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Abstract—The paper is devoted to the problem of approximating reachable sets of a nonlinear
control system with state constraints given as a solution set of a nonlinear inequality. A
state constraint elimination procedure based on the introduction of an auxiliary constraint-
free control system is proposed. The equations of the auxiliary system depend on a small
parameter. It is shown that the reachable set of the original system can be approximated in
the Hausdorff metric by reachable sets of the auxiliary control system as the small parameter
tends to zero. Estimates of the convergence rate are given.
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1. INTRODUCTION

Reachable sets and their analogs play an important role in the solution of various control

problems, estimation under uncertainty, and differential games (see [1–5]). In the present paper,

we consider an algorithm for constructing reachable sets of a control system with state constraints.

Questions of the approximate construction of reachable sets, specifically, for systems with state

constraints, were considered in [5–12] and in many other papers. The algorithm proposed in this

paper is based on the elimination of state constraints by replacing the original system with an

auxiliary system obtained by a modification of the set of velocities of the original system. We add

a correcting term to the right-hand side of the system, which directs the velocity vector inside the

set of constraints when its boundary is intersected. The right-hand side of the auxiliary system

depends on a small parameter defining the domain of action of the correcting term. The reachable

domain of this system, which is constructed without consideration of the state constraints, contains

the reachable set of the original system with state constraints. As the small parameter vanishes,

the reachable sets converge in the Hausdorff metric to the reachable set of the original system.

A method of eliminating state constraints in the construction of reachable sets for differential

inclusions was proposed in papers of Kurzhanskii and Filippova [13,14], where trajectory tubes of

the differential inclusion with a convex state constraint

ẋ ∈ F (t, x), x(t) ∈ Y (t), t ∈ [t0, θ], (1.1)
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were approximated by solutions of the family of differential inclusions without state constraints

ẋ ∈ FL(t, x) = F (t, x) + L(x− Y (t)), t ∈ [t0, θ],

depending on a matrix parameter L. It was established that, under certain quite soft conditions,

the intersection of bundles of trajectories of the family over L gives the bundle of trajectories of

the original differential inclusion satisfying the state constraint. The intersection over L allows one

to obtain an upper estimate of the reachable set. In the general case, the intersection of bundles

of trajectories or reachable sets over a parameter does not provide the closeness of the sets in the

Hausdorff metric. In [15,16], a method was proposed for eliminating state constraints by restricting

the set of velocities of the system near the boundary of the constraints. In this case, the right-hand

side of the approximating system depends on a scalar parameter, its trajectories do not intersect

this boundary, and the reachable set of the approximating system approximates the reachable set of

the system with state constraints from inside. The proof of this fact required imposing a quite rigid

condition on the system and the constraints: for any boundary point of the constraints, there must

exist a vector of velocity of the control system at this point directed strictly inside the constraints.

In the present paper, under a similar condition, we propose another procedure for eliminating

state constraints. This procedure is based on the introduction of an auxiliary control system without

constraints, the right-hand side of which depends on a small parameter. Constructing this system,

we do not use the operations of intersection of sets; its reachable set contains the reachable set of

the original system with state constraints. Together with results [15, 16], this gives the possibility

of obtaining two-sided estimates for reachable sets. In this paper, we prove the convergence of

reachable sets of the auxiliary control system in the Hausdorff metric to the reachable set of the

original system as the small parameter tends to zero. Estimates for the convergence rate are given.

2. DEFINITIONS AND PROBLEM STATEMENT

Consider the nonlinear control system

ẋ = f(x, u), t0 ≤ t ≤ θ, (2.1)

where x ∈ R
n is a state vector and u ∈ R

r is a control parameter satisfying the constraint

u(t) ∈ U, t ∈ [t0, θ]. (2.2)

Here, U is a compact set in R
r. For controls, we consider measurable functions u : [t0, θ] → U , and

we denote by U the set of controls.

We will use the following notation. For x, y ∈ R
n, (x, y) is the scalar product and ‖x‖ = (x, x)1/2

is the Euclidean norm. Denote by Br(x̄) the ball of radius r > 0 centered at the point x̄: Br(x̄) =

{x ∈ R
n : ‖x − x̄‖ ≤ r}. For S ⊂ R

n, we denote by ∂S, IntS, and coS the boundary, interior,

and convex hull of S, respectively; ∇g(x) is the gradient of g(x) at the point x. Let h(A,B) be

the Hausdorff distance between sets A,B ⊂ R
n, and let conv(Rn) be the family of convex compact

sets in R
n. We assume that the right-hand side of (2.1) satisfies the following conditions.

