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Abstract—In modern game theory, a lot of attention is paid to the concept of Nash equilibrium.
The paper is devoted to the study of some properties of the set A of Nash equilibrium points in
two-person games. In particular, the character of possible complexity of the set A is investigated,
and the stability of the set A under small perturbations of payoff functions is analyzed.
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Denote by R
k (k ≥ 1) the k-dimensional Euclidean real arithmetic space with standard inner

product and with elements identified with ordered sets (columns) of k real numbers. For a nonempty
set M ⊂ R

k, denote by comp(M) the set of nonempty compact sets that belong to M . We will
use the notions of a set-valued map (s.m.), an upper semicontinuous set-valued map (u.s.c. s.m.), a
lower semicontinuous set-valued map, and a continuous set-valued map (see, for example, [1]). If a
scalar function h(a) is defined and continuous on a nonempty compact set A ⊂ R

k, then we denote
by Argmaxa∈A h(a) and Argmina∈A h(a) the set of maximizers and the set of minimizers of the
function h(a) on the set A.

Consider the following two-person (two-player) game (see, for example, [2–6]). Let X and Y
be nonempty compact sets in R

p and R
q, respectively. Put Z = X × Y . Suppose that continuous

scalar functions f(x, y) and g(x, y) are fixed on Z.
The aim of the first player is to maximize the function f(x, y) by choosing x ∈ X, and the aim

of the second player is to maximize the function g(x, y) by choosing y ∈ Y . So the functions f(x, y)
and g(x, y) represent the criteria corresponding to the first and second player, respectively.

Definition. A point (x0, y0) ∈ Z is called a Nash equilibrium point if the following two condi-
tions are satisfied simultaneously:

(1) the inequality f(x, y0) ≤ f(x0, y0) holds for all x ∈ X;

(2) the inequality g(x0, y) ≤ g(x0, y0) holds for all y ∈ Y .

Denote the set of all Nash equilibrium points in the game by A. It is known that in the
general case the set A may be empty. There is a well-known general theorem (see, for example, [2,
Theorem 7.2.2]) that gives sufficient conditions for A to be nonempty. Below (see Theorem 2), we
present other known sufficient conditions under which the set A is nonempty.

To find and study the set A, it is useful to consider two marginal maps

Ω1(y) = Argmax
x∈X

f(x, y), y ∈ Y, (1)

Ω2(x) = Argmax
y∈Y

g(x, y), x ∈ X. (2)
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It is clear that Ω1(y) �= ∅ for y ∈ Y and Ω2(x) �= ∅ for x ∈ X and that Ω1(y) ∈ comp(X) for y ∈ Y
and Ω2(x) ∈ comp(Y ) for x ∈ X. Thus, the game under consideration is assigned two s.m.’s

Ω1 : Y → comp(X) and Ω2 : X → comp(Y ).

It is easy to show that the s.m. Ω1 is u.s.c. on Y and the s.m. Ω2 is u.s.c. on X. Next, we put

GrΩ1 = {(x, y) : x ∈ Ω1(y), y ∈ Y } and GrΩ2 = {(x, y) : x ∈ X, y ∈ Ω2(x)}.

Using the fact that the s.m. Ω1(y) is u.s.c. on Y and s.m. Ω2(x) is u.s.c. on X, one can easily check
that the sets GrΩ1 and GrΩ2 are compact.

Let B = GrΩ1 ∩GrΩ2. The following theorem is well-known in game theory.
Theorem 1. The equality A = B holds.
The following lemma may be useful in studying the properties of the s.m.’s Ω1(y) and Ω2(x).
Lemma 1. Suppose that P ⊂ R

k (k ≥ 1) and Q ⊂ R
l (l ≥ 1) are nonempty compact sets and

Ω: P → comp(Q) is an s.m. If Ω is u.s.c. at a point ξ ∈ P and Ω(ξ) is a one-point set, then the
s.m. Ω is continuous at the point ξ.

Proof. It suffices to prove the lower semicontinuity of the s.m. Ω at the point ξ. This fact is
proved by contradiction. �

Remark 1. Note that if the hypothesis of Lemma 1 holds for all ξ ∈ P , then the single-valued
function ω(ξ) = Ω(ξ) is continuous (in the ordinary sense) on P .

Using this remark and the well-known theorem of Brouwer (see, for example, [7]), we arrive at
the following well-known theorem (see, for example, [6]).

Theorem 2. Suppose that the marginal maps Ω1(y) and Ω2(x) (see (1) and (2)) in the game
are single-valued for all y ∈ Y and x ∈ X, respectively, and the compact sets X and Y are convex.
Then the set A in the game is nonempty.

