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Abstract—Order-sharp estimates are established for the best N -term approximations of func-
tions from Nikol’skii–Besov type classes Bsm

pq (Tk) with respect to the multiple trigonomet-
ric system T(k) in the metric of Lr(T

k) for a number of relations between the parameters
s, p, q, r, and m (s = (s1, . . . , sn) ∈ R

n
+, 1 ≤ p, q, r ≤ ∞, m = (m1, . . . ,mn) ∈ N

n,
k = m1 + . . .+mn). Constructive methods of nonlinear trigonometric approximation—variants
of the so-called greedy algorithms—are used in the proofs of upper estimates.

DOI: 10.1134/S0081543816040027

1. INTRODUCTION

Let X be a Banach space with norm ‖·|X‖ and G = (φj : j ∈ J) be a system of elements in X
(J is a countable set of indices). The quantity

σN (f,G,X) = inf

{∥∥∥∥∥f −
∑
ı∈I

cıφı

∣∣∣∣X
∥∥∥∥∥
∣∣∣∣ cı ∈ C (ı ∈ I), I ⊂ J : #I = N

}

is called the best N -term approximation of an element f ∈ X with respect to the system G (N ∈ N0).
For a set F ⊂ X, we define

σN (F,G,X) = sup{σN (f,G,X) | f ∈ F}. (1.1)

Note that the best N -term approximations of elements f of the Hilbert space L2 with respect
to an orthonormal basis appeared for the first time in [21]: it is these quantities in terms of which
S.B. Stechkin formulated his well-known criterion of absolute convergence of the series of Fourier
coefficients of an element f with respect to such a basis.

There are a lot of publications devoted to the study of the best N -term approximations and
various nonlinear approximation methods for some or other sets F, systems G (bases and dictionar-
ies), and ambient spaces X. The comprehensive surveys [8, 25, 27] and monographs [28, 32] show
that interest in nonlinear problems in approximation theory has not waned; in these sources, one
can also find a fairly detailed history of the problem and extensive bibliography.

In the present paper, we study the best N -term approximations (1.1) of classes F of smooth
functions with respect to the multiple trigonometric system

T(k) =
{
e2πi ξx | ξ ∈ Z

k
}

in classical function spaces. Namely, we give order-sharp estimates for (1.1) in the case when
X = Lr(T

k) (1 < r < ∞) is the Lebesgue function space on the k-dimensional torus, Φ = T(k), and
F are Nikol’skii–Besov type function classes Bsm

pq (T
k) for various relations between the parameters

of the classes and spaces.
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NONLINEAR TRIGONOMETRIC APPROXIMATIONS 3

The first nontrivial result on the best N -term trigonometric approximations of a second-order
Bernoulli function in the uniform metric was obtained by Ismagilov in 1974 [11]. A systematic study
of the best N -term trigonometric approximations of classes of periodic functions with bounded mixed
derivative or difference was started by Temlyakov in 1984 [22]. Further, important results in this
direction were obtained by Kashin, Temlyakov, DeVore, Belinskii, and others (see, e.g., [23, 13, 9,
24, 7]). A detailed study of the best N -term trigonometric approximations of Besov classes of mixed
smoothness (Bs1

pq(T
k) with 1 ≤ q < ∞ in our notation) was carried out by Romanyuk (see [17, 18]

and references therein). Recently, these classical problems have again come to attention in view of
the newly developed general theory of greedy algorithms in Banach spaces (see, e.g., [29, 30] and
the surveys [25, 27]; for the theory of greedy algorithms, see the monographs [28, 32]).

We will need auxiliary definitions and notation.
Let k ∈ N, zk = {1, . . . , k}, N0 = N ∪ {0}, and R+ = (0,+∞). For arbitrary elements x =

(x1, . . . , xk), y = (y1, . . . , yk) ∈ R
k, we set

xy = x1y1 + . . . + xkyk, |x| = |x1|+ . . .+ |xk|, |x|∞ = max{|xκ| : κ ∈ zk},

x ≤ y (x < y) ⇔ xκ ≤ yκ (xκ < yκ) for all κ ∈ zk.

For a number a ∈ R, let a+ = max{a, 0} and 	a
 be its integer part; denote by #Γ the number
of elements of a finite set Γ; in particular, Γ = ∅ ⇔ #Γ = 0.

Let, as usual, Lr = Lr(T
k) be the space of rth power integrable functions f : Tk → C (for

r = ∞, the space of essentially bounded functions) on the k-dimensional torus T
k = (R/Z)k with

the norm

‖f |Lr‖ = ‖f |Lr(T
k)‖ =

⎛
⎝ ∫

Tk

|f(x)|r dx

⎞
⎠

1
r

, 1 ≤ r < ∞,

‖f |L∞‖ = ‖f |L∞(Tk)‖ = ess sup{|f(x)| : x ∈ T
k}.

For a pair of measurable functions f : Tk → C and g : Tk → C such that fg ∈ L1, we set

〈f, g〉 =
∫
Tk

f(x)g(x) dx.

Let S(Rk) be the Schwartz space of test (infinitely differentiable and rapidly decreasing) func-
tions; let ϕ̂ ≡ Fk(f) be the (direct) Fourier transform of a function ϕ ∈ S(Rk):

ϕ̂(ξ) =

∫
Rk

ϕ(x)e−2πi ξx dx, ξ ∈ R
k;

next, let

f̂(ξ) =

∫
Tk

f(x)e−2πi ξxdx, ξ ∈ Z
k,

be the Fourier coefficients of a function f ∈ L1 with respect to the trigonometric system T(k).
Let A = A(Tk) be the space of functions f : Tk → C with absolutely converging Fourier series

with the norm
‖f |A‖ :=

∑
ξ∈Zk

|f̂(ξ)|.
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4 D.B. BAZARKHANOV

Let 1 ≤ p, q ≤ ∞ and J �= ∅ be an at most countable set; then �q(J) is the space of (complex)
number sequences (cj) = (cj | j ∈ J) with the finite norm

‖(cj)|�q(J)‖ =

(∑
j∈J

|cj |q
)1

q

, 1 ≤ q < ∞, ‖(cj)|�∞(J)‖ = sup
j∈J

|cj |;

if J = N
n
0 , then �q ≡ �q(N

n
0 ) is the space of (multiple complex) number sequences (cα) = (cα | α∈N

n
0 )

with the norm ‖(cα)|�q‖.
Denote by �q(Lp) ≡ �q(Lp(T

k)) and Lp(�q) ≡ Lp(T
k; �q) the spaces of function sequences

(gα(x)) = (gα(x) | α ∈ N
n
0 ) (x ∈ T

k) with the finite norms

‖(gα(x))|�q(Lp)‖ =
∥∥(‖gα|Lp‖)

∣∣�q∥∥ and ‖(gα(x))|Lp(�q)‖ =
∥∥‖(gα(·))|�q‖∣∣Lp

∥∥,
respectively.

In conclusion, recall the definition of the function spaces Bsm
pq (Tk) and Lsm

pq (T
k) (and classes) of

the Nikol’skii–Besov and Lizorkin–Triebel types, which are the main object of study in the present
paper.

Let n ∈ N and n ≤ k. We fix a multiindex m = (m1, . . . ,mn) ∈ N
n with |m| = k (if n = 1,

then m = k, and if n = k, then m = 1 = (1, . . . , 1) ∈ N
k) and represent x = (x1, . . . , xk) ∈ R

k as
x = (x1, . . . , xn), where xν = (xκ | κ ∈ kν) = (xκν−1+1, . . . , xκν ) ∈ R

mν ; here

kν = {κν−1 + 1, . . . , κν}, κ0 = 0, κν = m1 + . . .+mν , ν ∈ zn.

Next, we introduce a smooth “m-fold” partition of unity η on R
k.

To this end, we take functions ην0 ∈ S(Rmν ), ν ∈ zn, such that

0 ≤ η̂ν0 (ξ
ν) ≤ 1, ξν ∈ R

mν , η̂ν0 (ξ
ν) =

⎧⎨
⎩

1 if |ξν |∞ ≤ 1,

0 if |ξν |∞ ≥ 3

2

and set
η̂ν(ξν) = η̂ν0 (2

−1ξν)− η̂ν0 (ξ
ν), η̂νj (ξ

ν) = η̂ν(2−j+1ξν), j ∈ N.

Then
η(mν ) :=

{
η̂νj (ξ

ν), ξν ∈ R
mν , j ∈ N0

}
is a smooth partition of unity (along “corridors”) on R

mν , and

η ≡ η(m) :=

{
η̂α(ξ) =

n∏
ν=1

η̂ναν
(ξν), ξ = (ξ1, . . . , ξn) ∈ R

k, α = (α1, . . . , αn) ∈ N
n
0

}

is a smooth (“m-fold”) partition of unity on R
k.

Denote by Δη
α ≡ Δηm

α the following operators (α ∈ N
n
0 ):

Δη
α(f ;x) ≡ Δηm

α (f ;x) =
∑
ξ∈Zk

η̂α(ξ)f̂(ξ)e
2πi ξx.

Definition 1.1. Let s = (s1, . . . , sn) ∈ R
n
+ and 1 ≤ p, q ≤ ∞. Then

(i) the Nikol’skii–Besov type space Bsm
pq ≡ Bsm

pq (Tk) consists of all functions f ∈ Lp for which
the norm

‖f |Bsm
pq ‖ = ‖(2αsΔη

α(f ;x))|�q(Lp)‖

is finite;
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(ii) the Lizorkin–Triebel type space Lsm
pq ≡ Lsm

pq (T
k) (provided that p < ∞) consists of all func-

tions f ∈ Lp for which the norm

‖f |Lsm
pq ‖ = ‖(2αsΔη

α(f ;x))|Lp(�q)‖

is finite.

The unit balls Bsm
pq ≡ Bsm

pq (T
k) and Lsm

pq ≡ Lsm
pq (T

k) of these spaces are called the Nikol’skii–
Besov and Lizorkin–Triebel classes, respectively.

Remark 1.1. Comments and bibliography on the spaces Bsm
pq and Lsm

pq are given in [2]. Here
we just mention the following. For n = k (i.e., m = 1 = (1, . . . , 1) ∈ N

k), the spaces Bs1
pq (T

k)

and Ls1
pq(T

k) are spaces of mixed smoothness; in particular, MW s
p (T

k) = Ls1
p2(T

k) is the space of
functions with Lp-bounded dominating mixed derivative (for 1 < p < ∞) and MHs

p(T
k) ≡ Bs1

p∞(Tk)
is the space of functions with Lp-bounded dominating mixed difference (for 1 ≤ p ≤ ∞). For n = 1
(i.e., m = k), Bs

pq(T
k) ≡ Bsk

pq (T
k) and Ls

pq(T
k) ≡ Lsk

pq(T
k) are isotropic Nikol’skii–Besov and

Lizorkin–Triebel spaces, respectively.

2. BEST N -TERM TRIGONOMETRIC APPROXIMATIONS

Here we formulate and discuss the main result of the paper, namely, estimates for the best
N -term approximations of the classes Bsm

pq with respect to the system T(k) in the metric of Lr

for certain relations between the parameters s, p, q, r, and m (s ∈ R
n
+, 1 ≤ p, q, r ≤ ∞, m =

(m1, . . . ,mn) ∈ N
n, k = m1 + . . .+mn).

Let s = (s1, . . . , sn) ∈ R
n
+ and m = (m1, . . . ,mn) ∈ N

n. Set ςν = sν/mν , ν ∈ zn; without loss of
generality, we will assume that

ς ≡ min{ςν | ν ∈ zn} = ς1 = . . . = ςω < ςν , ν ∈ zn \ zω,

for some ω ∈ zn.
Below, we will use the signs � and � of order inequality and equality: for functions F : R+ → R+

and H : R+ → R+, we write F (u) � H(u) as u → ∞ if there exists a constant C = C(F,H) > 0
such that the inequality F (u) ≤ CH(u) holds for u ≥ u0 > 0, and F (u) � H(u) if F (u) � H(u)
and H(u) � F (u) simultaneously.

Everywhere below, p∗ = min{2, p}, p∗ = max{2, p}, and log is the binary logarithm.
Theorem 2.1. I. Let 1 ≤ p ≤ r ≤ 2, r > 1, 1 ≤ q ≤ ∞, and s ∈ R

n
+ be such that ς > 1

p − 1
r .

Then

σN
(
Bsm
pq ,T

(k), Lr

)
� N

−ς+ 1
p
− 1

r (logω−1 N)
(
ς− 1

p
+ 2

r
− 1

q

)
+ . (2.1)

II. Let 1 ≤ p ≤ 2 ≤ r < ∞, 1 ≤ q ≤ ∞, and s ∈ R
n
+ be such that ς > 1

p . Then

σN
(
Bsm
pq ,T

(k), Lr

)
� N

−ς+ 1
p
− 1

2 (logω−1N)
ς− 1

p
+1− 1

q .

III. Let 2 ≤ p ≤ r < ∞, 1 ≤ q ≤ ∞, and s ∈ R
n
+ be such that ς > 1

2 . Then

σN
(
Bsm
pq ,T

(k), Lr

)
� N−ς(logω−1 N)

ς+ 1
2
− 1

q .

IV. Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, and s ∈ R
n
+ be such that ς > 1

p∗
. Then

σN
(
Bsm
pq ,T

(k), L∞
)
� N

−ς+ 1
p∗ − 1

2 (logω−1N)
ς− 1

p∗ +1− 1
q (logN)

1
2 .

We make the following remark concerning this theorem.
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6 D.B. BAZARKHANOV

Remark 2.1. As mentioned in the Introduction, extensive literature has been devoted to the
best N -term approximations. Here we only point out publications directly related to Theorem 2.1,
namely, those related to function classes of the Nikol’skii–Besov scale, to the trigonometric sys-
tem T(k), and to the cases considered in Theorem 2.1.

(a) First of all, we mention Temlyakov’s papers [22, 23], in which the best N -term trigonometric
approximations of classes of functions of mixed smoothness were studied for the first time; in
particular, Temlyakov established order-sharp estimates for the classes MHs

p(T
k) in case I. The exact

order of these quantities for the same classes MHs
p(T

k) in case II was announced by Belinskii [5].