Assumption 1. The mapping f(x, u) : Rn × U → R
n satisfies the conditions:

(1) f(x, u) is continuous and locally Lipschitz in x uniformly in u ∈ U ;

(2) the sublinear growth condition: there exists C > 0 such that

‖f(x, u)‖ ≤ C(1 + ‖x‖), (x, u) ∈ R
n × U ;

(3) the set of velocities F (x) := f(x,U) is convex for every x.
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System (2.1) can be represented in the form of the equivalent differential inclusion

ẋ ∈ F (x), x(t0) = x0, (2.3)

where the set-valued mapping F : Rn → conv(Rn) is locally Lipschitz in the Hausdorff metric.

Solutions of (2.3) are absolutely continuous functions x : [t0, θ] → R
n such that ẋ(t) ∈ F (x(t)) for

almost all t.

The state constraints have the form

x(t) ∈ S, t ∈ [t0, θ], (2.4)

where S is a closed set in R
n containing the vector x0. In what follows, we assume that

S = {x ∈ R
n : g(x) ≤ 0}, (2.5)

where g : Rn → R is a continuously differentiable function.

Denote by x(t, u(·), x0) the solution of system (2.1) with the initial condition x(t0) = x0. The

reachable set (domain) of system (2.1) with state constraint (2.4) at time θ is the set

G0(θ) =
{
x ∈ R

n : ∃u(·) ∈ U , x = x(θ, u(·), x0), x(t, u(·), x0) ∈ S, t0 ≤ t ≤ θ
}
,

i.e., the set of all points to which (2.1) can be taken at time θ from the initial state x0 under

constraints (2.2) and (2.4). Denote by G(θ) the reachable set of (2.1) without state constraints:

G(θ) =
{
x ∈ R

n : ∃u(·) ∈ U , x = x(θ, u(·), x0)
}
.

Under the conditions of Assumption 1, G(θ) is compact in R
n, and the trajectories of (2.1) with

the initial condition x(t0) = x0 lie inside some ball BR(x̄), which will be denoted by BR.

In the present paper, we consider the following problem: construct a control system

ẋ = fε(x, u), x(t0) = x0, (2.6)

with the right-hand side depending on a small parameter ε such that:

(1) the mapping fε(x, u) is defined for x from some neighborhood of S ∩BR and for u ∈ U , is

continuous in x and u, and is locally Lipschitz in x uniformly in u ∈ U ;

(2) fε(x,U) = f(x,U) for x ∈ S ∩BR and fε(x,U) ⊂ f(x,U);

(3) Gε(θ) → G0(θ) in the Hausdorff metric as ε → 0, where Gε(θ) is the reachable set of

system (2.6) without state constraints.

Thus, the original control system is replaced by a family of control systems without state

constraints depending on a parameter ε. The reachable sets of these systems approximate G0(θ)

as ε → 0. We call control system (2.6) approximating for system (2.1).

3. APPROXIMATION OF REACHABLE SETS

The further constructions are based on the following condition (see [17–20]).

Assumption 2. For any x ∈ ∂S ∩BR,

min
u∈U

(∇g(x), f(x, u)) < 0. (3.1)

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 292 Suppl. 1 2016



S118 GUSEV

Assumption 2 provides the nonemptiness of G0(θ). It follows from (3.1) that ∇g(x) 
= 0 for

x ∈ ∂S ∩BR; then,

∂S ∩BR = {x ∈ R
n : g(x) = 0} ∩BR.

Since the set {x ∈ R
n : g(x) = 0} ∩BR is compact and the function

η(x) = min
u∈U

(∇g(x), f(x, u))

is continuous in x, there exists σ > 0 such that (3.1) holds in the intersection of the σ-neighborhood

of the set {x ∈ R
n : g(x) = 0} with BR. The gradient of g(x) is nonzero at points of this set; hence,

there exists K > 0 such that

d(x) ≤ K|g(x)|,

where d(x) is the distance from x to the boundary of S (see [16]).

Assertion. If Assumption 2 holds, then there exists σ > 0 such that inequality (3.1) holds for

all points of the set

Sσ
R = {x : 0 ≤ g(x) ≤ σ} ∩BR.