Remark 2. This theorem is interesting because it imposes no explicit requirements on the
concavity of the function f(x, y) with respect to x ∈ X for y ∈ Y and on the concavity of the
function g(x, y) with respect to y ∈ Y for x ∈ X (here X and Y are convex compact sets), as is
usually done in the literature (see, for example, [2, Theorem 7.2.2]).

In connection with Theorem 1, a question arises as to what extent the compact set A may be
arbitrary, provided that A �= ∅, as a function of the pair of continuous payoff functions f and g
defined on the compact set Z = X × Y .

Theorem 3. In the nonempty compact set Z, we fix an arbitrary nonempty compact subset M1

with the following property : for every y ∈ Y, the intersection of the set
⋃

x∈X{(x, y)} with M1 is
nonempty. Then there exists a continuous scalar function f(x, y) on Z such that GrΩ1 = M1.

Proof. According to the recipe from [7, Ch. 2, Sect. 3, Theorem 1], one can explicitly construct
a smooth scalar function F (x, y) on R

p × R
q such that F (x, y) = 0 for (x, y) ∈ M1 and F (x, y) < 0

for (x, y) /∈ M1. As the sought function f(x, y), one can take the restriction of the function F (x, y)
to Z. �

The next theorem can be proved in a similar way.
Theorem 4. In the nonempty compact set Z, let M2 be an arbitrary fixed compact subset

with the following property : for every x ∈ X, the intersection of the set
⋃

y∈Y {(x, y)} with M2 is
nonempty. Then there exists a continuous scalar function g(x, y) on Z such that GrΩ2 = M2.

The following theorem is related to Theorems 3 and 4.
Theorem 5. Suppose that an arbitrary nonempty compact subset M is fixed in the nonempty

compact set Z. Then there exist continuous scalar functions f(x, y) and g(x, y) on Z such
that A = M .
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Proof. Fix a point (ξ, η) ∈ M , where ξ ∈ X and η ∈ Y . Consider the sets M1 = M ∪ L1 and
M2 = M ∪ L2 with

L1 = {(x, y) ∈ Z : x = ξ, y ∈ Y } and L2 = {(x, y) ∈ Z : x ∈ X, y = η}.

One can easily prove that M1 and M2 are compact sets; moreover,

M1 ∩M2 = M. (3)

According to Theorem 3, for the set M1 one can construct a continuous function f(x, y) such that

GrΩ1 = M1. (4)

According to Theorem 4, for the set M2 one can construct a continuous function g(x, y) such that

GrΩ2 = M2. (5)

Taking into account relations (3)–(5) and using Theorem 1, we find that the equality A = M is
satisfied for the functions f(x, y) and g(x, y). �

Now, we examine separately the case of a two-person zero-sum game with

g(x, y) = −f(x, y) for (x, y) ∈ Z. (6)

Here we are interested in the saddle points of the game. It is known that when the functions f(x, y)
and g(x, y) are continuous on the compact set Z = X × Y and condition (6) is satisfied, the concept
of a Nash equilibrium point is equivalent to the concept of a saddle point. Therefore, the equality
A1 = A holds, where A1 is the set of saddle points in the game. The specific feature of a zero-sum
game is that if A1 is nonempty, it is a rectangular set, i.e., A1 = K1 ×K2, where K1 is a nonempty
compact set in X and K2 is a nonempty compact set in Y ; moreover,

K1 = Argmax
x∈X

(
min
y∈Y

f(x, y)
)

and K2 = Argmin
y∈Y

(
max
x∈X

f(x, y)
)
.

Theorem 6. Suppose that an arbitrary nonempty rectangular compact subset M in the non-
empty compact set Z is fixed ; i.e., M = M1 ×M2, where M1 is a nonempty compact subset of X
and M2 is a nonempty compact subset of Y . Then there exists a continuous scalar function f(x, y)
on Z such that the equality A1 = M holds for the corresponding zero-sum game (see (6)).

Proof. Using the arguments from [7, Ch. 2, Sect. 3, Theorem 1], we construct a continuous
function f1(x) on X such that

Argmax
x∈X

f1 = M1.

Using the same arguments, we construct a continuous function f2(y) on Y such that

Argmin
y∈Y

f2 = M2.