(b) Next, in 1995, DeVore and Temlyakov [9] found the exact order of σN (F,T(k), Lr) in the case
of isotropic Nikol’skii–Besov classes F = Bsk

pq for all natural values of the parameters of the class
and space (in particular, in all cases I–IV). To prove the lower estimate in Theorem 2.1 (case I with
ς − 1

p + 2
r − 1

q < 0), we will need a particular case of their result:

σN
(
Bsk
pq,T

(k), Lr

)
� N

− ς
k
+ 1

p
− 1

r , 1 ≤ p ≤ r ≤ 2, ς > k

(
1

p
− 1

r

)
, 1 ≤ q ≤ ∞. (2.2)

Here we also mention the earlier paper by Belinskii [6], in which these estimates were obtained in
the one-dimensional case.

(c) In [17, 18], Romanyuk carried out a detailed analysis of the best N -term trigonometric
approximations of the Nikol’skii–Besov classes Bs1

pq(T
k), including cases I–IV considered in Theo-

rem 2.1.
(d) Finally, note that Theorem 2.1 is a part of the result announced in [1] for the classes Bsm

pq (T
k).

When proving Theorem 2.1, we combine the methods and technique of [23] (developed and
adapted to the classes Bs1

pq in [17, 18]) and [30, 31] with the methods and technique for studying
the classes Bsm

pq (T
k) and Lsm

pq (T
k) from [2–4]. The proof of upper estimates in Theorem 2.1 (in

cases II–IV) is based on the theory of greedy algorithms, follows the scheme and style of the
recent papers [30, 31], and is of constructive character. Note that until the studies [10, 26] all
upper estimates for the best sparse trigonometric approximations in the space Lr for r > 2 were
in the character of existence theorems and were based on geometric or probabilistic arguments:
a very detailed discussion of this topic is given in [30]. In particular, this is true of the proof for
the classes Bs1

pq in [17]. The application of the theory of greedy algorithms provides constructive
methods of sparse trigonometric approximations and significantly simplifies and clarifies obtaining
upper estimates. In [30], this is demonstrated, in particular, for the classes MHs

p and Bs1
pq (in our

notation). In the present paper, we give further examples, including the function classes Bsm
pq .

(e) In conclusion, note that in [4] the author proved the following estimates for (1.1) with respect
to the system of wavelets Wm (see Section 3 for the definition of Wm):

σN (Fsm
pq ,Wm, Lr) � N−ς(logN)(ω−1)

(
ς+ 1

2
− 1

q

)
if 1 < r < ∞, (2.3)

σN (Fsm
pq ,Wm, L1) � N−ς(logN)(ω−1)

(
ς+1− 1

q

)
, (2.4)

σN (Bsm
∞q,Wm, L∞) � N−ς(logN)

(ω−1)
(
ς+1− 1

q

)
,

and, for any δ ∈ (0, 1),

σN (Fsm
pq ,Wm, L∞) � N−ς+ δ

p (logN)(ω−1)
(
ς− δ

p
+1− 1

q

)
if 1 ≤ p < ∞ (2.5)

(F ∈ {B,L}); for the classes Bsm
pq (T

k), a detailed comparison with the estimates from Theorem 2.1
was presented. We put a special emphasis on the following point: estimates (2.4) and (2.5) are
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established for greedy algorithms in the spaces L1 and L∞, respectively, with respect to the sys-
tem Wm. It is well known that greedy algorithms are not as efficient in these spaces as in smooth
Banach spaces, including Lr (1 < r < ∞). As for the best approximations, (2.3) obviously implies
the upper estimate (stronger than (2.4))

σN (Fsm
pq ,Wm, L1) � N−ς(logN)

(ω−1)
(
ς+ 1

2
− 1

q

)
.

3. PRELIMINARIES

In this section, we collect known facts that are important for further consideration.
Let Λ be a finite set in Z

k and

T(Λ) =

{
t(x) =

∑
ξ∈Λ

t̂(ξ)e2πi ξx
∣∣∣∣ t̂(ξ) ∈ C, ξ ∈ Λ

}

be the space of trigonometric polynomials with complex coefficients and spectrum Λ. For M =
(M1, . . . ,Mn) ∈ N

n
0 , we set

Λ(m;M) = Z
k ∩

n∏
ν=1

[−Mν ,Mν ]
mν , Θ(m;M) =

n∏
ν=1

(2Mν + 1)mν .

Obviously,
dim(T(Λ(m;M))) = Θ(m;M);

for brevity, we will henceforth write T(m;M) instead of T(Λ(m;M)).
S.M. Nikol’skii’s inequality of different metrics. Let 1 ≤ p < r ≤ ∞. Then the following

inequality holds for any polynomial t ∈ T(m;M):

‖t|Lr‖ ≤ 2k
∏
ν∈zn

M
mν

(
1
p
− 1

r

)

ν ‖t|Lp‖. (3.1)

For the proof, see, e.g., [16, Ch. 3, Sects. 3.2, 3.3].
To obtain the lower estimates in Theorem 2.1, we will also apply Nikol’skii’s duality principle

(see, e.g., [14, Ch. 2]): let {g1, . . . , gN} be a set of elements of a Banach space X, and let X∗ be the
continuous dual of this space; then the following equality holds for all f ∈ X:

min

{∥∥∥∥∥f −
N∑
j=1

cjgj

∣∣∣∣X
∥∥∥∥∥
∣∣∣∣ cj , j = 1, . . . , N

}

= sup
{
F (f)

∣∣ F ∈ X∗ : ‖F |X∗‖ = 1, F (gj) = 0, j = 1, . . . , N
}
.

Poisson’s summation formula and the Bessel–Macdonald kernel. Let f : Rk → C be
an arbitrary function. Its periodization f̃ : Tk → C is defined as the (formal) sum of the series∑

ξ∈Zk

f(x+ ξ). (3.2)

It is well known (see, e.g., [16, Ch. 8, Sect. 8.1]) that the Bessel–Macdonald kernel

Gv(x) =
1

(4π)
v
2

1

Γ
(
v
2

) ∞∫
0

e
−πxx

τ e
−τ
4π τ

−k+v
2

dτ

τ
, v > 0,
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8 D.B. BAZARKHANOV

belongs to the space L1(R
k); therefore, by Poisson’s summation formula (see [20, Ch. VII, § 2,

Theorem 2.4]), we obtain

G̃v(x) =
∑
ξ∈Zk

Gv(x+ ξ) ∈ L1(T
k).

Since the Fourier transform of the kernel Gv is Ĝv(ξ) = (1 + 4π2ξξ)−v/2, ξ ∈ R
k, the Fourier

coefficients of its periodization G̃v are calculated by the formula

̂̃
Gv(ξ) = (1 + 4π2ξξ)−

v
2 , ξ ∈ Z

k.

Moreover, since Gv(x) ∈ Hv
1 (R

k) [16, Ch. 8, Sect. 8.3], one can easily verify that G̃v(x) ∈ Hv
1 =

Bvk
1∞(Tk). Here Hs

1(R
k) (s > 0, 1 ≤ p ≤ ∞) is the Nikol’skii space of functions defined on R

k.
Therefore, G̃v(x) satisfies the condition (in this case, n = 1, i.e., m = k)∥∥Δηk

l (G̃v ;x)
∣∣L1

∥∥ � 2−vl, l ∈ N0. (3.3)

Next, we briefly recall the definition of the multiple system of periodized wavelets Wm (see [2]
for details). Let w0(t) and w1(t) be Meyer’s scaling function and wavelet, respectively (see [15,
Ch. 2, Sect. 12, Ch. 3, Sect. 2] as well as [12, Ch. 7]).

Set
Ek = Ek(0) = {0, 1}k , Ek(1) = Ek \ {(0, . . . , 0)},

Λ(k, j) = N
k
0 ∩ [0, 2j − 1]k, j ∈ N0,

Em(α) =
{
ι ∈ Ek

∣∣ ιν ∈ Emν (sgnαν), ν ∈ zn
}
,

Λ(m,α) =
{
λ ∈ N

k
0

∣∣ λν ∈ Λ(mν , αν), ν ∈ zn
}
, α ∈ N0.

Define functions wι : Rk → R (ι = (ι1, . . . , ιk) ∈ Ek) as follows:

wι(x) = wι1(x1)× . . .× wιk(xk),

and, next,

wι
jλ(x) = 2

jk
2 wι(2jx− λ), λ ∈ Z

k, j ∈ N0.

Define functions w̃ι
jλ : T

k → R as the periodizations of the functions wι
jλ:

w̃ι
jλ(x) = 2

jk
2 w̃ι

j(x− 2−jλ), λ ∈ Λ(k, j), j ∈ N0, ι ∈ Ek.

Then

Wm ≡
{
w̃ι
αλ(x) = w̃ι1

α1λ1(x
1)× . . .× w̃ιn

αnλn(xn)
∣∣ λ ∈ Λ(m,α), ι ∈ Em(α), α ∈ N

n
0

}
is the (“m-fold”) system of periodized Meyer wavelets Wm.

Now we introduce operators Δw
α (α ∈ N

n
0 ): for f ∈ L1,

Δw
α (f ;x) =

∑
ι∈Em(α)

∑
λ∈Λ(m,α)

f ι
αλw̃

ι
αλ(x), f ι

αλ =

∫
Tk

f(x) w̃ι
αλ(x) dx.

First, we formulate a theorem on the representation and characterization by wavelets for the
spaces Bsm

pq from [2] (see also [3]).
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NONLINEAR TRIGONOMETRIC APPROXIMATIONS 9

Theorem A. Let 1 ≤ p, q ≤ ∞ and s ∈ R
n
+. A function f ∈ Lp belongs to the space Bsm

pq if
and only if the function sequence (2αsΔw

α (f ;x) | α ∈ N
n
0 ) belongs to the space �q(Lp); in this case,

the functional ∥∥(2αsΔw
α (f ;x) | α ∈ N

n
0 )
∣∣�q(Lp)

∥∥
is a norm of Bsm

pq equivalent to the original norm.
Let us also formulate a Littlewood–Paley type theorem and its analog for representations with

respect to the system Wm (from [2]) that will be applied along with Theorem A in the subse-
quent sections to the problem of nonlinear trigonometric approximations of functions from the
classes Bsm

pq (T
k).

We introduce operators Δ∗
α as follows: for f ∈ L1,

Δ∗
α(f ;x) =

∑
ξ∈ρ(m,α)

f̂(ξ) e2πi ξx,

ρ(m,α) =
{
ξ ∈ Z

k
∣∣ 	2αν−1
 ≤ |ξν |∞ < 2αν , ν ∈ zn

}
, α ∈ N

n
0 .

Theorem LP. Let 1<p<∞. Then there exist constants 0<cp,m<Cp,m and 0<cηp,m<Cη
p,m

such that
cp,m‖f |Lp‖ ≤ ‖(Δ∗

α(f ;x))|Lp(�2)‖ ≤ Cp,m‖f |Lp‖, (3.4)

cηp,m‖f |Lp‖ ≤ ‖(Δη
α(f ;x))|Lp(�2)‖ ≤ Cη

p,m‖f |Lp‖ (3.5)

for all f ∈ Lp.
A detailed comment regarding the Littlewood–Paley theorem is given in [3].
Theorem B. Let 1 < p < ∞. Then there exists a constant C = C(w0,m, p) > 0 such that

the following inequalities hold for all functions f ∈ Lp(T
k):

C−1‖f |Lp‖ ≤ ‖(Δw
α (f ;x)) |Lp(�2)‖ ≤ C‖f |Lp‖.

The proof of the upper estimates in Theorem 2.1 for 2 ≤ r ≤ ∞ (see Theorem 7.1 below) is
based on the following important results of Temlyakov on the so-called incremental algorithm IA(ε)
with schedule ε (see [28, Ch. 6] as well as [30, Theorems 2.4–2.6]).

Recall the definition of the algorithm IA(ε). Let X be a real Banach space with dictionary D;
the dictionary D is a set in X that possesses the following properties:

(a) ‖g|X‖ = 1 for all g ∈ D;
(b) spanD, the linear span of D, is dense in X.
A symmetrized dictionary (for the dictionary D) is the set D± := {±g | g ∈ D}.
Denote by Ff the norming functional of an element f ∈ X, i.e., a functional on X such that

‖Ff |X∗‖ = 1 and Ff (f) = ‖f |X‖; its existence follows from the Hahn–Banach theorem. Let
ε = (εN | N ∈ N) be a given number sequence, εN > 0, N ∈ N.

Incremental algorithm IA(ε) with schedule ε. Let f i,ε
0 := f and Gi,ε

0 := 0; for N ∈ N, we
inductively

(i) define ϕi,ε
N ∈ D±, an arbitrary element such that F

f i,ε
N−1

(
ϕi,ε
N − f

)
≥ −εN ;

(ii) set

Gi,ε
N :=

(
1− 1

N

)
Gi,ε

N−1 +
1

N
ϕi,ε
N ;

(iii) and define f i,ε
N := f −Gi,ε

N .
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Below in Theorems C and D we use a special sequence ε = (εN ) with εN := v( r−1
2 )1/2N−1/2

for N ∈ N.
Let �T(k) be the real k-fold trigonometric system,

�T(k) =
{
ϕzξ

∣∣ z ⊂ zk, ξ : (ξκ | κ ∈ z) ∈ N
#z
0 , (ξκ | κ ∈ z′) ∈ N

#z′
}
,

where1

ϕzξ(x) =
∏
κ∈z

cos(2πξκxκ)
∏
κ∈z′

sin(2πξκxκ).

Let, next,
T�(m;M) := span

{
ϕzξ

∣∣ z ⊂ zk, ξ : |ξν |∞ ≤ Mν , ν ∈ zn
}
.

Theorem C. Let 2 ≤ r < ∞. For any polynomial t ∈ T�(m;M), the application of the
algorithm IA(ε) to f := t/‖t|A‖ yields, after N iterations, an N -term trigonometric polynomial
Gr

N (t) := Gi,ε
N (f)‖t|A‖ (with respect to the system �T(k)) such that

‖t−Gr
N (t)|Lr‖ ≤ C(k)N− 1

2 r
1
2 ‖t|A‖, N ∈ N0 (N = max{1, N}).