We will also use the following strengthening of Assumption 2.

Assumption 3. There exist σ > 0 and a function ū : Sσ
R → U such that f(x, ū(x)) satisfies

the Lipschitz condition on Sσ
R and

(∇g(x), f(x, ū(x))) < 0 ∀x ∈ Sσ
R. (3.2)

Under this assumption, we define the right-hand side fε(x, u) of control system (2.6) on the set

{x ∈ R
n : g(x) ≤ σ} ∩ BR as follows. Choose 0 < ε < σ. Let hε(τ) : R → R be a continuously

differentiable function such that 0 ≤ hε(τ) ≤ 1, hε(τ) = 1 for τ < 0, and hε(τ) = 0 for τ > ε.

Define

fε(x, u) =

{
hε(g(x))f(x, u) +

(
1− hε(g(x))

)
f(x, ū(x)) for g(x) > 0,

f(x, u) for g(x) ≤ 0.

As hε(τ), we can use, for example, the linear–quadratic function

hε(τ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 for τ < 0,

1− aτ2 for 0 ≤ τ ≤ dε,

1− a(dε)2 − b(τ − dε) for dε < τ < (1− d)ε,

a(τ − ε)2 for (1− d)ε ≤ τ ≤ ε,

0 for τ > ε,

(3.3)

where a = 1/(2d(1 − d)ε2), b = 1/((1 − d)ε), and the parameter 0 < d < 1 is independent of ε.

Theorem 1. Suppose that the function f(x, u) and the constraints of the problem satisfy

Assumptions 1 and 3. Then:

(1) for 0 < ε < σ, the mapping fε(x, u) is continuous on {x ∈ R
n : g(x) ≤ σ} ∩ BR × U and

Lipschitz in x uniformly in u ∈ U ;

(2) for any u(·) ∈ U , a solution xε(t) of system (2.6) with the initial condition xε(t0) = x0 can

be extended to [t0, θ] and satisfies the inequality

g(xε(t)) ≤ ε, t ∈ [t0, θ]; (3.4)
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(3) G0(θ) ⊂ Gε(θ) for any 0 < ε < σ, and there exists a constant L > 0 such that

h(G0(θ), Gε(θ)) ≤ Lε. (3.5)

Proof. On the set S1 × U , where S1 = {x : g(x) ≤ 0} ∩ BR, the function fε(x, u) coincides

with f(x, u); hence, it is continuous. For (x, u) ∈ S2 × U , where S2 = {x : 0 ≤ g(x) ≤ σ} ∩ BR,

fε(x, u) is continuous as a superposition of continuous functions. It remains to prove the continuity

of fε(x, u) at the “gluing” points of these domains, i.e., at x such that g(x) = 0. Since these points

belong to each of the sets S1 and S2, the continuity of fε(x, u) at them is proved by means of

obvious arguments. To prove the Lipschitz condition for fε(x, u), note that there exist constants

L1, L2 > 0 independent of u and such that ∀i = 1, 2

|fε(x, u) − fε(y, u)| ≤ Li‖x− y‖ ∀x, y ∈ Si, ∀u ∈ U.

For x, y ∈ S1, the inequality follows from the fact that the function f(x, u), which coincides with

fε(x, u) on S1 ×U , is Lipschitz in x. On S2 ×U , the inequality holds since fε(x, u) is a superposition

of functions Lipschitz in x. Naturally, the constant L2 depends on ε. Let x ∈ S1 and y ∈ S2. Let

us connect x and y with a line segment. The function g takes values of different signs at the

end-points of the segment; hence, there exists a point z on the segment such that g(z) = 0. Taking

into account that z ∈ Si, i = 1, 2, we obtain

|fε(x, u) − fε(y, u)| ≤ |fε(x, u)− fε(z, u)| + |fε(z, u)− fε(y, u)|

≤ L1‖x− z‖+ L2‖y − z‖ ≤ max{L1, L2}(‖x− z‖+ ‖y − z‖) = max{L1, L2}‖x− y‖ ∀u ∈ U.

