilde{\mathcal{M}}$ (see [10, formula (1)]). Then, by Lemma 3.1, we obtain

$$
||PAP||_1 = \tau(PAP) = \int_0^1 \mu_t(PAP) dt = \int_0^1 \mu_t(\sqrt{A} \cdot P \cdot \sqrt{A}) dt \ge \int_0^1 \mu_t(\sqrt{A} \cdot P \wedge Q \cdot \sqrt{A}) dt
$$

=
$$
\int_0^1 \mu_t(P \wedge Q \cdot A \cdot P \wedge Q) dt \ge \int_0^1 \mu_t(\lambda \cdot P \wedge Q) dt = \lambda \tau(P \wedge Q) \ge \lambda \frac{\varepsilon}{2} \equiv \delta.
$$

The theorem is proved. \Box

The Radon–Nikodym theorem (see [19]) and Theorem 4.9 imply

Corollary 4.10. Let φ be a faithful normal positive linear functional on M. Then

$$
\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall P \in \mathcal{M}^{\text{pr}} \qquad (\tau(P) \ge \varepsilon \Rightarrow \varphi(P) \ge \delta).
$$

Theorem 4.11. Let φ be a faithful normal state on M such that the Radon–Nikodym derivative $d\varphi/d\tau$ belongs to M. Then there exists a number $\lambda \in (0,1]$ and a faithful normal state ψ on M such that $\tau = \lambda \varphi + (1 - \lambda) \psi$.

Proof. Obviously, $A \equiv d\varphi/d\tau \in \mathcal{M}^+$, $||A|| \geq 1$, and $\tau(A) = 1$. We have $\varphi(X) = \tau(AX)$ for all $X \in \mathcal{M}$. Take a constant $C > ||A||$ and set $\lambda = C^{-1}$. Let

$$
\psi(X) \equiv \frac{1}{1 - \lambda} \tau((I - \lambda A)X) \quad \text{for all} \quad X \in \mathcal{M}.
$$

Since $I - \lambda A \in \mathcal{M}^+$ and this operator is invertible, ψ is a faithful normal state on M. The rest is obvious. The theorem is proved. - \Box

Remark 4.12. If the state φ in Theorem 4.11 is tracial, then $A \in \mathcal{M} \cap \mathcal{M}'$ and ψ is also a tracial state. Let $\mu^{(1)}(X)$ and $\mu^{(2)}(X)$ be the rearrangements of the operator $X \in \tilde{\mathcal{M}}$ with respect to φ and ψ , respectively. We have

$$
\mu_t^{(1)}(X) = \inf \{ \|XP\| \colon \ P \in \mathcal{M}^{pr}, \ \lambda^{-1}\tau(P^\perp) - (\lambda^{-1} - 1)\psi(P^\perp) \le t \}
$$

$$
\le \inf \{ \|XP\| \colon \ P \in \mathcal{M}^{pr}, \ \lambda^{-1}\tau(P^\perp) \le t \} = \mu_{\lambda t}(X)
$$

for all $0 < t \leq 1$. In a similar way we obtain $\mu_t^{(2)}(X) \leq \mu_{(1-\lambda)t}(X)$ for all $0 < t \leq 1$. Therefore, $L_p(\mathcal{M}, \tau) \subset L_p(\mathcal{M}, \varphi) \cap L_p(\mathcal{M}, \psi)$ for all $1 \leq p < \infty$.

Theorem 4.13. Let numbers $1 \leq p < \infty$ and $C > 0$ and a sequence $\{Z_n\}_{n=1}^{\infty}$ in M be such that $||Z_n|| \leq C$ $(n \in \mathbb{N})$, $||\text{Re } Z_n||_1 \to 1$, and $|Z_n| \to I$ as $n \to \infty$. Then $||\text{Im } Z_n||_p \to 0$ as $n \to \infty$.

Proof. By Lemma 3.5, we have $|Z_n| \xrightarrow{|| \cdot ||_1} I$ as $n \to \infty$. Let $Z_n = X_n + iY_n$ with $X_n, Y_n \in \mathcal{M}^{\text{sa}}$, $n \in \mathbb{N}$. By Lemma 3.1, we have

$$
\mu_t(I - Z_n^* Z_n) = \mu_t(I - |Z_n|^2) = \mu_t((I + |Z_n|)(I - |Z_n|)) \le ||I + |Z_n|| \mu_t(I - |Z_n|)
$$

$$
\le (C + 1)\mu_t(I - |Z_n|)
$$

for all $t > 0$ and $n \in \mathbb{N}$; therefore, $Z_n^* Z_n \xrightarrow{||\cdot||_1} I$ as $n \to \infty$. Let $Z_n^* = V_n |Z_n^*|$ be a polar decomposition of the operator Z_n^* ; then $|Z_n| = V_n |Z_n^*| V_n^*$ and $Z_n^* Z_n = V_n Z_n Z_n^* V_n^*$ for all $n \in \mathbb{N}$.