In addition, there exists a constructive algorithm Gi,∞ that is based on IA(ε) and whose application
to f := t/‖t|A‖ yields, after N iterations, an N -term polynomial G∞

N (t) := Gi,∞
N (f)‖t|A‖ (with

respect to the system �T(k)) such that

‖t−G∞
N (t)|L∞‖ ≤ C(k)N− 1

2 (log Θ(m;M))
1
2 ‖t|A‖, ‖G∞

N (t)|A‖ = ‖t|A‖.

The following theorem is a corollary to Theorem C (see [30, Theorem 2.6]).
Theorem D. Let 2 ≤ r < ∞. There exist constructive approximation methods Gr

N (·)
and G∞

N (·) based on greedy-type algorithms that lead to N -term polynomials with respect to the
system T(k) with the following properties : for f ∈ A,

‖f −Gr
N (f)|Lr‖ ≤ c1(k)N

− 1
2 r

1
2 ‖f |A‖, ‖Gr

N (f)|A‖ ≤ c2(k)‖f |A‖;

and for f ∈ T(m;M),

‖f −G∞
N (f)|L∞‖ ≤ c3(k)N

− 1
2 (log Θ(m;M))

1
2 ‖f |A‖, ‖G∞

N (f)|A‖ ≤ c4(k)‖f |A‖.

4. AUXILIARY LEMMAS

For α ∈ N
n
0 , we set

Π(m,α) = Λ(m; (2α1 , . . . , 2αn)), ϑ(m,α) = Θ(m; (2α1 , . . . , 2αn));

next,

Λa(u) =
⋃

u<αm≤u+a

ρ(m,α), Λ(u) =
⋃

αm≤u

ρ(m,α).

It is clear that
dim(T(Π(m,α))) = ϑ(m,α).

1We assume that
∏

κ∈∅
ϕκ(xκ) ≡ 1, N

#∅

0 = N
#∅ = ∅, and z′ = zk \ z.
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For a finite set Λ ⊂ Z
k, we define the corresponding Dirichlet kernel

DΛ(x) =
∑
ξ∈Λ

e2πiξx;

then it is obvious that

DΛ(u)(x) =
∑

αm≤u

Dρ(m,α)(x), Δ∗
α(f ;x) = Dρ(m,α) ∗ f(x);

moreover, the estimates for the one-dimensional Dirichlet kernels yield (1 < p < ∞)

‖Dρ(m,α)|Lp‖ � 2
(
1− 1

p

)
αm

. (4.1)

Below, we will need the following simple facts on the operators Δη
α, Δ∗

α, and Δw
α .

It follows from the properties of η that the spectrum of the trigonometric polynomial Δη
α(f ;x),

α ∈ N
n
0 , for a function f ∈ L1 lies in the “corridor” P η(m,α) =

⊗
ν∈zn P

η(mν , αν), i.e.,

Δη
α(f ;x) ∈ T(P η(m,α)), (4.2)

where
P η(mν , αν) =

{
ξν ∈ Z

mν
∣∣ 2αν−1 < |ξν |∞ < 3 · 2αν−1

}
, αν ∈ N,

P η(mν , 0) =
{
ξν ∈ Z

mν
∣∣ |ξν |∞ ≤ 1

}
.

The spectrum of the trigonometric polynomial w̃ι
αλ(x) is contained in the “corridor” (see [2] as

well as [12, Ch. 7])

Pw(m,α) =
⊗
ν∈zn

Pw(mν , αν),

where for αν ≥ 1

Pw(mν , αν) =

{
ξν ∈ Z

mν

∣∣∣ ⌊2αν

3

⌋
< |ξν |∞ ≤

⌊
2αν+2

3

⌋}
, Pw(mν , 0) =

{
ξν ∈ Z

mν
∣∣ |ξν |∞ ≤ 1

}
;

hence, for a function f ∈ L1,

Δw
α (f ;x) ∈ T(Pw(m,α)), α ∈ N

n
0 . (4.3)

It follows easily from (4.2) and (4.3) (see [2]) that

Δw
α (f ;x) =

∑
α′∈Nn

0 : |α−α′|∞≤2

Δw
α ◦Δη

α′(f ;x). (4.4)

Moreover, it is easy to see that if the composition Δη
β ◦ Δ∗

α, where α, β ∈ N
n
0 , is a nonzero

operator, then the inequalities α− ≤ β ≤ α must be satisfied (henceforth, for α ∈ N
n
0 , we define

α− = (α−
1 , . . . , α

−
n ) and α+ = (α+

1 , . . . , α
+
n ), where α−

ν = (αν − 1)+ and α+
ν = αν + 1, ν ∈ zn).

It is clear that similar facts hold for all compositions Δϕ
α ◦Δψ

α′ with ϕ,ψ ∈ {w, η, ∗}.
We will need the following version of Temlyakov’s well-known lemma [23, Ch. 1, Lemma 3.1].

For a = (a1, . . . , an) ∈ R
n
+, let

Pα(m,a) =
{
ξ ∈ Z

k
∣∣ |ξν |∞ ≤ 2ανaν , ν ∈ zn

}
.
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Lemma T1. Let 1≤ p< r<∞ and 1≤ q≤∞. Then there exists a constant C(p, r, a,m)> 0
such that for f ∈ Lp,

f(x) =
∑
α∈Nn

0

tα(x), tα ∈ T(Pα(m,a)),

the following inequality holds:

‖(tα)|Lr(�q)‖ ≤ C(p, r, a,m)
∥∥(2αm(

1
p
− 1

r

)
tα(x)

)∣∣�r(Lp)
∥∥. (4.5)

The proof of Lemma T1 is given in [3]. The following lemma is an analog of another lemma of
Temlyakov [23, Ch. 1, Lemma 3.1′].

Lemma T2. Let 1 < p < r ≤ ∞ and 1 ≤ q ≤ 2. Then there exists a constant c(p, r,m) > 0
such that the following inequalities hold for f ∈ Lp:

‖(Δw
α (f ;x))|Lp(�q)‖ ≥ c(p, r,m)

∥∥(2αm(
1
r
− 1

p

)
Δw

α (f ;x)
)∣∣�p(Lr)

∥∥, (4.6)

‖(Δα(f ;x))|Lp(�q)‖ ≥ c(p, r,m)
∥∥(2αm(

1
r
− 1

p

)
Δα(f ;x)

)∣∣�p(Lr)
∥∥. (4.7)

Proof. Let us prove (4.6). Applying successively Jensen’s inequality,2 Theorem B, Lemma T1
together with the orthonormality of the system Wm, and the dual description of the norm in the
spaces Lp and �p, we obtain ( 1

p + 1
p′ = 1, 1

r + 1
r′ = 1)

‖(Δw
α (f ;x))|Lp(�q)‖ � ‖(Δw

α (f ;x))|Lp(�2)‖ � ‖f |Lp‖ = sup
{
〈f, ϕ〉

∣∣ ‖ϕ|Lp′‖ = 1
}

= sup

{∑
α∈Nn

0

〈
Δw

α (f ;x),Δ
w
α (ϕ;x)

〉 ∣∣∣∣ ‖ϕ|Lp′‖ = 1

}

� sup

{∑
α∈Nn

0

〈
Δw

α (f ;x),Δ
w
α (ϕ;x)

〉 ∣∣∣∣ ϕ, (cα) : ‖Δw
α (f ;x)|Lr′‖ ≤ cα,

∥∥(2αm(
1
r′ −

1
p′

)
cα
)∣∣�p′∥∥ ≤ 1

}

= sup

{∑
α∈Nn

0

cα‖Δw
α (f ;x)|Lr‖

∣∣∣∣ (cα) : ∥∥(2αm( 1
p
− 1

r

)
cα
)∣∣�p′∥∥ ≤ 1

}
=
∥∥(2αm( 1

r
− 1

p

)
Δw

α (f ;x)
)∣∣�p(Lr)

∥∥.
The proof of inequality (4.7) is analogous; one should just apply the Littlewood–Paley theorem
(relation (3.4)) instead of Theorem B. Note that (4.7) is a direct generalization of Lemma 3.1′

from [23] to the case of an arbitrary m. �
Below, when proving upper estimates for sparse trigonometric approximations and estimating

the dimensions of the corresponding subspaces or the spectra of trigonometric polynomials, we
will systematically use the following lemma, which is a modification of Lemmas B–D from [23] to
our case.

Lemma A. Let β, γ ∈ R
n
+ be such that βν = γν for ν ∈ zω and βν > γν for ν ∈ zn \ zω, and

let L > 0. Then the following relations are valid :

Iβ,γ
L (u) ≡

∑
α∈Nn

0 : αγ>u

2−Lαβ � 2−Luuω−1 as u → +∞, (4.8)

J γ,β
L (u) ≡

∑
α∈Nn

0 : αβ≤u

2Lαγ � 2Luuω−1 as u → +∞. (4.9)

2Let 1 ≤ p < r ≤ ∞; then Jensen’s inequality ‖(cj)|�r(J)‖ ≤ ‖(cj)|�p(J)‖ is valid for any number sequence
(cj) = (cj | j ∈ J).
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This is Lemma 5.1 from [2] (its proof is given in [3], where it is named Lemma A).
Next, let

θ(u; a) ≡ θ(u; a;m) =
{
α ∈ N

n
0

∣∣ u < αm ≤ u+ a
}
, u, a ∈ N+.

Applying Lemma A (see [3]), we can easily show that there exists an a ∈ N such that∑
α∈θ(u;a)

2αm � 2uun−1. (4.10)

Fix such an a ∈ N and introduce the notation

θ(u) ≡ θ(u; a), u ∈ N. (4.11)

It is clear (see [3]) that #θ(u) � un−1, u ∈ N.
Applying Lemma A, we can easily obtain the following estimates (see [3]):

#Λa(u) � 2uun−1, #Λ(u) � 2uun−1.

One of the key ingredients in the constructive method for proving upper estimates in [30, 31]
is Theorem 2.2 from [23, Ch. 1], which relates the norms in the spaces A and Lr (1 < r ≤ 2) of a
trigonometric polynomial with harmonics in a hyperbolic cross. The following lemma is an analog
of this theorem for the polynomials in T(Λ(u)).

Lemma T3. Let 1 < r ≤ 2. Then there exists a constant c(r,m) > 0 such that the following
inequality holds for any polynomial t ∈ T(Λ(u)):

‖t|A‖ :=
∑

ξ∈Λ(u)
|t̂(ξ)| ≤ c(r,m) · 2 1

r
uu(n−1)

(
1− 1

r

)
‖t|Lr‖.

Proof. Let t be an arbitrary polynomial from T(Λ(u)). Using t, we define a polynomial t1 by
setting (for z ∈ C, denote its complex conjugate by z and its sign by sgn(z), sgn(z) = z/|z| if z �= 0)

t1(x) =
∑

ξ∈Λ(u)
sgn( t̂(ξ))e2πiξx.

Then it is clear that ( 1
r + 1

r′ = 1)

‖t|A‖ =
∑

ξ∈Λ(u)
|t̂(ξ)| = 〈t, t1〉 ≤ ‖t|Lr‖ · ‖t|Lr′‖.

On the other hand, by Lemmas T1 and A, we obtain

‖t|Lr′‖ �
{ ∑

αm≤u

2αm
(

1
2
− 1

r′
)
r′‖t|Lr′‖ · ‖Δ∗(t1)|L2‖r

′

} 1
r′

�
{ ∑

αm≤u

2αm
(

1
2
− 1

r′
)
r′ · 2αm 1

2
r′

} 1
r′

� 2
1
r
uu(n−1)

(
1− 1

r

)
.

Therefore,

‖t|A‖ � 2
1
r
uu(n−1)

(
1− 1

r

)
‖t|Lr‖.

The lemma is proved. �
It is easy to see from the proof of Lemma T3 that for any polynomial t ∈ T(Pw(m,α)) we have

the estimate
‖t|A‖ � 2

1
r
αm‖t|Lr‖ (4.12)

(1 < r ≤ 2), while the Nikol’skii inequality (3.1) yields

‖t|Lr‖ � 2αm
(
1− 1

r

)
‖t|L1‖;
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hence, the following estimate is also valid:

‖t|A‖ � 2αm‖t|L1‖. (4.13)

For a finite set Λ = Λ1 × . . . × Λn ∈ Z
k, let

d(Λν) = max
{
|λν − ξν |∞ : λν , ξν ∈ Λν

}
, d(Λν) = max{1, d(Λν)}.

Lemma M. Let 1 ≤ p ≤ ∞ and 1
2m < κ = (κ1, . . . ,κn) ∈ R

n
+. Then there exists a constant

C = C(p,m,κ) > 0 such that for any finite set Λ ⊂ Z
k of the form Λ = Λ1 × . . . × Λn �= ∅, where

Λν ⊂ Z
mν , the inequality∥∥∥∥∥

∑
λ∈Λ

m(λ)t̂(λ)e2πiλx
∣∣∣∣Lp

∥∥∥∥∥ ≤ C
∏
ν∈zn

∥∥mν(d(Λν)xν)
∣∣Hκν (Rmν )

∥∥ · ‖t(x)|Lp‖

holds for all functions m(x) = m1(x1) . . .mn(xn) with mν(xν) ∈ Hκν (Rmν ) and all polynomials
t(x) ∈ T (Λ).

Here Hs(Rk) (s ∈ R) is the space of Bessel potentials (see [33, Ch. 2]). In the case of 1 = n ≤ k
and I = T or R, as well as in the case of n = k = 2 and I = R, Lemma M and its nonperiodic
analog were proved in [33, Sects. 1.5.2, 1.6.3] and [19, Sects. 3.3.4, 3.4.1, 1.8.3, 1.10.3]. Combining
the arguments used there, one can easily obtain the proof in the general (“m-fold”) case.

Moreover, we will often use the following numerical lemma (see, e.g., [23, Ch. 4] for a proof).
Lemma B. Let 1 ≤ p ≤ r ≤ ∞, J ∈ N, and b1 ≥ b2 ≥ . . . ≥ bJ ≥ 0 = bj (j ∈ N, j ≥ J + 1).