Consider a solution xε(t) of (2.6) corresponding to a control u(·) ∈ U . Since fε(x, u) is a convex

combination of the vectors f(x, u) and f(x, ū(x)) belonging to the convex set f(x,U), we have

ẋε(t) ∈ f(xε(t), U) for a.a. t. Then, by Filippov’s lemma (see [21]), there exists a control uε(·) ∈ U
such that

ẋε(t) = f(xε(t), uε(t));

i.e., any trajectory of the auxiliary system is a trajectory of (2.1) generated by some control different

from u(·). It remains to prove that this trajectory does not leave the set {x ∈ R
n: g(x) ≤ σ} ∩BR

on which the right-hand side fε(x, u) of system (2.6), is defined. Let γ∗ be the maximum among

the numbers γ not exceeding θ such that the solution xε(t) is defined on the interval [t0, γ]. Let us

prove that the inequality g(xε(t)) ≤ ε holds at all points [t0, γ
∗]. Assume, by contradiction, that

g(xε(t̂)) > ε for some t̂ ∈ [t0, γ
∗]. Define δ = (g(xε(t̂))− ε)/2; then, g(xε(t̂)) > ε+ δ. Let

t∗ = min{t : t ∈ [t0, γ
∗], g(xε(t)) = ε+ δ}.

Then, g(xε(t
∗)) = ε+ δ and, by the continuity of g(xε(t)), there exists β > 0 such that g(xε(t)) > ε

for t∗ − β ≤ t ≤ t∗. Consequently, hε(xε(t)) = 0 for these values of t, and

d

dt
g(xε(t)) = (∇g(xε(t)), f

(
xε(t), ū(xε(t))

)
< 0.

Hence, g(xε(t)) ≥ ε + δ for t∗ − β ≤ t ≤ t∗, which contradicts the definition of t∗. Thus, γ∗ = θ

and the inequality g(xε(t)) ≤ ε holds on the interval [t0, θ].

To prove the concluding part of the theorem, note that, if g(x) ≤ 0, we have fε(x, u) = f(x, u)

∀u ∈ U ; hence, G0(θ) ⊂ Gε(θ). It follows from the NFT theorems [17–19] about approximation
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of trajectories of a control system by trajectories satisfying state constraints (neighboring feasible

trajectories) that, under Assumption 2, there exists a constant L with the following property. For

any trajectory of system (2.1) with the initial condition x(t0) = x0, there exists a trajectory x̂(·),
x̂(t0) = x0, satisfying the state constraints and such that

‖x(·)− x̂(·)‖C[t0,θ] ≤ L max
t0≤t≤θ

max{g(x(t)), 0}.

Since any trajectory xε(t) of system (2.6) is a trajectory of the original system, we find from the

latter inequality that, for any xε(θ) ∈ Gε(θ), there exists x̂(θ) ∈ G0(θ) such that

‖xε(θ)− x̂(θ)‖ ≤ L max
t0≤t≤θ

max{g(xε(t)), 0} ≤ Lε.

This, in view of the inclusion G0(θ) ⊂ Gε(θ), implies the statement of the theorem.

Remark 1. Estimate (3.5) is uniform for all θ from a bounded set. If, instead of reachable

sets at time θ, we consider reachable sets by time θ

Ḡ0(θ) =
⋃

0≤τ≤θ

G0(τ), Ḡε(θ) =
⋃

0≤τ≤θ

Gε(τ),

then estimate (3.5) also holds for these sets.

Remark 2. Using variants of the NFT theorems for the nonstationary case (see [17–19]), we

can extend the above results to nonstationary systems with state constraints depending on time.

Remark 3. In Theorem 1, the convexity assumption for the set of velocities f(x,U) can be

eliminated. Let us briefly describe the scheme of the proof in this case. Along with system (2.1),

we consider the control system with a control w

ẋ = f̄(x,w(t)), x(t0) = x0, w(t) ∈ W, (3.6)

which is obtained in the standard way by convexifying the set of velocities of the original system:

f̄(x,W ) = cof(x,U). The set of trajectories of system (2.1) is contained in the set of trajectories of

system (3.6) and is dense in this set in the uniform metric. Let g(t0) < 0, and let Assumption 2 hold.

Using the results of [20], we can show that any trajectory of (3.6) satisfying the state constraint can

be arbitrarily exactly approximated in the uniform metric by trajectories of (2.1) also satisfying the

state constraint. Based on this fact and applying Theorem 1 to system (3.6), it is easy to obtain

an estimate of form (3.5) for system (2.1) without the assumption of convexity of f(x,U).