Since the von Neumann algebra $\mathcal M$ is finite, the partial isometry V_n can be extended to an operator $U_n \in \mathcal{M}^{\mathrm{u}}$ with the property $Z_n^* = U_n |Z_n^*|$ (see [5, proof of Theorem 2]). Thus, $Z_n^* Z_n = U_n Z_n Z_n^* U_n^*$ for all $n \in \mathbb{N}$. Now,

$$
I - Z_n Z_n^* = U_n^* (I - Z_n^* Z_n) U_n \xrightarrow{\| \cdot \|_1} 0 \quad \text{as} \quad n \to \infty
$$

due to the unitary invariance of the norm $\|\cdot\|_1$. Hence,

$$
I - (X_n^2 + Y_n^2) = \frac{1}{2} \left((I - Z_n^* Z_n) + (I - Z_n Z_n^*) \right) \xrightarrow{\|\cdot\|_1} 0 \quad \text{as} \quad n \to \infty.
$$

Since $I - \sqrt{X_n^2 + Y_n^2} = (I + \sqrt{X_n^2 + Y_n^2})^{-1}(I - (X_n^2 + Y_n^2))$ and $(I + \sqrt{X_n^2 + Y_n^2})^{-1} \leq I$ for all $n \in \mathbb{N}$, by Lemma 3.1 we have

$$
\mu_t(I - \sqrt{X_n^2 + Y_n^2}) \le ||(I + \sqrt{X_n^2 + Y_n^2})^{-1}|| \mu_t(I - (X_n^2 + Y_n^2)) \le \mu_t(I - (X_n^2 + Y_n^2))
$$

for all $t \geq 0$ and $n \in \mathbb{N}$. Therefore, $\sqrt{X_n^2 + Y_n^2}$ $\lim_{n \to \infty} I$ as $n \to \infty$. Since $X_n^2 \leq X_n^2 + Y_n^2$, it follows that $\sqrt{X_n^2} = |X_n| \le \sqrt{X_n^2 + Y_n^2}$ for all $n \in \mathbb{N}$, because the function $\lambda \mapsto \sqrt{\lambda} (\lambda \ge 0)$ is operator monotone.

Let $A_n \equiv \sqrt{X_n^2 + Y_n^2} - |X_n|$ and $B_n \equiv \sqrt{X_n^2 + Y_n^2} + |X_n|$ for all $n \in \mathbb{N}$. Then $A_n, B_n \in \mathcal{M}^+$ and $\tau(A_n) = ||A_n||_1 \to 0$ as $n \to \infty$. Since

$$
\left\|\sqrt{X_n^2 + Y_n^2}\right\| = \sqrt{\|X_n^2 + Y_n^2\|} \le \sqrt{\|X_n^2\| + \|Y_n^2\|} \le \sqrt{\|X_n\|^2 + \|Y_n\|^2} \le \sqrt{2}C,
$$

it follows that $||B_n|| \leq (\sqrt{2} + 1)C$ for all $n \in \mathbb{N}$. It is easy to see that

$$
2Y_n^2 = A_n B_n + B_n A_n \qquad (n \in \mathbb{N}).
$$

Now, by the triangle inequality for the norm $\|\cdot\|_1$, the equality $||T||_1 = ||T^*||_1$ for all $T \in L_1(\mathcal{M}, \tau)$, and Lemma 3.1, we have

$$
||Y_n||_2^2 = \tau(Y_n^2) = ||Y_n^2||_1 = \frac{1}{2} ||A_n B_n + B_n A_n||_1 \le \frac{1}{2} (||A_n B_n||_1 + ||B_n A_n||_1) = ||B_n A_n||_1
$$

$$
\le ||B_n|| \cdot ||A_n||_1 \le (\sqrt{2} + 1)C||A_n||_1
$$

for all $n \in \mathbb{N}$. Thus, $Y_n \xrightarrow{||\cdot||_2} 0$ as $n \to \infty$. Therefore, $Y_n \xrightarrow{\tau} 0$ as $n \to \infty$ in view of [5, Theorem 1], and by Lemma 3.5 we have $Y_n \xrightarrow{\|\cdot\|_p} 0$ as $n \to \infty$. The theorem is proved. \square \Box

Theorems 4.5 and 4.13 imply

Corollary 4.14. Under the hypotheses of Theorem 4.13, we have $\mathbb{D}(\text{Im }Z_n) \to 0$ as $n \to \infty$.