Then the following inequality is valid for all I ∈ N:3

(
J∑

j=I

brj

)1
r

≤ I
1
r
− 1

p

(
J∑

j=1

bpj

)1
p

.

Under the hypotheses of Lemma B, the following elementary inequality is valid, which will also
be useful below: for all I,K ∈ N such that I ≤ K, we have

bK ≤ I−
1
p

(
I∑

i=1

bpi

)1
p

. (4.14)

Below, for simplicity (in particular, when proving the upper estimates in Theorem 2.1), we will
restrict the analysis to the “isotropic” situation, when ω = n, i.e.,

ς =
s1
m1

= . . . =
sn
mn

.

Note that when we prove the lower estimates, this assumption does not restrict the generality.

5. UPPER ESTIMATES: PRELIMINARY REMARKS

Clearly, it suffices to prove all the upper estimates only for numbers N ∈ N such that N �
2au(au)n−1(log(au))b, u ∈ N, where a is from (4.10) and b ∈ {0, 1}.

For f ∈ L1, we define a function sequence (θ(−a) ≡ {0} ⊂ R
n)

(fl(x)) = (fl(x) | l ∈ N0), fl(x) =
∑

α∈θ(a(l−1))

Δw
α (f ;x), l ∈ N0; (5.1)

3For I > J , we assume that
∑J

j=I cj ≡ 0 for any sequence (cj | j ∈ N).
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in addition, we define a “hyperbolic” partial sum

Swm
u (f ;x) =

∑
αm≤u

Δw
α (f ;x), u ∈ R+,

of the Fourier series of the function f with respect to the system Wm. We will need the following
estimates obtained in [2] (particular cases of Theorem 4.1 from [2]): let 1 ≤ p ≤ r ≤ 2 and
1 ≤ q ≤ ∞; then for f ∈ Bsm

pq it holds that

‖f − Swm
u (f)|Lr‖ � 2

−
(
ς− 1

p
+ 1

r

)
u
u
(n−1)

(
1
r
− 1

q

)
+‖f |Bsm

pq ‖. (5.2)

Now, by analogy with [30, 32], we introduce auxiliary function spaces. Let ς ∈ R+, ε ∈ R, and
1 ≤ p, q ≤ ∞. Then

Hςε
pq ≡ Hςε

pq[Wm, a](Tk) :=
{
f ∈ L1

∣∣ ‖f |Hςε
pq‖ < ∞

}
,

‖f |Hςε
pq‖ = sup

{
2ςal(al)(1−n)ε

( ∑
α∈θ(a(l−1))

‖Δw
α (f ;x)|Lp‖q

)1
q
∣∣∣∣ l ∈ N0

}

(here and everywhere below, K = max{1,K} for K ∈ R), and we set

Hςε
pq :=

{
f ∈ Hςε

pq

∣∣ ‖f |Hςε
pq‖ ≤ 1

}
.

It is clear that the embeddings Bsm
pq ↪→ Hςε

pq (with ε ≥ 0) hold and the inequalities

σN
(
Bsm
pq ,T

(k), Lr

)
� σN

(
Hςε

pq,T
(k), Lr

)
for ε ≥ 0 (5.3)

are satisfied. Next, let f ∈ span{wι
αλ | α ∈ θ(a(l − 1)), λ ∈ Λ(m,α), ι ∈ Em(α)}, i.e.,

f(x) ≡ fl(x) :=
∑

α∈θ(a(l−1))

Δw
α (f ;x).

Then by Theorem A we have
‖fl|Bsm

pq ‖ � (al)(n−1)ε‖fl|Hςε
pq‖, (5.4)

which, in view of (5.2) and the equality Swm
a(l−1)(f ;x) = 0, implies the following estimate for the norm:

‖fl|Lr‖ � 2
−

(
ς− 1

p
+ 1

r

)
al
(al)

(n−1)
(
ε+

(
1
r
− 1

q

)
+

)
‖fl|Hςε

pq‖ for 1 ≤ p ≤ r ≤ 2. (5.5)

Moreover, by the definition of the norm ‖·|Hςε
pq‖, for f ∈ Hςε

pq we obviously have

‖fl|Hςε
pq‖ ≤ ‖f |Hςε

pq‖, l ∈ N0. (5.6)

Set (see (4.3))

P[u] ≡ P[u;m,a] :=
⋃

αm≤au

Pw(m,α) (⊂ Z
k), u ∈ N.

Then, by Lemma A we find

δ(u,m) := #P[u] ≤
∑

αm≤au

#Pw(m,α) ≤ 3k
∑

αm≤u

2αm � 2uun−1. (5.7)
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Take an L ∈ N (depending on u ∈ N) such that

2a(u+L) � 2au(au)n−1 (5.8)

and fix a number κ ∈ (0, 1). Next, we define three families of numbers (l ∈ zL)

N1(l) :=
⌊
2−(κ+1)al(a(u+ l − 1))n−1

⌋
, N2(l) :=

⌊
2κa(L−l)

⌋
, N3(l) := 2a(L−l). (5.9)

Then, for j = 1, 2, 3 and any sets θ[l; j] ⊂ θ(a(u+ l − 1)) of cardinality

#θ[l; j] = Nj(l) := min{Nj(l),#θ(a(u+ l − 1))}, l ∈ zL, (5.10)

we put

Pj [u] ≡ Pj [u; Nj(1), . . . , Nj(L)] := P[u] ∪
⋃
l∈zL

⋃
α∈θ[l;j]

Pw(m,α).

The cardinalities of these sets can be estimated as

δj(u,m,L) := #Pj [u] ≤ #P[u] +
∑
l∈zL

∑
α∈θ[l;j]

#Pw(m,α)

� 2au(au)n−1 +
∑
l∈zL

∑
α∈θ[l;j]

2αm ≤ 2au(au)n−1 +
∑
l∈zL

2a(u+l)Nj(l). (5.11)

Substituting the values of the numbers Nj(l), l ∈ zL, from (5.9) (j = 1, 2, 3) into (5.11), we obtain
the following estimates:

δ1(u,m,L) ≤ 2au(au)n−1 + 2au
L∑
l=1

2−κal(a(u+ l − 1))n−1 � 2au(au)n−1, (5.12)

δ2(u,m,L) � 2au(au)n−1 + 2au
L∑
l=1

2κaL · 2a(1−κ)l � 2au(au)n−1 + 2au · 2κaL · 2a(1−κ)L

= 2au(au)n−1 + 2a(u+L) � 2au(au)n−1 (5.13)

(here and in the following estimate, we took into account the choice of the number L), and

δ3(u,m,L) � 2au(au)n−1 + 2au
∑
l∈zL

2aL = 2au(au)n−1 + 2a(u+L)L � 2au(au)n−1 log(au). (5.14)

6. UPPER ESTIMATES: CASE I

First, we prove the upper estimates for the best N -term trigonometric approximations of the
classes Hςε

pq from the following theorem.

Theorem 6.1. Let 1 ≤ p ≤ r ≤ 2, 1 < r, 1 ≤ q ≤ ∞, and ς > 1
p − 1

r . Then the following
relations are valid :

σN
(
Hςε

pq,T
(k), Lr

)
� N ς− 1

p
+ 1

r (logn−1 N)
ε+

(
ς− 1

p
+ 2

r
− 1

q

)
+ if ς �= 1

p
− 2

r
+

1

q
,

σN
(
Hςε

pq,T
(k), Lr

)
� N ς− 1

p
+ 1

r (logn−1 N)ε(log logN)
1
q if ς =

1

p
− 2

r
+

1

q
. (6.1)
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Proof of the upper estimates in Theorem 6.1. A. Let first q ≥ r and hence ς − 1
p +

2
r − 1

q > 0. Choose N ∈ N from the conditions N ≥ δ(u,m) and N � 2au(au)n−1 (δ(u,m) is
defined in (5.7)).

Let f ∈ Hςε
pq. Then the trigonometric polynomial

tN (f ;x) := Swm
au (f ;x) (6.2)

has at most N harmonics in view of (5.7), the choice of N , and the inclusion (4.3).
Let us show that the polynomial tN (f ;x) approximates the function f in the metric of Lr

within the required error bound. Indeed, applying the Minkowski inequality, estimate (5.5), and
inequality (5.6), we obtain

‖f − tN (f)‖ ≤
∞∑
l=1

‖fu+l|Lr‖ �
∞∑
l=1

2
−

(
ς− 1

p
+ 1

r

)
a(u+l)

(a(u+ l))
(n−1)

(
ε+ 1

r
− 1

q

)
‖fu+l|Hςε

pq‖

≤ 2
−

(
ς− 1

p
+ 1

r

)
au‖f |Hςε

pq‖
∞∑
l=1

2
−

(
ε− 1

p
+ 1

r

)
al
(a(u+ l))

(n−1)
(
ς+ 1

r
− 1

q

)

� 2
−

(
ς− 1

p
+ 1

r

)
au
(au)

(n−1)
(
ε+ 1

r
− 1

q

)
� N

−ς+ 1
p
− 1

r (logn−1N)
ε+

(
ς− 1

p
+ 2

r
− 1

q

)
+ . (6.3)

Hence,

σN
(
Hςε

pq,T
(k), Lr

)
� N

−ς+ 1
p
− 1

r (logn−1 N)
ε+

(
ς− 1

p
+ 2

r
− 1

q

)
+ . (6.4)

B. Let now 1 ≤ max{p, q} < r. Consider separately the following cases:

(i) τ ≡ ς − 1
p + 1

r > 1
q − 1

r ,

(ii) τ < 1
q − 1

r , and

(iii) τ = 1
q − 1

r .

(i) Let first τ > 1
q − 1

r . We fix a number κ > 0 such that τ > (κ + 1)
(
1
q − 1

r

)
. Then,

depending on u ∈ N, we choose an L ∈ N satisfying (5.8) and take the numbers N1(l) and N1(l),
l ∈ zL, from (5.9) and (5.10). Finally, we choose N ∈ N from the conditions N ≥ δ1(u,m,L) and
N � 2au(au)n−1 (δ1(u,m,L) is defined in (5.12)). Let f ∈ Hςε

pq. Then the polynomial

tN (f ;x) := Swm
au (f ;x) +

L∑
l=1

tl(f ;x) := Swm
au (f ;x) +

L∑
l=1

∑
α∈θ[l;f ]

Δw
α (f ;x)

has at most N harmonics in view of (5.12), the choice of N , and (4.3); here, as θ[l; 1] in (5.10),
we take the set θ[l; f ] ⊂ θ(a(u + l − 1)) of those α that correspond to the maximum values of
2
αm

(
1
p
− 1

r

)
‖Δw

α (f ;x)|Lp‖, i.e.,

2αm
(

1
p
− 1

r

)
‖Δw

α (f ;x)|Lp‖ ≥ 2α
′m

(
1
p
− 1

r

)
‖Δw

α′(f ;x)|Lp‖

for all α ∈ θ[l; f ] and α′ ∈ θ′[l; f ] := θ(a(u+ l − 1)) \ θ[l; f ].
Now, let us show that the polynomial tN (f ;x) yields the required approximation error for the

function f in the metric of Lr. By the Minkowski inequality, we have

‖f − tN (f)|Lr‖ ≤
∥∥∥∥∥

L∑
l=1

(fu+l − tl(f))

∣∣∣∣Lr

∥∥∥∥∥+
∞∑

l=u+L+1

‖fl|Lr‖ =: J
(1)
1 (p, r) + J2(p, r). (6.5)
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First, we estimate J
(1)
1 (p, r). Successively applying Lemmas T1 and B, taking into account the

definition of θ(a(u+ l − 1)), and substituting the numbers N1(l), l ∈ zL, according to the choice of
the numbers κ, L, and N and the definition of the class Hςε

pq we obtain4

J
(1)
1 (p, r)r �

L∑
l=1

∑
α∈θ′[l;f ]

2αm
( 1

p
− 1

r

)
r‖Δw

α (f ;x)|Lp‖r

≤
L∑
l=1

N1(l)
(

1
r
− 1

q

)
r

{ ∑
α∈θ(a(u+l−1))

2αm
(

1
p
− 1

r

)
q‖Δw

α (f ;x)|Lp‖q
}r

q

≤
L∑
l=1

N1(l)
(

1
r
− 1

q

)
r · 2a(u+l)

(
1
p
− 1

r

)
r

{ ∑
α∈θ(a(u+l−1))

‖Δw
α (f ;x)|Lp‖q

}r
q

≤
L∑
l=1

(
2−(κ+1)al(a(u+ l))n−1

)( 1
r
− 1

q

)
r · 2−τa(u+l)r(a(u+ l))(n−1)εr

= 2−τaur
L∑
l=1

2
−al

(
τ−(1+κ)

(
1
r
− 1

q

))
r
(a(u+ l))

(n−1)
(
ε+ 1

r
− 1

q

)
r

� 2−τaur(au)
(n−1)

(
ε+ 1

r
− 1

q

)
r �

(
N

−ς+ 1
p
− 1

r (logn−1 N)
ς− 1

p
+ 2

r
− 1

q

)r
. (6.6)

Now we proceed to the estimate for J2(p, r). Using (5.5) and (5.6), we find

J2(p, r) �
∞∑

l=u+L−1

2−τal(al)(n−1)ε‖fl|Hςε
pq‖ �

∞∑
l=u+L−1

2−τal(al)(n−1)ε

� 2−τa(u+L)(a(u+ L))(n−1)ε � N−τ (logn−1N)ε � N
−ς+ 1

p
− 1

r (logn−1N)ε. (6.7)

Thus, (6.5)–(6.7) yield the estimate

‖f − tN (f)|Lr‖ � N−ς+ 1
p
− 1

r (logn−1N)ε+ς− 1
p
+ 2

r
− 1

q .

This implies that

σN
(
Hςε

pq,T
(k), Lr

)
� N−ς+ 1

p
− 1

r (logn−1N)ε+ς− 1
p
+ 2

r
− 1

q . (6.8)

(ii) Now, let 0 < τ < 1
q − 1

r . Fix a number κ ∈ (0, 1) such that τ = ς − 1
p + 1

r < κ
(
1
q − 1

r

)
.