4. LINEAR IN CONTROL SYSTEMS

WITH ELLIPSOIDAL CONSTRAINTS ON THE CONTROL

Consider the linear in control system

ẋ = f(x, u) = f1(x) + f2(x)u, u(t) ∈ U, x(t0) = x0,

where f1(x) and f2(x) are continuously differentiable mappings, under the assumption that the

constraints on the control u are given by a nondegenerate ellipsoid in R
r:

U = {u ∈ R
r : (u− û)�Q(u− û) ≤ 1};
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here, Q is a positive definite symmetric matrix and û ∈ R
n is the center of the ellipsoid. We will

also assume that ∇g(x) satisfies the Lipschitz condition.

Assumption 2 for this system can be written in the form

(∇g(x), f1(x)) +∇�g(x)f2(x)û+min
v∈V

∇�g(x)f2(x)v < 0 (4.1)

for x ∈ Sσ
R. Here, V = {v : v�Qv ≤ 1} is the ellipsoid centered at zero.

Let

a(x) = (∇g(x), f1(x)) +∇�g(x)f2(x)û, b�(x) = ∇�g(x)f2(x).

Then,

min
v∈V

b�(x)v = min
(w,w)≤1

b�(x)Q−1/2w = −‖Q−1/2b(x)‖ = −
√

b�(x)Q−1b(x),

where Q−1/2 = (Q−1)1/2 is the square root of the positive definite matrix Q−1. In view of the

introduced notation, condition (4.1) takes the form

a(x) + min
v∈V

b�(x)v = a(x)−
√

b�(x)Q−1b(x) < 0. (4.2)

The minimum in (4.1) is attained at the vector

v(x) =
Q−1b(x)√

b�(x)Q−1b(x)
. (4.3)

Thus, the function ū(x) = v(x) + û provides the inequality (∇g(x), f(x, ū(x))) < 0. However,

in general, this function is not Lipschitz and may even have discontinuities at points x such that

b(x) = 0. Let us show that, modifying formula (4.3), we can make the corresponding function ū(x)

satisfy the Lipschitz condition.

Theorem 2. Let condition (4.2), which is equivalent to (4.3), hold on the set Sσ
R. Then, there

exists a Lipschitz function ū(x) such that

(∇g(x), f1(x) + f2(x)ū(x)) < 0 ∀x ∈ Sσ
R. (4.4)

Proof. As follows from (4.3), a(x) < 0 at the points where b(x) = 0. Let w = Q1/2v. Then,

a(x) + b�(x)v = a(x) + b�1 (x)w, where b1(x) = Q−1/2b(x), and the ellipsoid V becomes the ball

{w : (w,w) ≤ 1}. Consider a nonnegative function p(x) defined on Sσ
R by the equality

p(x) =

⎧⎪⎪⎨
⎪⎪⎩

a(x) +
√

a2(x) + (b�1 (x)b1(x))
2

b�1 (x)b1(x)
for b1(x) 
= 0,

0 for b1(x) = 0.

Since a(x) < 0 for b1(x) = 0, the function p(x) is continuously differentiable [22]. The Sontag

control2 w̄(x) = −p(x)b1(x) satisfies the inequality a(x) + b�1 (x)w̄(x) < 0; hence, for ū(x) =

Q−1/2w̄(x) + û, we have (∇g(x), f(x, ū(x))) < 0. Obviously, ū(x) is a Lipschitz function; however,

its values do not necessarily belong to U . To provide the condition ū(x) ∈ U , we proceed as follows.

2The formula for w̄ coincides with the formula for Sontag’s regulator stabilizing a control system, if we substitute
g(x) instead of the control Lyapunov function into the latter formula.
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Let π(w) be the operator of metric projection on the unit Euclidean ball in R
r; π(w) satisfies the

Lipschitz condition with the constant equal to one. Let us modify Sontag’s control, setting

w̄(x) = π(−p(x)b1(x)) =

⎧⎪⎨
⎪⎩

−p(x)b1(x) for ‖p(x)b1(x)‖ ≤ 1,

−p(x)b1(x)

‖p(x)b1(x)‖
= − b1(x)

‖b1(x)‖
for ‖p(x)b1(x)‖ > 1.