After constructing the functions f1(x) and f2(y), one can take the function f(x, y) = f1(x) + f2(y)
as the sought function f(x, y). �

To study further the set A, consider the function

Δ(p, q) =
(
f(x, ỹ )− f(x̃, ỹ )

)
+

(
g(x̃, y)− g(x̃, ỹ )

)
, (7)
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where x, x̃ ∈ X, y, ỹ ∈ Y , p = (x, y), and q = (x̃, ỹ ), and introduce the function

L(q) = max
p∈Z

Δ(p, q). (8)

Note that under the assumptions made above, the function L(q) is continuous on Z. It is easy to
show (see (7)) that

L(q) ≥ 0 ∀q ∈ Z. (9)

Note that functions of the type (8) have been considered in some previous studies in N -person game
theory (see, for example, [8]).

Lemma 2. Let
min
q∈Z

L(q) = 0. (10)

Then A �= ∅.
Proof. Suppose that a point q0 = (x0, y0) in Z is such that (see (10))

L(q0) = 0.

Then (see (7), (8), (10))
(
f(x, y0)− f(x0, y0)

)
+

(
g(x0, y)− g(x0, y0)

)
≤ 0 ∀(x, y) ∈ Z.

Substituting successively y = y0 and x = x0 into this inequality, we obtain

f(x, y0) ≤ f(x0, y0) ∀x ∈ X, g(x0, y) ≤ g(x0, y0) ∀y ∈ Y, (11)

i.e., q0 ∈ A. �
Lemma 3. If A �= ∅, then relation (10) is satisfied.
Proof. Let q0 = (x0, y0) ∈ A. Then relations (11) hold. Hence (see (7)),

Δ(p, q0) ≤ 0 ∀p ∈ Z. (12)

Relations (8), (9), and (12) imply equality (10). �
The following lemma is a corollary to Lemmas 2 and 3.
Lemma 4. 1. The set A coincides with the set of points q ∈ Z that (see (8)) satisfy the

equality L(q) = 0.
2. The set A coincides with the set of points Argminq∈Z L(q) provided that relation (10) is

valid.
3. The set A is empty if and only if minq∈Z L(q) > 0.
Lemma 4 opens up certain possibilities for calculating the points of the set A on the basis of

the calculation of the roots of the function L(q) (see (8)) on the set Z (see [9]). Note that in view
of formulas (7) and (8), the analytic properties of L(q) may deteriorate compared with the analytic
properties of the function Δ(p, q) due to the presence of a maximum-type operation. Note also that
there are a fairly large number of publications devoted to the numerical aspects of calculating the
points of the set A. We mention [10] among these publications.

In conclusion, we examine how the set A depends on perturbations of the functions f(x, y) and
g(x, y). To this end, we consider a two-person game with payoff functions f(x, y, ε) and g(x, y, ε)
that are defined and continuous on X × Y × E , where the sets X ⊂ R

p, Y ⊂ R
q, and E ⊂ R

r are
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nonempty and compact and the point 0 is an interior point of the set E . For a fixed ε ∈ E , we
have an ordinary two-player game considered above. To every such game, there corresponds a set of
Nash equilibrium points A(ε). By analogy with formulas (7) and (8), we define functions Δ(p, q, ε)
and L(q, ε). These functions are continuous on Z × Z × E and Z × E , respectively. Suppose that
minq∈Z L(q, 0) > 0, i.e., A(0) = ∅. Then, for sufficiently small |ε|, we have minq∈Z L(q, ε) > 0; i.e.,
A(ε) = ∅ for such ε. Now, suppose that A(ε) �= ∅ in a neighborhood V ⊂ E ⊂ R

r of the point
0 ∈ E ⊂ R

r. Then, according to the aforesaid, in this neighborhood V the set A(ε) consists of those
points q ∈ Z for which

L(q, ε) = 0.

Hence, the s.m. A(ε) is u.s.c. at the point ε = 0. If A(0) is a one-point set, then (see Lemma 1) the
s.m. A(ε) is continuous at the point ε = 0. Thus, in this case, the set A(0) is stable under small
perturbations of the payoff functions.

ACKNOWLEDGMENTS

I am grateful to Professor V.I. Zhukovskii (Faculty of Computational Mathematics and Cyber-
netics, Moscow State University) for valuable remarks on the manuscript of the paper.

This work is supported by the Russian Science Foundation under grant 14-50-00005.

REFERENCES
1. V. V. Fedorov, Numerical Methods of Maximin (Nauka, Moscow, 1979) [in Russian].
2. T. Parthasarathy and T. E. S. Raghavan, Some Topics in Two-Person Games (Elsevier, New York, 1971; Mir,

Moscow, 1974).
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