Then, depending on u ∈ N, we choose an L ∈ N satisfying (5.8) and take the numbers N2(l)
and N2(l), l ∈ zL, from (5.9) and (5.10). Finally, we choose N ∈ N from the conditions N ≥
δ2(u,m,L) and N � 2au(au)n−1 (δ2(u,m,L) is defined in (5.13)).

Let f ∈ Hςε
pq; as θ[l; 2] in (5.10), we take θ[l; f ] ⊂ θ(a(u + l − 1)), just as in case (i) above

(l ∈ zL). Then the polynomial

tN (f ;x) := Swm
au (f ;x) +

L∑
l=1

tl(f ;x) := Swm
au (f ;x) +

L∑
l=1

∑
α∈θ[l;f ]

Δw
α (f ;x)

has at most N harmonics in view of (5.13), the choice of N , and (4.3).
4Henceforth we assume that

∑
α∈∅

cα ≡ 0 for any sequence (cα | α ∈ N
n
0 ).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 293 2016



NONLINEAR TRIGONOMETRIC APPROXIMATIONS 19

Now, let us estimate the error of approximation of the function f by the polynomial tN (f ;x) in
the metric of Lr. We have

‖f − tN (f)|Lr‖ ≤
∥∥∥∥∥

L∑
l=1

(fu+l − tl(f))

∣∣∣∣Lr

∥∥∥∥∥+

∞∑
l=u+L+1

‖fl|Lr‖ =: J
(2)
1 (p, r) + J2(p, r). (6.9)

The necessary upper estimate for the “tail” J2(p, r) is already obtained in (6.7). Therefore, we pro-
ceed to estimate J

(2)
1 (p, r). Applying Lemma T1 and reasoning as above, substituting the numbers

N2(l), l ∈ zL, and taking into account the choice of κ, N , and L, we obtain

J
(2)
1 (p, r)r �

L∑
l=1

N2(l)
(

1
r
− 1

q

)
r · 2a(u+l)

(
1
p
− 1

r

)
r

{ ∑
α∈θ(a(u+l−1))

‖Δw
α (f ;x)|Lp‖q

}r
q

�
L∑
l=1

2a(u+l)
(

1
p
− 1

r

)
rN2(l)

(
1
r
− 1

q

)
r

{ ∑
α∈θ(a(u+l−1))

‖Δw
α (f ;x)|Lp‖q

}r
q

≤
L∑
l=1

2−τa(u+l)r · 2κa(L−l)
(

1
r
− 1

q

)
r
(a(u+ l))(n−1)εr

= 2−τaur · 2κaL
(

1
r
− 1

q

)
r

L∑
l=1

2
al

(
κ
(
1
q
− 1

r

)
−τ

)
r
(a(u+ l))(n−1)εr

� 2−τaur · 2κaL
(

1
r
− 1

q

)
r · 2aL

(
κ
(
1
q
− 1

r

)
−τ

)
r(a(u+ L))(n−1)εr

= 2−τa(u+L)r(a(u+ L))(n−1)εr � N−τr(logn−1 N)εr. (6.10)

Combining estimates (6.9), (6.7), and (6.10), we find

‖f − tN (f)|Lr‖ � N
−ς+ 1

p
− 1

r (logn−1N)ε.

Hence we obtain the desired estimate for the class Hςε
pq:

σN
(
Hςε

pq,T
(k), Lr

)
� N−ς+ 1

p
− 1

r (logn−1N)ε. (6.11)

(iii) Let, finally, 0 < τ = 1
q − 1

r . Depending on u ∈ N, we choose a number L ∈ N satisfying (5.8)
and then take the numbers N3(l) and N3(l), l ∈ zL, from (5.9) and (5.10). After that, we choose
N ∈ N from the conditions N ≥ δ3(u,m,L) and N � 2au(au)n−1 log(au) (δ3(u,m,L) is defined
in (5.14)).

Let f ∈ Hςε
pq; as θ[l; 3] in (5.10), we take θ[l; f ] ⊂ θ(a(u+ l − 1)) as above. Then the polynomial

tN (f ;x) := Swm
au (f ;x) +

L∑
l=1

tl(f ;x) := Swm
au (f ;x) +

L∑
l=1

∑
α∈θ[l;f ]

Δw
α (f ;x)

has at most N harmonics in view of (5.14), the choice of N , and (4.3).
Now, we estimate the error of approximation of the function f by the polynomial tN (f ;x) in

the metric of Lr. Again, we have

‖f − tN (f)|Lr‖ ≤
∥∥∥∥∥

L∑
l=1

(fu+l − tl(f))

∣∣∣∣Lr

∥∥∥∥∥+
∞∑

l=u+L+1

‖fl|Lr‖ =: J
(3)
1 (p, r) + J2(p, r). (6.12)
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Let us estimate J
(3)
1 (p, r). Again, the successive application of Lemmas T1 and B followed by the

substitution of the numbers N3(l), l ∈ zL (in view of the choice of L and N and the equality
τ = 1

q − 1
r ), yields

J
(3)
1 (p, r)r �

L∑
l=1

N3(l)
(

1
r
− 1

q

)
r · 2a(u+l)

(
1
p
− 1

r

)
r

{ ∑
α∈θ(a(u+l−1))

‖Δw
α (f ;x)|Lp‖q

}r
q

≤
L∑
l=1

N3(l)
(

1
r
− 1

q

)
r · 2a(u+l)

(
1
p
− 1

r

)
r · 2−a(u+l)ςr(a(u+ l))(n−1)εr

≤
L∑
l=1

2−τa(u+l)r · 2a(L−l)
(

1
r
− 1

q

)
r(a(u+ l))(n−1)εr

= 2−τaur · 2aL
(

1
r
− 1

q

)
r

L∑
l=1

2
−al

(
1
r
− 1

q
+τ

)
r
(a(u+ l))(n−1)εr ≤ 2−τa(u+L)r(a(u+ l))(n−1)εrL

�
(
2au(au)n−1

)−τr
(au)(n−1)εr log(au) � N−τr(logn−1N)εr(log logN)

r
q , (6.13)

because N � 2au(au)n−1 log(au) and, hence, log logN � log(au).
Combining estimates (6.12), (6.7), and (6.13), we obtain

‖f − tN (f)|Lr‖ � N
−ς+ 1

p
− 1

r (logn−1N)ε(log logN)
1
q .

This implies the required estimate for the class Hςε
pq in the present case as well:

σN
(
Hςε

pq,T
(k), Lr

)
� N−ς+ 1

p
− 1

r (logn−1 N)ε(log logN)
1
q . (6.14)

C. Finally, let 1 ≤ q < p = r ≤ 2. Just as in part B, consider separately the cases
(i) ς > 1

q − 1
r ,

(ii) ς < 1
q − 1

r , and

(iii) ς = 1
q − 1

r .

(i) Let first ς > 1
q − 1

p . Fix a number κ > 0 such that ς > (1 + κ)
(
1
q − 1

p

)
. Then, depending

on u ∈ N, we choose an L ∈ N, the numbers N1(l) and N1(l), l ∈ zL, from (5.9) and (5.10), and
N ∈ N as in part B(i).

Let f ∈ Hςε
pq. As θ[l; 1] in (5.10), we take the set θ[l; f ] ⊂ θ(a(u + l − 1)) of those α that

correspond to the maximum values of ‖Δw
α (f ;x)|Lp‖, i.e.,

‖Δw
α (f ;x)|Lp‖ ≥ ‖Δw

α′(f ;x)|Lp‖, α ∈ θ[l; f ], α′ ∈ θ′[l; f ] = θ(a(u+ l − 1)) \ θ[l; f ].

Then the polynomial

tN (f ;x) := tN (f ;x) := Swm
au (f ;x) +

L∑
l=1

tl(f ;x) := Swm
au (f ;x) +

L∑
l=1

∑
α∈θ[l;f ]

Δw
α (f ;x)

has at most N harmonics in view of (5.12).
Let us show that the polynomial tN (f ;x) provides the necessary error of approximation of the

function f in the metric of Lp. By the Minkowski inequality,

‖f − tN (f)|Lp‖ ≤
∥∥∥∥∥

L∑
l=1

(fu+l − tl(f))

∣∣∣∣Lp

∥∥∥∥∥+
∥∥∥∥∥

∞∑
l=u+L+1

fl

∣∣∣∣Lp

∥∥∥∥∥ =: J
(1)
1 (p, p) + J2(p, p). (6.15)

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 293 2016



NONLINEAR TRIGONOMETRIC APPROXIMATIONS 21

First, we estimate J
(1)
1 (p, p). Successively applying Theorem B, Jensen’s inequality, and (4.14), sub-

stituting the numbers N1(l), l ∈ zL, and taking into account the definitions of the set θ(a(u+ l − 1))
and the class Hςε

pq and the choice of the numbers κ, L, and N , we obtain

J
(1)
1 (p, p)p �

L∑
l=1

∑
α∈θ′[l;f ]

‖Δw
α (f ;x)|Lp‖p =

L∑
l=1

∑
α∈θ′[l;f ]

‖Δw
α (f ;x)|Lp‖p−q‖Δw

α (f ;x)|Lp‖q

≤
L∑
l=1

N1(l)
1− p

q

[ ∑
α∈θ[l;f ]

‖Δw
α (f ;x)|Lp‖q

] p
q
−1 ∑

α∈θ′[l;f ]
‖Δw

α (f ;x)|Lp‖q

≤
L∑
l=1

N1(l)
1− p

q

[ ∑
α∈θ(a(u+l−1))

‖Δw
α (f ;x)|Lp‖q

] p
q

≤
L∑
l=1

(
2−ςa(u+l)(a(u+ l))(n−1)ε

)p(
2−(1+κ)al(a(u+ l))n−1

)1− p
q

= 2−ςaup
L∑
l=1

2−al
(
ς+(1+κ)

( 1
p
− 1

q

))
p(a(u+ l))(n−1)

(
ε+ 1

p
− 1

q

)
p

�
(
2−ςau(au)(n−1)

(
ε+ 1

p
− 1

q

))p
�
(
N−ς(logn−1N)ς+ε+ 1

p
− 1

q

)p
. (6.16)

Let us proceed to the estimate for J2(p, p). By Theorem B and Jensen’s inequality (since
q < p ≤ 2), taking into account the definition of the class Hςε

pq and the choice of the number L,
we find

J2(p, p)
p �

∑
αm>a(u+L)

‖Δw
α (f ;x)|Lp‖p ≤

{ ∞∑
l=L+1

∑
α∈θ(a(u+l−1))

‖Δw
α (f ;x)|Lp‖q

}p
q

≤
{ ∞∑

l=L+1

2−ςa(u+l)q(a(u+ l))(n−1)εq

}p
q

�
(
2−ςa(u+L)(a(u+ L))(n−1)ε

)p
�
(
(2au(au)n−1)−ς(a(u+ L))(n−1)ε

)p � (
N−ς(logn−1N)ε

)p
. (6.17)

Now, substituting estimates (6.16) and (6.17) into (6.15), we arrive at

‖f − tN (f)|Lp‖ � N−ς(logn−1N)
ς+ε+ 1

p
− 1

q .

This implies the required estimate for the class Hςε
pq:

σN
(
Hςε

pq,T
(k), Lr

)
� N−ς(logn−1 N)ς+ε+ 1

p
− 1

q . (6.18)

(ii) Let now ς < 1
q − 1

p . Fix a number κ ∈ (0, 1) such that ς < κ
(
1
q − 1

p

)
. Depending on u ∈ N,

we choose an L ∈ N, the numbers N2(l) and N2(l), l ∈ zL, from (5.9) and (5.10), and N ∈ N as in
part B(ii).

Let f ∈ Hςε
pq. As θ[l; 2] in (5.10), we take θ[l; f ] ⊂ θ(a(u + l − 1)), l ∈ zL, as in case (i). Then

the polynomial

tN (f ;x) := Swm
au (f ;x) +

L∑
l=1

tl(f ;x) := Swm
au (f ;x) +

L∑
l=1

∑
α∈θ[l;f ]

Δw
α (f ;x)

has at most N harmonics in view of (5.13).
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Now, let us estimate the error of approximation of the function f by the polynomial tN (f ;x) in
the metric of Lp. We have

‖f − tN (f)|Lp‖ ≤
∥∥∥∥∥

L∑
l=1

∑
α∈θ′[l;f ]

Δw
α (f ;x)

∣∣∣∣Lp

∥∥∥∥∥+ J2(p, p) =: J
(2)
1 (p, p) + J2(p, p). (6.19)

The necessary estimate for the “tail” J2(p, p) is already established in (6.17). Therefore, it remains
to derive an appropriate estimate for J

(2)
1 (p, p). Arguing as in case (i), substituting the values

of N2(l), l ∈ zL, and taking into account the choice of κ, L, and N , we obtain

J
(2)
1 (p, p)p �

L∑
l=1

N2(l)
1− p

q

[ ∑
α∈θ[l;f ]

‖Δw
α (f ;x)|Lp‖q

] p
q
−1 ∑

α∈θ′[l;f ]
‖Δw

α (f ;x)|Lp‖q

≤
L∑
l=1

2κa(L−l)
(

1
p
− 1

q

)
p(2−ςa(u+l)(a(u+ l))(n−1)ε

)p

� 2−ςaup · 2aLκ
(

1
p
− 1

q

)
p

L∑
l=1

2al
(
−ς+κ

(
1
q
− 1

p

))
p(a(u+ l))(n−1)εp

=
(
2−ςa(u+L)(a(u+ L))(n−1)ε

)p � (
N−ς(logn−1 N)ε

)p
. (6.20)

Thus, substituting estimates (6.17) and (6.20) into (6.19), we arrive at

‖f − tN (f)|Lp‖ � N−ς(logn−1 N)ε,

which implies the required upper estimate for the class Hςε
pq:

σN
(
Hςε

pq,T
(k), Lr

)
� N−ς(logn−1N)ε. (6.21)