Remark 4.15. If $\mathcal{M} = L^{\infty}(\Omega, \Sigma, \nu)$ and $\tau(f) = \int_{\Omega} f d\nu$, where (Ω, Σ, ν) is a probability space, then the ∗-algebra $\tilde{\mathcal{M}}$ coincides with the algebra of all measurable complex functions f on (Ω, Σ, ν) . In this case, the topology t_{τ} is the ordinary topology of convergence in probability; the rearrangement

$$
\mu_t(f) = \inf\{s \ge 0 \colon \nu(\{\omega \in \Omega : |f(\omega)| > s\}) \le t\}
$$

coincides with the nonincreasing rearrangement of the function $|f|$. In this commutative case, Theorem 4.5 is new, while Theorems 4.8 and 4.13 are given in [20, Exercise 2.12.104] and [20, Exercise 2.12.105], respectively.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research and the Government of the Republic of Tatarstan, project no. 15-41-02433.

REFERENCES

- 1. I. E. Segal, "A non-commutative extension of abstract integration," Ann. Math., Ser. 2, 57 (3), 401–457 (1953).
- 2. E. Nelson, "Notes on non-commutative integration," J. Funct. Anal. 15 (2), 103–116 (1974).
- 3. A. R. Padmanabhan, "Probabilistic aspects of von Neumann algebras," J. Funct. Anal. 31 (2), 139–149 (1979).
- 4. M. Terp, L^p*-Spaces Associated with von Neumann Algebras* (Copenhagen Univ., Copenhagen, 1981).
- 5. A. M. Bikchentaev, "Minimality of convergence in measure topologies on finite von Neumann algebras," Mat. Zametki 75 (3), 342–349 (2004) [Math. Notes 75, 315–321 (2004)].
- 6. T. Fack and H. Kosaki, "Generalized s-numbers of τ -measurable operators," Pac. J. Math. 123 (2), 269–300 (1986).
- 7. G. Pisier and Q. Xu, "Non-commutative L^p -spaces," in *Handbook of the Geometry of Banach Spaces* (North-Holland, Amsterdam, 2003), Vol. 2, pp. 1459–1517.
- 8. A. M. Bikchentaev, "Concerning the theory of τ -measurable operators affiliated to a semifinite von Neumann algebra," Mat. Zametki 98 (3), 337–348 (2015) [Math. Notes 98, 382–391 (2015)].
- 9. A. M. Bikchentaev, "Local convergence in measure on semifinite von Neumann algebras," Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 255, 41–54 (2006) [Proc. Steklov Inst. Math. 255, 35–48 (2006)].
- 10. A. M. Bikchentaev, "On normal τ-measurable operators affiliated with semifinite von Neumann algebras," Mat. Zametki 96 (3), 350–360 (2014) [Math. Notes 96, 332–341 (2014)].
- 11. A. M. Bikchentaev, "On noncommutative function spaces," in *Selected Papers in* K*-Theory* (Am. Math. Soc., Providence, RI, 1992), AMS Transl., Ser. 2, 154, pp. 179–187.
- 12. L. G. Brown and H. Kosaki, "Jensen's inequality in semi-finite von Neumann algebras," J. Oper. Theory 23 (1), 3–19 (1990).
- 13. C. A. Akemann, J. Anderson, and G. K. Pedersen, "Triangle inequalities in operator algebras," Linear Multilinear Algebra 11 (2), 167–178 (1982).
- 14. M. Takesaki, *Theory of Operator Algebras* (Springer, Berlin, 1979), Vol. 1.
- 15. I. M. Glazman and Ju. I. Ljubiˇc, *Finite-Dimensional Linear Analysis in Problems* (Nauka, Moscow, 1969); Engl. transl.: *Finite-Dimensional Linear Analysis: A Systematic Presentation in Problem Form* (MIT Press, Cambridge, MA, 1974).
- 16. P. R. Halmos, *A Hilbert Space Problem Book* (Van Nostrand, Princeton, NJ, 1967).
- 17. A. M. Bikchentaev, "Block projection operators in normed solid spaces of measurable operators," Izv. Vyssh. Uchebn. Zaved., Mat., No. 2, 86–91 (2012) [Russ. Math. 56 (2), 75–79 (2012)].
- 18. P. G. Dodds, T. K.-Y. Dodds, and B. de Pagter, "Noncommutative Köthe duality," Trans. Am. Math. Soc. 339 (2), 717–750 (1993).
- 19. G. K. Pedersen and M. Takesaki, "The Radon–Nikodym theorem for von Neumann algebras," Acta Math. 130, 53–87 (1973).
- 20. V. I. Bogachev, *Foundations of Measure Theory* (Regulyarnaya i Khaoticheskaya Dinamika, Moscow, 2006), Vol. 1; Engl. transl.: *Measure Theory* (Springer, Berlin, 2007), Vol. 1.

Translated by I. Nikitin