For ‖p(x)b1(x)‖ ≤ 1, we have w̄(x) = −p(x)b1(x) and, consequently, a(x) + b�1 (x)w̄(x) < 0. For

‖p(x)b1(x)‖ > 1, by (4.2), we have

a(x) + b�1 (x)w̄(x) = a(x)− ‖b1(x)‖ = a(x)−
√

b�(x)Q−1b(x) < 0.

Thus, ū(x) = Q−1/2π(−p(x)Q−1/2f�
2 (x)∇g(x)) + û is the required control. The theorem is proved.

5. EXAMPLES

As the first example, consider the linear control system

ẋ1 = x2, ẋ2 = u, x(0) = (0, 0), |u| ≤ 1, 0 ≤ t ≤ 2, (5.1)

with state constraint |x2| ≤ 1. The function g(x) = |x2| − 1 is nondifferentiable at x2 = 0, which

is not an obstacle for the application of the proposed method, since, in fact, the differentiability of

g(x) is required only in a neighborhood of the boundary of S, i.e., at x2 close to 1 and −1.

Let us choose the function hε(τ) in form (3.3). For the control ū(x) providing the inequality

g′(x2)ū(x) < 0 in a neighborhood of the lines |x2| = 1, we can take the function

ū(x) =

⎧⎨
⎩

−1 for x2 ≥ 1,

−x2 for −1 < x2 < 1,

1 for x2 ≤ −1.

The approximating system takes the form

ẋ1 = x2, ẋ2 = pε(x2, u), (5.2)

where pε(x2, u) = hε(|x2|−1)u+(1−hε(|x2|−1)) ū(x). Note that the first equation in system (5.1)

is unchanged, since it does not contain u.

It is known that controls taking trajectories of a system to the boundary of the reachable set

satisfy Pontryagin’s maximum principle (see, for example, [23]). Let us write the relations of the

maximum principle. The Hamiltonian of the system has the form

H(x, ψ) = ψ1x2 + ψ2 pε(x2, u).

From the maximum principle, u(t) = sgn ψ2(t), where ψ2(t) is found from the adjoint system

ψ̇1 = −∂H

∂x1
= 0,

ψ̇2 = −∂H

∂x2
= −ψ1 − ψ2 p

′
ε(x2, u),

and p′ε(x2, u) is the derivative of pε with respect to x2.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 292 Suppl. 1 2016



ELIMINATION OF STATE CONSTRAINTS S123

�2 �1.5

x1

�� ���� � ��� � ��� �

�1.5

��

����

�

���

�

���

x2 x2

x1

��

��

��

��

����

����

����

��

0 1 2 3 4 5 6

0

0.5

1

1.5

Fig 1. Interior and exterior approximating sets of
system (5.5).

Fig 2. Exterior approximating sets for different
values of ε.

Thus, we obtain the fourth-order nonlinear system

ẋ1 = x2,

ẋ2 = pε(x2, sgn ψ2),

ψ̇1 = 0,

ψ̇2 = −ψ1 − ψ2 p
′
ε(x2, sgn ψ2).

Integrating this system under the initial condition x1(0) = 0, x2(0) = 0, ψ1(0) = sinα, ψ2(0) =

cosα, where α runs from 0 to 2π, we obtain a planar family of points (x1(2, α), x2(2, α)), which

contains all boundary points of the reachable set Gε(2) of system (5.2). Figure 1 shows the results of

a numerical simulation according to the above algorithm. Here, the boundaries of the approximating

sets are shown. The bold line depicts the boundaries of Gε(2) for different ε, and the thin line

depicts the boundaries of the interior approximating sets obtained by the algorithm from [24].

In the second example, the control system has the form

ẋ1 = 1− p x22 + u1, ẋ2 = u2, x(0) = (0, 0), 0 ≤ t ≤ 3, (5.3)

where p > 0 and the constraints are given by the conditions u21 + u22 ≤ 1 and x2 ≤ 1. For ū(x), we

can take ū(x) ≡ (0,−1) ∀x. Then, the auxiliary system can be written in the form

ẋ1 = 1− p x22 + hε(x2 − 1)u1, ẋ2 = hε(x2 − 1)(1 + u2)− 1.

The algorithm for constructing the boundaries of the reachable sets is similar to that in the first

example. The constructed boundaries of approximations of the reachable sets Gε(3) for p = 0.5

and different values of ε are shown in Fig. 2; note that the lower parts of the boundaries coincide.
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