(iii) Finally, let ς = 1
q − 1

p . Depending on u ∈ N, we choose a number L ∈ N, the numbers N3(l)

and N3(l), l ∈ zL, from (5.9) and (5.10), and N ∈ N as in part B(iii).
Let f ∈ Hςε

pq. As θ[l; 3] in (5.10), we take θ[l; f ] ⊂ θ(a(u + l − 1)) (l ∈ zL) as in case (i). Then
the polynomial

tN (f ;x) := Swm
au (f ;x) +

L∑
l=1

tl(f ;x) := Swm
au (f ;x) +

L∑
l=1

∑
α∈θ[l;f ]

Δw
α (f ;x)

has at most N harmonics (see (5.14)).
Now, let us proceed to estimating the error of approximation of the function f by the polynomial

tN (f ;x) in the metric of Lp:

‖f − tN (f)|Lp‖ ≤
∥∥∥∥∥

L∑
l=1

∑
α∈θ′[l;f ]

Δw
α (f ;x)

∣∣∣∣Lp

∥∥∥∥∥+ J2(p, p) =: J
(3)
1 (p, p) + J2(p, p). (6.22)

In view of (6.17), it remains to derive the required estimate for J
(3)
1 (p, p). Arguing as above (sub-

stituting the numbers N3(l), l ∈ zL, and taking account of the equality ς = 1
q − 1

p ), we get

J
(3)
1 (p, p)p �

L∑
l=1

N3(l)
1− p

q

[ ∑
α∈θ(a(u+l−1))

‖Δw
α (f ;x)|Lp‖q

] p
q

≤
L∑
l=1

2a(L−l)
(

1
p
− 1

q

)
p(2−ςa(u+l)(a(u+ l))(n−1)ε

)p
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� 2−ςa(u+L)(a(u+ l))(n−1)εL
1
p � (2au(au)n−1)−ς(au)(n−1)ε(log(au))

1
p

� N−ς(logn−1 N)ε(log logN)ς+
1
p = N−ς(logn−1N)ε(log logN)

1
q , (6.23)

because N � 2au(au)n−1 log(au) and L � log(au).
Substituting estimates (6.12) and (6.7) into (6.13), we find

‖f − tN (f)|Lp‖ � N−ς(logn−1 N)ε(log logN)
1
q ,

which implies the required upper estimate for the class Hςε
pq:

σN
(
Hςε

pq,T
(k), Lp

)
� N−ς(logn−1N)ε(log logN)

1
q . (6.24)

Thus, the upper estimates in Theorem 6.1 are completely proved. Appropriate lower estimates will
be established in Section 9. �

Theorem 6.1 and inequality (5.3) imply the required upper estimates for the best N -term trigono-
metric approximations of the classes Bsm

pq in case I of Theorem 2.1, except for the only situation
when ς = 1

p − 2
r + 1

q . In this case, estimates (6.14) and (6.24) obtained for the classes Hςε
pq turn out

to be rougher than it is required for the classes Bsm
pq : (6.14) and (6.24) contain a redundant factor

of (log logN)
1
q .

Therefore, to achieve the required approximation error in the case of ς = 1
p − 2

r + 1
q , we correct

the construction of an approximating polynomial for f ∈ Bsm
pq while keeping in mind the difference

between the definitions of the classes Bsm
pq and Hςε

pq.

Proof of the upper estimate in Theorem 2.1, case I. Let first 1 ≤ p < r ≤ 2. Let also
f ∈ Bsm

pq and L ∈ N be such that 2a(u+L) � 2au(au)n−1. Define a number

N ′
3(l) :=

⌊
2a(L−l)

∑
α∈θ(a(u+l−1))

2αsq‖Δw
α (f ;x)|Lp‖q

⌋
+ 1, l ∈ zL. (6.25)

Then, for arbitrary sets θ[l] ⊂ θ(a(u+ l − 1)) with #θ[l] = N′3(l),

N′3(l) = min{N ′
3(l),#θ(a(u+ l − 1))}, l ∈ zL, (6.26)

by Lemma A together with the definition of θ(a(u+ l − 1)), Theorem A, and the inclusion f ∈ Bsm
pq ,

we obtain the estimate

δ′3(u,m,L) ≡ δ′3(u,m,L; f) :=
∑

αm≤au

3k · 2αm +

L∑
l=1

∑
α∈θ[l]

3k · 2αm

≤ 3k

( ∑
αm≤au

2αm +

L∑
l=1

2a(u+l)N ′
3(l)

)

� 2au(au)n−1 + 2a(u+L)
L∑
l=1

∑
α∈θ(a(u+l−1))

2αsq‖Δw
α (f ;x)|Lp‖q

� 2au(au)n−1 + 2a(u+L) � 2au(au)n−1. (6.27)
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Now, we choose N ∈ N from the conditions N ≥ δ′3(u,m,L) and N � 2au(au)n−1. Then the
trigonometric polynomial

tN (f ;x) := Swm
au (f ;x) +

L∑
l=1

tl(f ;x) := Swm
au (f ;x) +

L∑
l=1

∑
α∈θ[l;f ]

Δw
α (f ;x),

where the set θ[l; f ] ⊂ θ(a(u + l − 1)) with #θ[l] = N′3(l) is chosen as in part B(i) (l ∈ zL), has at
most N harmonics in view of (6.27) and (4.3).

Let us proceed to estimating the error of approximation of the function f by the polyno-
mial tN (f ;x) in the metric of Lr:

‖f − tN (f)|Lr‖ ≤
∥∥∥∥∥

L∑
l=1

(fu+l − tl(f))

∣∣∣∣Lr

∥∥∥∥∥+
∞∑

l=u+L+1

‖fl|Lr‖ =: J
(3+)
1 (p, r) + J2(p, r); (6.28)

in this case, due to the choice of L, the estimate for the “tail” J2(p, r) is already proved in (6.7).
Hence, it remains to estimate J

(3+)
1 (p, r). Successively applying Lemmas T1 and B, Theorem A and

taking into account the condition τ = 1
q − 1

r and the choice of the number L, we obtain

J
(3+)
1 (p, r)r �

L∑
l=1

∑
α∈θ′[l;f ]

2αm
( 1

p
− 1

r

)
r‖Δw

α (f ;x)|Lp‖r

≤
L∑
l=1

N′3(l)
(

1
r
− 1

q

)
r

{ ∑
α∈θ(a(u+l−1))

2−ταmq · 2αsq‖Δw
α (f ;x)|Lp‖q

}r
q

≤
L∑
l=1

N ′
3(l)

(
1
r
− 1

q

)
r · 2−τa(u+l)r

{ ∑
α∈θ(a(u+l−1))

2αsq‖Δw
α (f ;x)|Lp‖q

}r
q

≤
L∑
l=1

2−τa(u+l)r · 2a(L−l)
(

1
r
− 1

q

)
r

∑
α∈θ(au+a(l−1))

2αsq‖Δw
α (f ;x)|Lp‖q

� 2−τa(u+L)r‖f |Bsm
pq ‖q � 2−τa(u+L)r � (2au(au)n−1)−τr � N−τr. (6.29)

Thus, combining estimates (6.28), (6.7), and (6.29), we see that

‖f − tN (f)|Lr‖ � N
−ς+ 1

p
− 1

r ,

which implies the required estimate for the class Bsm
pq :

σN
(
Bsm
pq ,T

(k), Lr

)
� N

−ς+ 1
p
− 1

r .

Now, let 1 < p = r ≤ 2. Let f ∈ Bsm
pq and L ∈ N, N ′

3(l) from (6.25) (l ∈ zL), and N ∈ N

be chosen as in the previous case, and let the sets θ[l; f ] ⊂ θ(a(u + l − 1)) with #θ[l] = N ′
3(l) be

defined by the condition

2αs‖Δw
α (f ;x)|Lp‖ ≥ 2α

′s‖Δw
β (f ;x)|Lp‖, α ∈ θ[l; f ], α′ ∈ θ′[l; f ] := θ(a(u+ l − 1)) \ θ[l; f ].

Then the polynomial

tN (f ;x) :=
∑

αm≤au

Δw
α (f ;x) +

L∑
l=1

∑
α∈θ[l;f ]

Δw
α (f ;x)

has at most N harmonics in view of (6.27).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 293 2016



NONLINEAR TRIGONOMETRIC APPROXIMATIONS 25

Now, let us show that this polynomial tN (f ;x) gives the required approximation error for the
function f in the metric of Lp. We have

‖f − tN (f)|Lp‖ ≤
∥∥∥∥∥

L∑
l=1

∑
α∈θ′[l;f ]

Δw
α (f ;x)

∣∣∣∣Lp

∥∥∥∥∥+ J2(p, p) =: J
(3+)
1 (p, p) + J2(p, p); (6.30)

here, in view of the choice of L and (6.17), it remains to prove the required estimate for J(3+)
1 (p, p).

Arguing as in part C of the proof of the upper estimates in Theorem 6.1 above, we obtain

J
(3+)
1 (p, p)p � 2−ςaup

L∑
l=1

2−ςalp

[
2a(L−l)

∑
α∈θ(a(u+l−1))

2αsq‖Δw
α (f ;x)|Lp‖q

]1− p
q

×
[ ∑

α∈θ[l;f ]
2αsq‖Δw

α (f ;x)|Lp‖q
] p

q
−1 ∑

α∈θ′[l;f ]
2αsq‖Δw

α (f ;x)|Lp‖q

≤
(
2−ςau · 2aL

(
1
p
− 1

q

))p L∑
l=1

2−ςalp · 2al
(

1
q
− 1

p

)
p

∑
α∈θ(a(u+l−1))

2αsq‖Δw
α (f ;x)|Lp‖q

= 2−ςa(u+L)p
L∑
l=1

∑
α∈θ(a(u+l−1))

2αsq‖Δw
α (f ;x)|Lp‖q

≤ 2−ςa(u+L)p
∑
α∈Nn

0

2αsq‖Δw
α (f ;x)|Lp‖q � 2−ςa(u+L)p‖f |Bsm

pq ‖q

≤ 2−ςa(u+L)p � (2au(au)n−1)−ςp � N−ςp. (6.31)

Substituting the estimates contained in (6.31) and (6.17) into (6.30), we arrive at the inequality

‖f − tN (f)|Lp‖ � N−ς .

This implies the required upper estimate for the class Bsm
pq :

σN
(
Bsm
pq ,T

(k), Lp

)
� N−ς . (6.32)

Now, the upper estimates in case I of Theorem 2.1 are completely proved. �

7. UPPER ESTIMATES: CASES II–IV

Just as in Section 6, we will prove the upper estimates in the cases II–IV considered here for
the wider classes Hςε

pq instead of Bsm
pq .

Theorem 7.1. The following estimates hold for the best N -term trigonometric approximations:
II. Let 1 ≤ p ≤ 2 ≤ r < ∞, 1 ≤ q ≤ ∞, and ς > 1

p . Then

σN
(
Hςε

pq,T
(k), Lr

)
� N

−ς+ 1
p
− 1

2 (logω−1 N)
ς+ε− 1

p
+1− 1

q .

III. Let 2 ≤ p ≤ r < ∞, 1 ≤ q ≤ ∞, and ς > 1
2 . Then

σN
(
Hςε

pq,T
(k), Lr

)
� N−ς(logω−1 N)

ς+ε+ 1
2
− 1

q .

IV. Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, and ς > 1
p∗

. Then

σN
(
Hςε

pq,T
(k), L∞

)
� N−ς+ 1

p∗ − 1
2 (logω−1 N)ς+ε− 1

p∗ +1− 1
q (logN)

1
2 .
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Consider another auxiliary class of functions (ς > 0, ε ∈ R)

Wςε
A :=

{
f ∈ L1

∣∣ 2ςal(al)−(n−1)ε‖fl|A‖ ≤ 1, l ∈ N0

}
(the sequence (fl) is defined for f ∈ L1 in Section 5, see (5.1)).

The following statement is valid.
Lemma 7.1. Let 2 ≤ r < ∞, ς > 0, ε ∈ R, and κ ∈ (0, ς). Then there exist constructive

methods AN ( · , r,κ) and AN ( · ,∞,κ) of N -term trigonometric approximation that are based on the
algorithm IA(ε) and provide the following estimates for f ∈ Wςε

A :

‖f −AN (f, r,κ)|Lr‖ � N−ς− 1
2 (logn−1N)ς+ε,

‖f −AN (f,∞,κ)|L∞‖ � N−ς− 1
2 (logn−1N)ς+ε(logN)

1
2 .

Proof. Clearly, it suffices to derive the required estimates for numbers N ∈ N of the form
N � 2au(au)n−1, u ∈ N. Let f ∈ Wςε

a . By Theorem D and the definition of Wςε
A , for all l ∈ N0 and

any N(l) ∈ N0 we have (see also (4.3))

‖fl −Gr
N(l)(fl)|Lr‖ � (N(l))−

1
2 ‖fl|A‖ ≤ (N(l))−

1
2 · 2−ςal(al)(n−1)ε, (7.1)

‖fl −G∞
N(l)(fl)|L∞‖ � (N(l))−

1
2 (aln)

1
2 ‖fl|A‖ ≤ (N(l))−

1
2 · 2−ςal(al)(n−1)

(
ε+ 1

2

)
. (7.2)

Now, we fix κ ∈ (0, ς) and define the numbers (depending on u)

N(l) :=
⌊
2a(u−κ(l−u))(al)n−1

⌋
, l = u+ 1, u+ 2, . . . . (7.3)

Consider the polynomial

AN (f, r,κ;x) := Swm
au (f ;x) +

∞∑
l=u+1

Gr
N(l)(fl;x).

By construction, the number N of harmonics of such a polynomial can be estimated (see (5.6)
and (7.2)) as

N � 2au(au)n−1 + 2au
∞∑

l=u+1

2μa(l−u)(al)n−1 � 2au(au)n−1.

Let us estimate the error of approximation of the function f by the polynomial AN (f, r,κ) in
the metric of Lr. In view of (7.1), for 2 ≤ r < ∞ we have

‖f −AN (f, r,κ)|Lr‖ ≤
∞∑

l=u+1

‖fl −Gr
N(l)(fl)|Lr‖

�
∞∑

l=u+1

(N (l))−
1
2 · 2−ςal(al)(n−1)ε �

∞∑
l=u+1

2−
1
2
a(u−κ(l−u))(al)−

1
2
(n−1) · 2−ςal(al)(n−1)ε

= 2−
1
2
au(1+κ)

∞∑
l=u+1

2−
(
ς− 1

2
κ
)
al(al)(n−1)

(
ε− 1

2

)
� 2−

1
2
au(1+κ) · 2−

(
ς− 1

2
κ
)
au(au)(n−1)

(
ε− 1

2

)

= 2−
(
ς+ 1

2

)
au(au)(n−1)

(
ε− 1

2

)
� N−ς− 1

2 (logn−1N)ς+ε.

Similarly, using (7.2) instead of (7.1), we obtain the required estimate for the uniform approximation
of f by the polynomial AN (f,∞,κ).

The lemma is proved. �

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 293 2016



NONLINEAR TRIGONOMETRIC APPROXIMATIONS 27

Proof of the upper estimates in Theorem 7.1. II, IV (p ≤ 2). First, consider the case of
1 ≤ p ≤ 2 ≤ r < ∞. Let f ∈ Hςε

pq. Then, successively applying inequality (4.12) (or (4.13)) and
Hölder’s inequality and taking into account the definition of the class Hςε

pq, we have

‖fl|A‖ ≤
∑

α∈θ(a(l−1))

‖Δw
α (f ;x)|A‖ �

∑
α∈θ(a(l−1))

2αm
1
p ‖Δw

α (f ;x)|Lp‖

� 2al
1
p (al)(n−1)

(
1− 1

q

)
· 2−alς(al)(n−1)ε = 2−al

(
ς− 1

p

)
(al)(n−1)

(
ε+1− 1

q

)
.

Hence, by Lemma 7.1 (with ς − 1
p and ε+ 1− 1

q instead of ς and ε), we obtain

‖f −AN (f, r,κ)|Lr‖ � N
−ς+ 1

p
− 1

2 (logn−1N)
ς+ε− 1

p
+1− 1

q ,

‖f −AN (f,∞,κ)|L∞‖ � N−ς+ 1
p
− 1

2 (logn−1N)ς+ε− 1
p
+1− 1

q (logN)
1
2 .

Then it follows that

σN
(
Hςε

pq,T
(k), Lr

)
� N

−ς+ 1
p
− 1

2 (logn−1N)
ς+ε− 1

p
+1− 1

q ,

σN
(
Hςε

pq,T
(k), L∞

)
� N

−ς+ 1
p
− 1

2 (logn−1N)
ς+ε− 1

p
+1− 1

q (logN)
1
2 .

III, IV (p > 2). Now, let 2 < p ≤ r ≤ ∞. Then the norm inequality ‖·|L2‖ ≤ ‖· |Lp‖ implies the
elementary embedding Hςε

pq ↪→ Hςε
2 q, and in view of what has already been proved above we obtain

(for r < ∞)

σN
(
Hςε

pq,T
(k), Lr

)
� N−ς(logn−1N)ς+ε+ 1

2
− 1

q ,

σN
(
Hςε

pq,T
(k), L∞

)
� N−ς(logn−1N)ς+ε+ 1

2
− 1

q (logN)
1
2 ,

as required. �
Thus, all upper estimates in Theorem 7.1, and hence all the remaining upper estimates in

Theorem 2.1 (in view of (5.3)), are completely proved. It remains to prove the lower estimates (in
Theorems 2.1, 6.1, and 7.1).

8. LOWER ESTIMATES: CASE I

First, we make a general remark that follows from Lemma M. Let 1 ≤ p, q ≤ ∞, s ∈ R
n
+, and

f ∈ Lp. If (2αsΔ∗
α(f ;x)) ∈ �q(Lp), then f ∈ Bsm

pq and

‖f |Bsm
pq ‖ � ‖(2αsΔ∗

α(f ;x))|�q(Lp)‖ (8.1)

(see [3] for a proof).
It is also clear that when deriving the lower estimates (in all cases I–IV), we can restrict ourselves

to a sequence of numbers N ∈ N of the form N � 2au(au)n−1(log(au))b, u ∈ N, where b ∈ {0, 1}.
Proof of the lower estimate in Theorem 2.1, case I. A. Let first 1 < p ≤ r ≤ 2. Consider

the function
f1(x;u) = DΛa(au)(x) =

∑
α∈θ(au)

Dρ(m,α)(x).

Let us estimate the norm of f1 in the space Bsm
pq . By Lemma A, (4.1), and (7.1), we have (for q < ∞)

‖f1(·, u)|Bsm
pq ‖q �

∑
α∈θ(au)

2αsq‖Dρ(m,α)|Lp‖q �
∑

α∈θ(au)
2αmςq · 2αm

(
1− 1

p

)
q � 2

au
(
ς+1− 1

p

)
q
(au)n−1;
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similarly we obtain

‖f1(·, u)|Bsm
p∞‖ � 2au

(
ς+1− 1

p

)
.

Therefore, the function

g1(x) ≡ g1(x;u) := cf1(x;u) · 2−au
(
ς+1− 1

p

)
(au)(1−n) 1

q

belongs to the class Bsm
pq (with a constant independent of u), 1 ≤ q ≤ ∞.

Now, take an arbitrary spectrum Λ ∈ Z
k, #Λ = N , where N ∈ N is chosen in such a way that

4N ≤ #Λa(au) and N � 2au(au)n−1.
Denote by A the set of α ∈ θ(au) for which

#(Λ ∩ ρ(m,α)) ≤ 1

2
#ρ(m,α).

Due to the choice of N , we have #A ≥ 1
2#θ(au).

Then, by Lemma T2, we obtain the following lower estimate for any polynomial t ∈ T(Λ):

‖g1 − t|Lr‖r �
∑

α∈θ(au)
2αm

( 1
2
− 1

r

)
r‖Δ∗

α(g1 − t, x)|L2‖r

� 2au
(

1
2
− 1

r

)
r · 2−au

(
ς+1− 1

r

)
r(au)−(n−1) r

q

∑
α∈A

[ ∑
ξ∈ρ(m,α)\Λ

1

]r
2

� 2au
(

1
2
− 1

r

)
r · 2−au

(
ς+1− 1

r

)
r(au)−(n−1) r

q · 2au r
2 (au)n−1

=
(
2−au

(
ς− 1

p
+ 1

r

)
(au)(n−1)

(
1
r
− 1

q

))r
,

i.e.,

‖g1 − t|Lr‖ � N
−ς+ 1

p
− 1

r (logn−1 N)
ς− 1

p
+ 2

r
− 1

q .

Therefore,

σN
(
Bsm
pq ,T

(k), Lr

)
� N

−ς+ 1
p
− 1

r (logn−1N)
ς− 1

p
+ 2

r
− 1

q .

Thus, the required lower estimate is proved provided that ς − 1
p + 2

r − 1
q ≥ 0.

If ς − 1
p + 2

r − 1
q < 0, then the desired lower estimate follows from the analysis of the isotropic

case n = 1 (⇒ m = k, s ∈ R
1
+, ς = s

k ):

σN
(
Bsk
pq ,T

(k), Lr

)
� N−ς+ 1

p
− 1

r . (8.2)

Recall that estimate (8.2) was established in [9] (see estimate (2.2)). Estimate (8.2) can also
be proved by means of the lower estimate for the best N -term trigonometric approximations of
appropriately chosen cubic smooth means

J∑
j=1

Δηk
j

(
G̃s+k

(
1− 1

p

);x
)

of the periodized Bessel–Macdonald kernel.
B. Now, let 1 = p < r ≤ 2. Applying the periodized Bessel–Macdonald kernels, we construct

a function in the class Bsm
1q that is poorly approximated by N -term trigonometric polynomials.
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Since G̃δ ∈ Bδ
1∞(Tk) (see Section 3), for the function

G̃(m)
s (x) :=

∏
ν∈zn

G̃sν (x
ν),

in view of the easily verifiable equality

Δηm
α (G̃(m)

s , x) =
∏
ν∈zn

Δηmν
αν

(G̃sν , x
ν), α ∈ N

n
0 ,

it follows from (3.3) that

2αs‖Δηm
α (G̃(m)

s , x)|L1‖ � 1, α ∈ N
n
0 , (8.3)

i.e., G̃(m)
s ∈ Bsm

1∞. Taking into account the remarks on the composition of the operators Δη
α and Δη

α′

(see Section 4) and Lemma M, one can easily show that the function

f2(x) = f2(x; G̃
(m)
s ;u) =

∑
α∈θ(au)

Δηm
α (G̃(m)

s ;x)

satisfies the following norm estimate in the space Bsm
1q (1 ≤ q < ∞):

‖f2|Bsm
1q ‖q =

∑
α′∈Nn

0

2α
′sq

∥∥∥∥∥
∑

α∈θ(au)
Δη

α′ ◦Δη
α(G̃

(m)
s ;x)

∣∣∣∣L1

∥∥∥∥∥
q

�
∑

α∈θ(au)
2αsq‖Δη

α(G̃
(m)
s ;x)|L1‖q

� #θ(au) � (au)n−1;

its norm in Bsm
1∞ is estimated in a similar way: ‖f2|Bsm

1∞‖ � 1. Thus, the function

g2(x) = g2(x; G̃
(m)
s ;u) = c(au)−(n−1) 1

q f2(x; G̃
(m)
s ;u), 1 ≤ q ≤ ∞,

belongs to the class Bsm
1q (with a constant independent of u).

Now, arguing as in part A and retaining the notation adopted there, we obtain the following
chain of inequalities for any polynomial t consisting at most N harmonics:

‖g2 − t|Lr‖r �
∑

α∈θ(au)
2αm

(
1
2
− 1

r

)
r‖Δα(g2 − t, x)|L2‖r

� 2aur
(

1
2
− 1

r

)
(au)

−(n−1) r
q

∑
α∈A

[ ∑
ξ∈ρ(m,α) : ̂t(ξ)=0

( ∑
α′∈Zk

η̂α′(ξ)

)2 ∏
ν∈zn

(1 + ξνξν)−sν

]r
2

� 2aur
(

1
2
− 1

r

)
(au)

−(n−1) r
q

∑
α∈A

2−αmςr · 2αm 1
2
r

� 2aur
(
1
2
− 1

r

)
(au)

−(n−1) r
q · 2−aurς · 2au r

2 (au)n−1 = 2−aur
(
ς−1+ 1

r

)
(au)

(n−1)
(

1
r
− 1

q

)
r
;

therefore,

σN
(
g2,T

(k), Lr

)
� N−ς+1− 1

r (logn−1 N)ς−1+ 2
r
− 1

q .

This implies the required lower estimate for the class Bsm
1q :

σN
(
Bsm
1q ,T

(k), Lr

)
� N−ς+1− 1

r (logn−1N)ς−1+ 2
r
− 1

q ,

again provided that ς − 1 + 2
r − 1

q ≥ 0. In the case of ς − 1 + 2
r − 1

q < 0, the necessary lower
estimate follows from the above-mentioned result (2.2) from [9] for the isotropic class Bsk

1q . �
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9. LOWER ESTIMATES: CASES II AND III

To derive the lower estimates in case III, we apply Nikolskii’s duality relation (3.3). Namely, from
the definition of the best N -term trigonometric approximation of a function f ∈ Lr (1 < r < ∞),
by virtue of relation (3.3) we deduce the equality

σN
(
f,T(k), Lr

)
= inf

Λ⊂Zk, #Λ=N
sup

{
〈f, g〉 : ‖g|Lr′‖ = 1, ĝ(ξ) = 0, ξ ∈ Λ

}
.

Therefore, to obtain the lower estimate

σN
(
F,T(k), Lr

)
� aN ,

it suffices to show that for every N there exists a function f0 in the class F and for an arbitrary
spectrum Λ ⊂ Z

k, #Λ = N , there exists a function ϕΛ(x) = ϕΛ(x; f0) with ‖ϕΛ|Lr′‖ = 1 and
ϕ̂Λ(ξ) = 0, ξ ∈ Λ, such that

〈f0, ϕΛ〉 � aN (9.1)

with a constant independent of N .
Proof of the lower estimates in Theorem 2.1, cases II and III. A. Let first p > 2. In

this case, to construct a function f0 from the class Bsm
pq , we need the well-known Rudin–Shapiro

trigonometric polynomials Rj(z), j ∈ N (see, e.g., [12, Ch. 4]). For every j ∈ N, this polynomial
has the form

Rj(z) =
2j−1∑

ζ=2j−1

R̂(ζ)e2πiζz

with coefficients R̂(ζ) ∈ {−1, 1}, ζ = 2j−1, . . . , 2j − 1, and its uniform norm is estimated as

‖Rj |L∞‖ ≤ 2
1
2
(j+1).

Consider the function

f3(x) ≡ f3(x;u) :=
∑

α∈θ(au)
Rα(x) :=

∑
α∈θ(au)

∏
ν∈zn

∏
κ∈kν

Rαν (xκ).

It is clear that
Δ∗

α(f3, x) = Rα(x) if α ∈ θ(au),

Δ∗
α(f3, x) ≡ 0 if α ∈ N

n
0 \ θ(au).

Let us estimate the norm of the function f3 in the space Bsm
∞q. According to (8.1) and the properties

of the Rudin–Shapiro polynomials, we obtain (q < ∞)

‖f3|Bsm
∞q‖q �

∑
α∈θ(au)

2αsq‖Rα|L∞‖q �
∑

α∈θ(au)
2αsq · 2αm 1

2
q � 2au

(
ς+ 1

2

)
q(au)n−1;

similarly,

‖f3|Bsm
∞∞‖ � 2au

(
ς+ 1

2

)
.

Therefore, the function

g3(x) ≡ g3(x;u) = c · 2−au
(
ς+ 1

2

)
(au)

(1−n) 1
q f3(x;u)

belongs to the class Bsm
∞q (with a constant independent of u).
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One can see from the properties of the Rudin–Shapiro polynomials and the construction of the
polynomial f3(x;u) that the Fourier coefficients f̂3(ξ, u) of the latter take values +1 or −1 for
ξ ∈ ρ(m,α) ∩N

k =: ρ+(m,α), α ∈ θ(au), and 0 for all the other ξ.
Again, take an arbitrary spectrum Λ ⊂ Z

k, #Λ = N , where N depends on u and is chosen so
that 2k+2N ≤ #Λa(au) and N � 2au(au)n−1. Denote by A the set of those α ∈ θ(au) for which

#(Λ ∩ ρ+(m,α)) ≤ 1

2
ρ+(m,α).

In view of the choice of N , we have #A ≥ 1
2 θ(au).

Now, consider the function

ψΛ(x) := ψΛ(x;u) := f3(x)−
∑
ξ∈Λ

f̂3(ξ)e
2πiξx.

It is clear that
ψ̂Λ(ξ) = 0 for all ξ ∈ Λ.

By the Parseval identity, we have

‖ψΛ|L2‖2 =
∑
ξ∈Zk

|ψ̂Λ(ξ)|2 =
∑

α∈θ(au)

∑
ξ∈ρ+(m,α)

|ψ̂Λ(ξ)|2.

Hence, on the one hand, we obtain the upper estimate

‖ψΛ|L2‖2 ≤
∑

α∈θ(au)

∑
ξ∈ρ+(m,α)

1 � aau(au)n−1

and, on the other hand, the lower estimate

‖ψΛ|L2‖2 ≥
∑
α∈A

∑
ξ∈ρ+(m,α)

|ψ̂Λ(ξ)|2 =
∑
α∈A

∑
ξ∈ρ+(m,α)\Λ

1 ≥ 1

2

∑
α∈A

ρ+(m,α) =
1

2

∑
α∈A

2αm

� 2au#A � 2au(au)n−1.

Therefore,

‖ψΛ|L2‖ � 2
1
2
au(au)(n−1) 1

2 .

Now, we introduce the function

ϕΛ(x) :=
1

‖ψΛ|L2‖
ψΛ(x).

It follows from the above constructions and estimates that

〈g3, ϕΛ〉 � 2−
1
2
au(au)−(n−1) 1

2 · 2−au
(
ς+ 1

2

)
(au)

−(n−1) 1
q 〈f3, ψΛ〉

= 2−(ς+1)au(au)−(n−1)
(

1
2
+ 1

q

)
‖ψΛ|L2‖2 � 2−ςau(au)(n−1)

(
1
2
− 1

q

)
� N−ς(logn−1N)ς+

1
2
− 1

q .

Hence, in view of the arbitrariness of the spectrum Λ and relation (9.1), we obtain

σN
(
Bsm
∞q,T

(k), L2

)
� N−ς(logn−1 N)ς+

1
2
− 1

q . (9.2)

Using the elementary embedding Bsm
∞q ↪→ Bsm

pq and the inequality ‖ · |L2‖ ≤ ‖ · |Lr‖, we then finally
derive the following estimate for the class Bsm

pq in case III:

σN
(
Bsm
pq ,T

(k), Lr

)
� N−ς(logn−1N)ς+

1
2
− 1

q .
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B. Let, finally, 1 ≤ p ≤ 2. Then, by virtue of the obvious inequality

σN
(
Bsm
pq ,T

(k), Lr

)
≥ σN

(
Bsm
pq ,T

(k), L2

)
,

the required lower estimate follows from the already analyzed case I with r = 2.
Thus, all the lower estimates in Theorem 2.1 are completely proved. �
Now, let us discuss the lower estimates for the best N -term trigonometric approximations of the

classes Hςε
pq.

Proof of the lower estimates in Theorem 6.1 for ς �= 1
p − 2

r + 1
q and in Theorem 7.1.

Consider the functions

hj(x) := hj(x;u) := (au)(n−1)εgj(x;u), j = 1, 2, 3.

It is clear that in the situations analyzed in parts A and B of the proof of the lower estimates in
case I of Theorem 2.1 (Section 8) and in part A of the same proof in cases II and III (above in the
current section), the previous considerations imply the estimates

σN
(
h1,T

(k), Lr

)
� N−ς+ 1

p
− 1

r (logn−1N)
ε+

(
ς− 1

p
+ 2

r
− 1

q

)
+ ,

σN
(
h2,T

(k), Lr

)
� N−ς+1− 1

r (logn−1N)
ε+

(
ς−1+ 2

r
− 1

q

)
+ ,

σN
(
h3,T

(k), Lr

)
� N−ς(logn−1 N)

ε+ς+ 1
2
− 1

q .

Next, by Theorem A and the remark on the compositions Δw
α ◦Δ∗

α′ and Δw
α ◦Δη

α′ (see Section 4),
the inclusion gj ∈ Bsm

pq readily implies that hj ∈ Hςε
pq, j = 1, 2, 3.

Thus, it follows that in all the cases considered in Theorems 6.1 and 7.1 except for the case
when ς − 1

p + 2
r − 1

q = 0 in Theorem 6.1, the upper estimates established there are order sharp.
In particular, Theorem 7.1 is completely proved. �
It remains to consider the lower estimates for the class Hςε

pq in the case of 1 ≤ p ≤ r ≤ 2, r > 1,
and ς − 1

p + 2
r − 1

q = 0.

Proof of the lower estimate in Theorem 6.1 for ς = 1
p − 2

r + 1
q . Depending on u ∈ N,

we choose a number L ∈ N satisfying (5.8) and then, for every l ∈ zL, take an arbitrary set
θ[l] ⊂ θ(a(u+ l − 1)) with

#θ[l] :=
⌊
2−al#θ(a(u+ l − 1))

⌋
+ 1;

it is clear that #θ[l] � 2a(L−l), l ∈ zL.
Let first 1 < p ≤ r ≤ 2. Consider the function f4 defined by the formula

f4(x) := f4(x;u;L) :=
L∑
l=1

∑
α∈θ[l]

Dρ(m,α)(x).

Let us estimate the norm of f4 in the space Hςε
pq. By Theorem A and relation (8.3), taking into

account the remark on the compositions Δw
α ◦Δ∗

α′ (Section 4) and (4.1), we obtain (q < ∞)

‖f4|Hςε
pq‖q = sup

l∈Nn
0

{(
2ςal(al)(1−n)ε

)q ∑
α∈θ(a(l−1))

‖Δ∗
α(f4;x)|Lp‖q

}

� max
l∈zL

{(
2ςa(u+l)(a(u+ l))(1−n)ε

)q ∑
α∈θ[l]

‖Dρ(m,α)|Lp‖q
}
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� max
l∈zL

{(
2ςa(u+l)(a(u+ l))(1−n)ε

)q ∑
α∈θ[l]

2
αm

(
1− 1

p

)
q

}

� max
l∈zL

{(
2ςa(u+l)(a(u+ l))(1−n)ε

)q · 2a(u+l)
(
1− 1

p

)
q#θ[l]

}

� max
l∈zL

{(
2
(
ς+1− 1

p

)
a(u+l)(a(u+ l))(1−n)ε

)q
· 2−al(a(u+ l))n−1

}

� 2au max
l∈zL

{
2
(
ς+1− 1

p
− 1

q

)
a(u+l)q(a(u+ l))(n−1)

(
1
q
−ε

)
q
}
=: K(r).

If r = 2, then ς + 1− 1
p − 1

q = 0; therefore, in view of the choice of L, we obtain

K(2) = 2au max
{
(au)

(n−1)
(

1
q
−ε

)
q
, (a(u + L))

(n−1)
(

1
q
−ε

)
q
}
� 2au(au)

(n−1)
(

1
q
−ε

)
q
.

If 1 < r < 2, then ς + 1− 1
p − 1

q = 1− 2
r < 0; therefore, we find

K(r) � 2au · 2
(
ς+1− 1

p
− 1

q

)
auq

(au)
(n−1)

(
1
q
−ε

)
q
= 2

(
ς+1− 1

p

)
auq

(au)
(n−1)

(
1
q
−ε

)
q
.

Hence, for all 1 < r ≤ 2, we have

K(r) � 2
(
ς+1− 1

p

)
auq

(au)
(n−1)

(
1
q
−ε

)
q
.

Thus, we obtain the norm estimate

‖f4|Hςε
pq‖ � 2au

(
ς+1− 1

p

)
(au)(n−1)

(
1
q
−ε

)
;

similarly we get

‖f4|Hςε
p∞‖ � 2

au
(
ς+1− 1

p

)
(au)−(n−1)ε.

Therefore, the function

h4(x) := h4(x;u) := c · 2−au
(
ς+1− 1

p

)
(au)

(n−1)
(
ε− 1

q

)
f4(x;u)

belongs to the class Hςε
pq (1 ≤ q ≤ ∞) (with a constant independent of u).

Now, we choose N ∈ N from the conditions

c1N ≤
L∑
l=1

∑
α∈θ[l]

#ρ(m,α), N � 2au(au)n−1 log(au).

For Λ ⊂ Z
k with #Λ = N , we introduce the notation

z� = z�(Λ) =

{
l ∈ zL

∣∣∣∣ #
(
Λ ∩

⋃
α∈θ[l]

ρ(m,α)

)
≤ c2 · 2a(u+l)

}
,

θ�[l] =
{
α ∈ θ[l]

∣∣ #(Λ ∩ ρ(m,α)) ≤ c3#ρ(m,α)
}
, l ∈ z�.

One can easily verify that the positive constants c1, c2, and c3 can be chosen (independently of u)
so that #z� ≥ c4L and θ�[l] ≥ c5θ[l] with constants c4, c5 ∈ (0, 1) that are also independent of u.
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It remains to prove the lower estimate for the error of approximation of f4 by an arbitrary
polynomial t ∈ T(Λ) in Lr. By Lemma T2 and the Parseval identity, taking into account the choice
of z� and θ�[l], we obtain

‖f4 − t|Lr‖r �
∑
l∈z


∑
α∈θ
[l]

2αm
(

1
2
− 1

r

)
r‖Δ∗

α(f4 − t, x)|L2‖r �
∑
l∈z


2a(u+l)
(

1
2
− 1

r

)
r
∑

α∈θ
[l]
2αm

r
2

�
∑
l∈z


2a(u+l)
(
1− 1

r

)
r#θ�[l] � 2au

∑
l∈z


2a(u+l)
(
1− 2

r

)
r(a(u+ l))n−1 =: E(r). (9.3)

If r = 2, then the choice of L yields

E(2) = 2au
∑
l∈z


(a(u+ l))n−1 � 2au(au)n−1L � 2au(au)n−1 log(au).

If 1 < r < 2, then

E(r) � 2au · 2a(u+L)
(
1− 2

r

)
r(a(u+ L))n−1L � 2au

(
1− 1

r

)
r(au)n−1 log(au).

This estimate and (9.3), in view of the arbitrariness of the spectrum Λ, imply the following lower
estimate for 1 < r ≤ 2:

σN
(
h4,T

(k), Lr

)
� 2

−au
(
ς+1− 1

p

)
(au)

(n−1)
(
ε− 1

q

)
· 2au

(
1− 1

r

)
(au)(n−1) 1

r (log(au))
1
r

= 2−au
(
ς− 1

p
+ 1

r

)
(au)(n−1)

(
ε− 1

q
+ 1

r

)
(log(au))

1
r � N−ς+ 1

p
− 1

r (logn−1N)ε(log logN)
1
q .

Hence, we arrive at the required lower estimate for the class Hςε
pq:

σN
(
Hςε

pq,T
(k), Lr

)
� N

−ς+ 1
p
− 1

r (logn−1 N)ε(log logN)
1
q . (9.4)

In the case of 1 = p < r ≤ 2, we consider functions f5 and h5 that are defined by analogy
with the functions f4 and h4 except that the Dirichlet kernels Dρ(m,α)(x) should be replaced by
appropriate “sections” of the Bessel–Macdonald kernels Δη

α(G̃s;x). Just as above, combining the
arguments related to the estimates for f2 and g2 from part B of the proof of the lower estimate in
case I of Theorem 2.1 (Section 8) and for f4, one can easily verify that the function h5 belongs to
the class Hςε

1q and

σN
(
h5,T

(k), Lr

)
� N−ς+1− 1

r (logn−1N)ε(log logN)
1
q ,

which implies the required estimate (9.4) for p = 1.
Thus, Theorem 6.1 is also completely proved. �
In conclusion, we make a few remarks.
Remark 9.1. In case IV, the lower estimate

σN
(
Bsm

pq ,T(k), L∞
)
� N−ς+ 1

p∗ − 1
2 (logω−1 N)ς−

1
p∗ +1− 1

q

holds, which follows from the estimates established in Theorem 2.1: for 1 ≤ p ≤ 2, from case I with
r = 2; for 2 < p < ∞, from case III with r = p; and for p = ∞, from (9.2).

Remark 9.2. The classes Hςε
pq and Wςε

A are analogs of the classes Hς
pq and Wςε

A (which are
Hς0

pq[Δ
∗] and Wςε

A [Δ
∗] in our notation, respectively) considered by Temlyakov in [30] (see also the

classes W a,b
p from [32]); however, instead of the sequence(

fl(x) :=
∑
|α|=l

Δ∗
α(f ;x)

∣∣∣∣ l ∈ N0

)
,
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we use the sequence (5.1); in other words, we use the system Wm instead of T(k), which, in particular,
has allowed us to analyze the cases when p ∈ {1,∞}. The classes Hςε

pq, which play an auxiliary role
(just as Hςε

pq in [30]) in the proof of the upper estimates for the classes Bsm
pq , are nevertheless of

some independent interest: in the “limit” case I with ς − 1
p + 2

r − 1
q = 0, there is a difference in the

decrease rates of (6.1) and (2.1).

Remark 9.3. Here we have not touched upon the results on the classes MWs
p(T

k) with
bounded mixed derivative at all. These results are closely related to those mentioned in Re-
marks 2.1(a)–2.1(c), and we are going to discuss them in a forthcoming paper devoted to the
best N -term trigonometric approximations of the Lizorkin–Triebel classes Lsm

pq , because the scale of
Lizorkin–Triebel classes naturally includes the classes MWs

p.
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